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Summary. We investigate best constants for inequalities between the Orlicz norm and
Luxemburg norm in Orlicz spaces.

1. Introduction. Let G = R or R+, and Φ : [0,∞) → [0,∞) be an
arbitrary Orlicz function (i.e., Φ is convex and vanishes only at zero). It is
well-known that in Orlicz spaces LΦ(G), the Orlicz norm ‖ · ‖Φ,G and the
Luxemburg norm ‖ · ‖(Φ,G), to be defined below, are equivalent and satisfy

‖f‖(Φ,G) ≤ ‖f‖Φ,G ≤ 2‖f‖(Φ,G) for all f ∈ LΦ(G).

In this paper we investigate the best constants in these inequalities. Note
that Lebesgue spaces and their extensions, Orlicz spaces, play an important
role in analysis and have many applications (see [1–8]).

Denote by
Φ̄(t) = sup

s≥0
{ts− Φ(s)}

the Young function conjugate to Φ, and LΦ(G) be the Orlicz function space
over the Lebesgue measure space (G,Σ,m), i.e., the space of all measurable
functions u such that

|〈u, v〉| =
∣∣∣ �
G

u(x)v(x) dx
∣∣∣ <∞ ∀v : ρ(v, Φ̄) <∞,
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where
ρ(v, Φ̄) =

�

G

Φ̄(|v(x)|) dx.

Then LΦ(G) is a Banach space with respect to the Orlicz norm

‖u‖Φ,G = sup
ρ(v,Φ̄)≤1

∣∣∣ �
G

u(x)v(x) dx
∣∣∣,

as well as the Luxemburg norm

‖f‖(Φ,G) = inf
{
λ > 0 :

�

G

Φ(|f(x)|/λ) dx ≤ 1
}
<∞.

Recall that ‖ · ‖(Φ,G) = ‖ · ‖Lp(G) where Φ(t) = tp with 1 ≤ p < ∞,
and that an Orlicz function Φ : [0,∞) → [0,∞) is called an N -function if
limt→0 Φ(t)/t = 0 and limt→∞ Φ(t)/t =∞.

We need the following results:

Theorem A ([7]). Let Φ be an N-function. Then

‖f‖Φ,G = inf
t>0

1
t

(
1 +

�

G

Φ(t|f(x)|) dx
)
.

Young’s inequality. Let Φ be an N-function. Then

xy ≤ Φ(x) + Φ̄(y) ∀x, y ≥ 0,

and equality holds iff y ∈ [ψ(x), η(x)], where ψ, η are the left and right der-
ivatives of Φ.

2. Main results. Suppose that C1 is the largest number and C2 the
smallest number such that

C1‖f‖(Φ,G) ≤ ‖f‖Φ,G ≤ C2‖f‖(Φ,G) for all f ∈ LΦ(G).

Let Φ be an N -function. It is well known that the Orlicz norm has the Fatou
property, that is, if 0 ≤ fn ≤ f ∈ LΦ(G) then ‖fn‖Φ,G → ‖f‖Φ,G whenever
fn → f a.e. Hence,

C1 = inf{‖f‖Φ,G : f ∈ A}, C2 = sup{‖f‖Φ,G : f ∈ A},(1)

where A is the set of all simple functions f ∈ LΦ(G) satisfying ‖f‖(Φ,G) = 1.
So, 1 ≤ C1 ≤ C2 ≤ 2. For t ≥ 0 we define

H(t) = sup
x>0

Φ(tx)
Φ(x)

, D(t) = inf
x>0

Φ(tx)
Φ(x)

.(2)

Clearly, the functions D(t), H(t) are increasing, D(t) ≤ H(t) ≤ t for any
0 ≤ t ≤ 1 and t ≤ D(t) ≤ H(t) for any t > 1. In this paper, we denote by
f−1 the inverse function of f .

We have the following theorem.
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Theorem 1. Let Φ be an N-function. Then

C1 = inf
t>0

1
t
Φ̄−1(t)Φ−1(t) = inf

t>0

1 +D(t)
t

.(3)

Proof. Since Φ is an N-function, Φ(x) is strictly increasing and Φ̄−1(x)
is well defined. From (2) we have

D(t) = inf
x>0

Φ(tΦ−1(x))
x

.(4)

Then it follows from Young’s inequality that
1
t
(1 +D(t)) =

1
t

(
1 + inf

x>0

Φ(tΦ−1(x))
x

)
= inf

x>0

1
t

Φ̄(Φ̄−1(x)) + Φ(tΦ−1(x))
x

≥ inf
x>0

Φ̄−1(x)tΦ−1(x)
tx

= inf
x>0

1
x
Φ−1(x)Φ̄−1(x).

Therefore,

inf
t>0

1
t
(1 +D(t)) ≥ inf

x>0

1
x
Φ−1(x)Φ̄−1(x).(5)

For each x > 0, we choose t > 0 satisfying tΦ−1(x) = ϕ(Φ̄−1(x)), where ϕ is
the left derivative of Φ̄. Then, from (4) and Young’s equality, we obtain

1 +D(t) ≤ 1 +
Φ(tΦ−1(x))

x
=
Φ(tΦ−1(x)) + Φ̄(Φ̄−1(x))

x
=
tΦ−1(x)Φ̄−1(x)

x
.

Hence,

inf
t>0

1
t
(1 +D(t)) ≤ inf

x>0

1
x
Φ−1(x)Φ̄−1(x).(6)

From (5) and (6), we have

inf
t>0

1
t
(1 +D(t)) = inf

x>0

1
x
Φ−1(x)Φ̄−1(x).(7)

It is known that if f ∈ LΦ(G) is a simple function and ‖f‖(Φ,G) = 1 then
�

G

Φ(|f(x)|) dx = 1.

Therefore, it follows from Theorem A that

‖f‖Φ,G = inf
{

1
t

(
1 +

�

G

Φ(t|f(x)|) dx
)

: t > 0
}

≥ inf
{

1
t

(
1 +D(t)

�

G

Φ(|f(x)|) dx
)

: t > 0
}

= inf
t>0

1 +D(t)
t

,

which together with (1) implies

C1 ≥ inf
t>0

1 +D(t)
t

.(8)
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For each t > 0, we define h(x) = χ(0,1/t)(x). Clearly, ‖h‖(Φ,G) = 1/Φ−1(t)
and it follows from Young’s equality and Theorem A that

‖h‖Φ,G = inf
k>0

1
k

(
1 +

1
t
Φ(k)

)
≤ 1
ϕ(Φ̄−1(t))

(
1 +

1
t
Φ(ϕ(Φ̄−1(t)))

)
=

1
t

t+ Φ(ϕ(Φ̄−1(t)))
ϕ(Φ̄−1(t))

=
1
t

Φ̄(Φ̄−1(t)) + Φ(ϕ(Φ̄−1(t)))
ϕ(Φ̄−1(t))

=
1
t
Φ̄−1(t).

Hence,

C1 ≤
1
t
Φ̄−1(t)Φ−1(t) ∀t > 0,

which implies

C1 ≤ inf
t>0

1
t
Φ−1(t)Φ̄−1(t).(9)

Combining (7)–(9), we obtain (3). The proof is complete.

Theorem 2. Let Φ be an N-function. Then

C2 ≤ inf
t>0

1 +H(t)
t

(10)

and

sup
t>0

1
t
Φ̄−1(t)Φ−1(t) ≤ C2.(11)

Proof. Let f ∈ LΦ(G) be a simple function satisfying ‖f‖(Φ,G) = 1. Then
�

G

Φ(|f(x))|) dx = 1.

Therefore, it follows from Theorem A that

‖f‖Φ,G ≤
1
t

(
1 +

�

G

Φ(t|f(x)|) dx
)

≤ 1
t

(
1 +H(t)

�

G

Φ(|f(x)|) dx
)

=
1 +H(t)

t
∀t > 0.

So, by (1) we obtain

C2 ≤ inf
t>0

1 +H(t)
t

.

For each t > 0, we put h(x) = χ(0,1/t)(x). Then, clearly,

‖h‖(Φ,G) =
1

Φ−1(t)
and ‖h‖Φ,G = inf

k>0

1
k

(
1 +

1
t
Φ(k)

)
=

1
t
Φ̄−1(t).

Hence,

C2 ≥
‖h‖Φ,G
‖h‖(Φ,G)

=
1
t
Φ̄−1(t)Φ−1(t) ∀t > 0,
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which gives

C2 ≥ sup
t>0

1
t
Φ−1(t)Φ̄−1(t).

The proof is complete.

Recall that an Orlicz function Φ satisfies the ∆2-condition (we write
Φ ∈ ∆2) if there exists C > 0 such that Φ(2t) ≤ CΦ(t) for all t > 0, and Φ
satisfies the ∇2-condition (we write Φ ∈ ∇2) if there exists a number l > 1
such that Φ(x) ≤ 1

2lΦ(lx) for all x ≥ 0.

Theorem B ([7]). Let Φ be an N-function. Then the following conditions
are equivalent:

(i) Φ ∈ ∇2.
(ii) There exists β > 1 such that xψ(x) > βΦ(x) for all x > 0, where

ψ(x) is the left derivative of Φ.
(iii) There exist l > 1 and δl > 0 such that Φ(lx) ≥ (l + δl)Φ(x) for all

x > 0.

Now we find conditions so that C1 = 1 or C2 = 2:

Theorem 3. Let Φ be an N-function. Then C1 > 1 if and only if Φ ∈
∆2 ∩∇2.

Proof. Necessity. Assume C1 > 1. We have to prove that Φ ∈ ∆2 ∩ ∇2.
Indeed, assume the contrary, that is, Φ /∈ ∆2 ∩∇2. Then Φ /∈ ∆2 or Φ /∈ ∇2.
From Theorem 1, we have

C1 = inf
t>0

1 +D(t)
t

.

If Φ /∈ ∆2, there exists a sequence {xn} of positive numbers such that
Φ(xn) ≥ nΦ(xn/2) for all n ∈ N. Fix t ∈ (0, 1) and choose n0 ∈ N such that
1/2 ≥ tn0 . Then for all n > n0 we have Φ(xn) ≥ nΦ(xn/2) ≥ nΦ(tn0xn).
Then it follows from Φ(tn0xn) ≥ (D(t))n0Φ(xn) that 1 ≥ n(D(t))n0 for all
n > n0, and so D(t) = 0 for all t ∈ (0, 1). Hence,

C1 ≤ inf
t∈(0,1)

1 +D(t)
t

= inf
t∈(0,1)

1
t

= 1.

Therefore, it follows from C1 ≥ 1 that C1 = 1.
If Φ /∈ ∇2, it follows from Theorem B that for any t > 1 and δ > 0 there

exists x > 0 such that
Φ(tx) < (t+ δ)Φ(x).

Therefore,

D(t) = inf
x>0

Φ(tx)
Φ(x)

≤ t+ δ.
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Letting δ → 0, we obtain D(t) = t for all t > 1. So we have

C1 ≤ inf
t>1

1 +D(t)
t

= inf
t>1

1 + t

t
= 1.

From this inequality and since C1 ≥ 1, we get C1 = 1, which contradicts
C1 > 1. So, Φ ∈ ∆2 ∩∇2 has been proved.

Sufficiency. Assume Φ ∈ ∆2∩∇2; we have to show C1 > 1. Indeed, since
Φ ∈ ∆2, D(1/2) > 0. Since Φ ∈ ∇2, there exists β > 1 such that

xψ(x)
Φ(x)

> β ∀x > 0,

where ψ is the left derivative of Φ (see (ii) in Theorem B). Therefore, for all
t > 1 we have

ln
Φ(tx)
Φ(x)

=
tx�

x

ψ(y)
Φ(y)

dy ≥
tx�

x

β

y
dy = β ln t ∀x > 0.

This implies D(t) ≥ tβ . Hence,

inf
t≥1

1 +D(t)
t

≥ inf
t>1

1 + tβ

t
> 1.

Then it follows from

inf
1>t≥1/2

1 +D(t)
t

≥ inf
1>t≥1/2

(1 +D(t)) ≥ 1 +D(1/2) > 1

and

inf
1/2≥t>0

1 +D(t)
t

≥ 2,

that

C1 = inf
t>0

1 +D(t)
t

> 1.

The proof is complete.

Theorem 4. Let Φ be an N-function and suppose its left derivative ψ is
continuous. Then C2 = 2 if and only if

inf
x>0

xψ(x)
Φ(x)

≤ 2 ≤ sup
x>0

xψ(x)
Φ(x)

.(12)

To prove Theorem 4, we need the following result:

Lemma 5. Let Φ be an N-function with continuous left derivative ψ, and

H(t) := sup
x>0

Φ(tx)
Φ(x)

, a := sup
x>0

xψ(x)
Φ(x)

, b := inf
x>0

xψ(x)
Φ(x)

.

Then H has the left derivative and the right derivative at 1 and H ′+(1) = a,
H ′−(1) = b.
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Proof. For t > 1 and x > 0 we have

ln
Φ(tx)
Φ(x)

=
tx�

x

ψ(y)
Φ(y)

dy ≤
tx�

x

a

y
dy = a ln t.

Thus H(t) ≤ ta and from H(1) = 1, we have

(13) lim sup
t→1+

H(t)−H(1)
t− 1

≤ lim
t→1+

ta − 1
t− 1

= a.

For each c ∈ (0, a), there exist x0 > 0 and δ > 0 such that

xψ(x)
Φ(x)

> c ∀x ∈ (x0, x0 + δ).

It is obvious that for any t ∈ (1, 1 + δ/x0), we have (x0, tx0) ⊂ (x0, x0 + δ),
and the last inequality gives

ln
Φ(tx0)
Φ(x0)

=
tx0�

x0

ψ(y)
Φ(y)

dy ≥
tx0�

x0

c

y
dy = c ln t.

This implies

H(t) ≥ Φ(tx0)
Φ(x0)

≥ tc.

Hence H(1) = 1 yields

lim inf
t→1+

H(t)− 1
t− 1

≥ lim
t→1+

tc − 1
t− 1

= c.

Letting c → a and using (13), we see that H has the right derivative at 1
and H ′+(1) = a. Next, we will prove that H ′−(1) = b. Indeed, for t < 1 we
have

ln
Φ(x)
Φ(tx)

=
x�

tx

ψ(y)
Φ(y)

dy ≥
x�

tx

b

y
dy = −b ln t = − ln tb ∀x > 0,

which gives H(t) ≤ tb. Therefore,

(14) lim inf
t→1−

1−H(t)
1− t

≥ lim
t→1−

1− tb

1− t
= b.

On the other hand, for each d > b, there exists x0 > 0 satisfying

x0ψ(x0)
Φ(x0)

< d.

So, there exists δ > 0 such that

xψ(x)
Φ(x)

< d ∀x ∈ (x0 − δ, x0).
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Since for 1− δ/x0 < t < 1 we have (tx0, x0) ⊂ (x0 − δ, x0), it follows that

ln
Φ(x0)
Φ(tx0)

=
x0�

tx0

ψ(y)
Φ(y)

dy ≤
x0�

tx0

d

y
dy = − ln td.

Consequently,

H(t) ≥ Φ(tx0)
Φ(x0)

≥ td ∀t ∈ (1− δ/x0, 1).

Therefore,

lim sup
t→1−

1−H(t)
1− t

≤ lim
t→1+

1− td

1− t
= d.

Letting d→ b, we get

lim sup
t→1−

1−H(t)
1− t

≤ b.(15)

Combining (14) and (15) shows that H has the left derivative at 1, and
H ′−(1) = b. The proof is complete.

Now we will prove Theorem 4:

Proof of Theorem 4. Necessity. Assume C2 = 2; we have to prove (12).
Indeed, put g(t) = (1 + H(t))/t. Then g(1) = 2 and using Theorem 2, we
get C2 ≤ inf{g(t) : t > 0}. So, g(1) = min{g(t) : t > 0}. Since H has the left
derivative and the right derivative at 1, so does g. Moreover, it follows from
g(t) ≥ g(1) for all t > 0 that g′+(1) ≥ 0 ≥ g′−(1). Thus

H ′+(1) ≥ 2 ≥ H ′−(1).

From this, by using Lemma 5, we obtain (12).
Sufficiency. Assuming that (12) is true, we have to show that C2 = 2.

Indeed, for all ε ∈ (0, 1), by (12) and the continuity of ψ and Φ, there exists
x0 > 0 such that

x0ψ(x0)
Φ(x0)

∈ (2− ε, 2 + ε).

We define
f(x) = x0χ(0,t)(x), g(x) = ψ(x0)χ(0,t)(x),

where t is chosen such that tΦ(x0) = 1− ε. Hence,
�

G

Φ(|f(x)|) dx = 1− ε
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and∣∣∣ �
G

f(x)g(x) dx
∣∣∣ =

t�

0

x0ψ(x0) dx

=
x0ψ(x0)
Φ(x0)

(tΦ(x0)) ∈ ((1− ε)(2− ε), (1− ε)(2 + ε)).

Thus

2− 3ε ≤
∣∣∣ �
G

f(x)g(x) dx
∣∣∣ =

t�

0

x0ψ(x0) dx =
x0ψ(x0)
Φ(x0)

(tΦ(x0)) ≤ 2− ε.

Using Young’s equality, we get
�

G

Φ(|f(x)|) dx+
�

G

Φ̄(|g(x)|) dx =
∣∣∣ �
G

f(x)g(x) dx
∣∣∣,

which together with
	
G Φ(|f(x)|) dx = 1− ε implies that

�

G

Φ̄(|g(x)|) dx ≤ 1.

So, we obtain

‖g‖Φ̄,G ≤ 1, ‖f‖(Φ,G) ≤ 1, and
∣∣∣ �
G

f(x)g(x) dx
∣∣∣ ≥ 2− 3ε.

Hence,

C2 ≥
‖f‖Φ,G
‖f‖(Φ,G)

≥ ‖f‖Φ,G ≥
∣∣∣ �
G

f(x)g(x) dx
∣∣∣ ≥ 2− 3ε.

Letting ε→ 0, we get C2 ≥ 2 and so C2 = 2. The proof is complete.

Remark 1. Theorems 1–4 still hold if G is an arbitrary measurable set
in Rn satisfying m(G) =∞, where m is the Lebesgue measure.

Indeed, let g be an arbitrary measurable function on G. Denote by g∗
the non-increasing rearrangement of g:

g∗(x) = inf{λ > 0 : µg(λ) ≤ x},
with x > 0, where µg denotes the distribution function of g defined by
µg(t) = µ({x ∈ G : |g(x)| > t}) for t ≥ 0. Then

	
G |g(x)| dx =

	
R+ g

∗(x) dx.
So, if f ∈ LΦ(G) then f∗ ∈ LΦ(R+) and ‖f‖Φ,G = ‖f∗‖Φ,R+ , ‖f‖(Φ,G) =
‖f∗‖(Φ,R+). Therefore,

C1 ≥ C ′1, C2 ≤ C ′2,(16)

where C ′1, C ′2 are the best constants for the inequalities between the Orlicz
norm and Luxemburg norm in LΦ(R+). Moreover, for each ε > 0, by (1),
there exists a simple function f =

∑k
i=1 xiχAi ∈ LΦ(R+) with Ai ∩ Aj = ∅
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(i 6= j) satisfying
‖f‖Φ,R+ ≤ (C ′1 + ε)‖f‖(Φ,R+).

For i = 1, . . . , k we choose Bi ⊂ G satisfyingm(Bi) = m(Ai) and Bi∩Bj = ∅
(i 6= j), and put g =

∑k
i=1 xiχBi . Then g ∈ LΦ(G), g∗ = f∗ and

‖g‖Φ,G = ‖g∗‖Φ,G = ‖f∗‖Φ,R+ = ‖f‖Φ,R+

and
‖g‖(Φ,G) = ‖g∗‖(Φ,G) = ‖f∗‖(Φ,R+) = ‖f‖(Φ,R+).

Therefore,
‖g‖Φ,G ≤ (C ′1 + ε)‖g‖(Φ,G),

which gives C1 ≤ C ′1 + ε. Letting ε → 0 and using (16), we get C1 = C ′1.
Similarly, C2 = C ′2. The proof is complete.
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