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Summary. Let Xi, i ∈ I, and Yj , j ∈ J , be compact convex sets whose sets of extreme
points are affinely independent and let ϕ be an affine homeomorphism of

Q
i∈I Xi ontoQ

j∈J Yj . We show that there exists a bijection b : I → J such that ϕ is the product of
affine homeomorphisms of Xi onto Yb(i), i ∈ I.

1. Introduction. Throughout the paper, all topological spaces consid-
ered are assumed to be Hausdorff. By a compact convex set we mean a
compact convex subset of a real locally convex space and we assume that
all compact convex sets considered contain at least two points. If X is a
compact convex set, we write A(X) for the Banach space of all real-valued
affine continuous functions on X endowed with the supremum norm and the
pointwise order.

We recall that a compact convex set X is a simplex if the dual space
A(X)∗ is a lattice (see [1, Chapter II, §3], [2, Section 2.7], [8, Chapter 6,
§28], [10, Section 3], [15, Chapter 7, §20], [19, Chapter 10] or [20, Chapter 6,
§23]). A Bauer simplex (also called a regular simplex ) is a simplex whose
set of extreme points is closed. A finite-dimensional compact convex set X
is a simplex if and only if it is a usual n-simplex for some n ∈ N; that is,
X = conv{e0, . . . , en} where the vectors e0, . . . , en are affinely independent.

Referring to the title of the paper, we note that Cartesian products of
finitely many, respectively, countably many, finite-dimensional simplices ap-
pear in [13, Theorem II.5], [23, pp. 10 and 146] and [16, Theorem 1], re-
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spectively, [17, Lemma 1 and Theorem 1]. Moreover, Cartesian products of
countably many more general Bauer simplices appear in [16, Theorem 5] and
[18, Theorems 1 and 2].

Z. Lipecki posed in [17, p. 469] a problem which was solved by V. Losert
(unpublished; see [17, p. 469, Postscript] and Remark 2.12 below) by proving
the following result:

If Xi, i ∈ I, and Yj, j ∈ J , are Bauer simplices and
∏

i∈I Xi is affinely
homeomorphic to

∏
j∈J Yj, then there exists a bijection b : I → J such that

Xi is affinely homeomorphic to Yb(i), i ∈ I.
The result, which is a consequence of Proposition 2.7 below and [20,

Theorem 23.2.3], was then applied in [18, proof of Theorem 2].
The aim of this paper is to further improve this result by showing the

following theorem due to Z. Lipecki and J. Spurný.

Theorem 1.1. Let Xi, i ∈ I, and Yj, j ∈ J , be compact convex sets
whose sets of extreme points are affinely independent and let ϕ be an affine
homeomorphism of

∏
i∈I Xi onto

∏
j∈J Yj. Then there exist a bijection

b : I → J and affine homeomorphisms ϕi : Xi → Yb(i), i ∈ I, such that

ϕ((xi)i∈I) = (ϕi(xi))i∈I for xi ∈ Xi, i ∈ I.

The main ingredient of the proof of Theorem 1.1 is Proposition 2.7 which
applies the key ideas of V. Losert’s solution of Z. Lipecki’s problem (see
above).

Theorem 1.1 need not hold for general compact convex sets even if I is
a singleton and J is a two-element set. This is seen by considering the unit
square in the plane and the product of two unit intervals.

Theorem 1.1 together with this example suggest the following question.

Question 1.2. Can the independence assumption in Theorem 1.1 be re-
laxed by stipulating that, for all i, j, neither Xi nor Yj be affinely homeo-
morphic to sets of the form Z1 × Z2, where Z1 and Z2 are compact convex
sets?

For another question related to Theorem 1.1 see [18, Remark 2].
An analogous uniqueness problem concerning Cartesian products of met-

ric spaces and homeomorphisms is first discussed in K. Borsuk [5]. For a
result similar to our Theorem 1.1 in that case see R. Cauty [7].

2. Proof of Theorem 1.1. If E and Ei, i ∈ I, are sets and j ∈ I, we
say that a function f :

∏
i∈I Ei → E depends on the j-th axis if there is

no function h :
∏

i∈I\{j}Ei → E such that f((xi)i∈I) = h((xi)i∈I\{j}) for
(xi)i∈I ∈

∏
i∈I Ei.
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Lemma 2.1. Let E1, E2 be sets and let g : E1 × E2 → R. Then the
following assertions are equivalent:

(i) g depends on at most one axis,
(ii) (g ∨ λ)(x1, x2) + (g ∨ λ)(y1, y2) = (g ∨ λ)(x1, y2) + (g ∨ λ)(y1, x2) for

all x1, y1 ∈ E1, x2, y2 ∈ E2 and λ ∈ R.

We recall that the symbol g∨λ denotes the pointwise maximum of g and
the constant function λ.

Proof. If g does not depend on the first or second axis, then it clearly
satisfies the condition in (ii).

Conversely, assuming that (ii) holds, for any x1, y1 ∈ E1 and x2, y2 ∈ E2

we have

(1) g(x1, x2) + g(y1, y2) = g(x1, y2) + g(y1, x2).

Using the assumption again with λ = g(x1, y2) ∨ g(y1, x2) we obtain

g(x1, x2) ∨ g(y1, y2) ≤ g(x1, y2) ∨ g(y1, x2).

By symmetry,

g(x1, y2) ∨ g(y1, x2) ≤ g(x1, x2) ∨ g(y1, y2).

Therefore, in view of (1), we have

(2) {g(x1, x2), g(y1, y2)}= {g(x1, y2), g(y1, x2)}, x1, y1 ∈E1, x2, y2 ∈E2.

Suppose that g depends on the first axis. Then there exists x2 ∈ E2 such that
x 7→ g(x, x2) is not constant on E1. We fix an arbitrary element x1 ∈ E1 and
take y1 ∈ E1 with g(x1, x2) 6= g(y1, x2). It follows from (2) that g(x1, x2) =
g(x1, y2) for all y2 ∈ E2. Thus g does not depend on the second axis.

We shall need the following straightforward observation.

Lemma 2.2. Let F be an affinely independent set in a linear space E
over R and g : F → R. Then there exists an affine function h : E → R such
that h = g on F .

Proof. We fix x0 ∈ F and take a linear functional f on E such that
f(x−x0) = g(x)−g(x0) for each x ∈ F . By setting h(x) = f(x−x0)+g(x0),
x ∈ E, we get the desired extension.

In connection with Remark 2.12, we note that if the set F in Lemma 2.2
is finite and E is a locally convex space, then, by the Hahn–Banach theorem,
the function h can be chosen continuous.

Definition 2.3. For a compact convex set X we denote by A0(X) the
set of all f ∈ A(X) with the following property: given λ ∈ R and a finite
subset F ⊂ extX, there exists an affine function h : X → R such that
h = f ∨ λ on F .
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We denote by V(X) the family of all linear subspaces A of A(X) with
A ⊂ A0(X). We further denote by V0(X) the family of those elements in
V(X) which are maximal with respect to inclusion.

If E1, E2 are sets and fi : Ei → R are functions, i = 1, 2, we denote by
f1 ⊗ f2 : E1 × E2 → R the function

(x1, x2) 7→ f1(x1)f2(x2), (x1, x2) ∈ E1 × E2.

We write χE for the characteristic function of a subset E of a set F . If Xi,
i ∈ I, are compact convex sets and X =

∏
i∈I Xi is their Cartesian product,

we understand each A(Xj) as a subspace of A(X); that is, we identify A(Xj)
with

{f ⊗ χQ
i∈I\{j} Xi

: f ∈ A(Xj)}.

Proposition 2.4. If X1, X2 are compact convex sets, then

A0(X1 ×X2) ⊂ A(X1) ∪A(X2).

Proof. Let Ei := extXi, i=1, 2. We claim that, for each f ∈A0(X1×X2),
the function g := f |E1×E2 satisfies (ii) of Lemma 2.1.

Indeed, for fixed xi, yi ∈ Ei, i = 1, 2, and λ ∈ R we take an affine function
h : X1 ×X2 → R with

h(z) = g(z) ∨ λ, z ∈ {(x1, x2), (y1, y2), (x1, y2), (y1, x2)}.
Then

1
2
(h(x1, x2) + h(y1, y2)) =

1
2
(h(x1, y2) + h(y1, x2)),

proving the claim.
It follows from Lemma 2.1 that g depends on at most one axis. Since f

is affine and continuous, an application of the Krein–Milman theorem yields
the assertion.

Lemma 2.5. Let Ei, i ∈ I, and F be topological spaces and let
f :

∏
i∈I Ei → F be a continuous nonconstant function. Then there exists

j ∈ I such that f depends on the j-th axis.

Proof. Assume that f does not depend on any axis j ∈ I. Given x, x′ ∈∏
i∈I Ei and a neighbourhood U of x′, it is easy to deduce from the assump-

tion that there exists x′′ ∈ U such that f(x) = f(x′′). Since U is arbitrary,
f(x) = f(x′) and f is a constant function.

Remark 2.6. We note that the continuity of f in Lemma 2.5 is essential.
Indeed, it is enough to consider En := {0, 1}, n ∈ N, and f :

∏
n∈NEn →

{0, 1} defined by

f(x) =
{

1, x is eventually constant,
0, otherwise.
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Proposition 2.7. If Xi, i ∈ I, are compact convex sets with extXi

affinely independent, then

V0

(∏
i∈I

Xi

)
= {A(Xi) : i ∈ I}.

Proof. We set X =
∏

i∈I Xi. In view of Lemma 2.2, A(Xi), i ∈ I, are all
in V(X). Clearly, they are mutually incomparable with respect to inclusion.
Thus it is enough to show that, given A ∈ V(X), we have A ⊂ A(Xj) for
some j ∈ I.

We may asssume that A contains a nonconstant function f . Lemma 2.5
provides an axis j ∈ I such that f depends on j. We set Y =

∏
i∈I\{j}Xi

and apply Proposition 2.4 to Xj and Y to get f ∈ A(Xj). It follows that,
in fact, every function g ∈ A is in A(Xj). Indeed, if g ∈ A \ A(Xj), then
g ∈ A(Y ) by Proposition 2.4, but

f + g /∈ A(Xj) ∪A(Y ),

which contradicts Proposition 2.4.
Hence A ⊂ A(Xj), and the assertion follows.

We recall the following well-known fact.

Lemma 2.8 (cf. [9, p. 119]). Let X,Y be compact convex sets and let
T : A(X)→ A(Y ) be a positive surjective isometry. Then there exists an
affine homeomorphism ϕ : Y → X such that

Tf = f ◦ ϕ, f ∈ A(X).

Proof. A compact convex set X and its state space

SX = {s ∈ A(X)∗ : s(χX) = ‖s‖ = 1},
considered with the w∗-topology, can be identified via the evaluation map-
ping φX : X → SX given by φX(x)(h) = h(x), h ∈ A(X) (see [20, Theorem
23.2.3]). Given compact convex sets X,Y and a positive surjective isome-
try T : A(X) → A(Y ), the dual operator T ∗ : A(Y )∗ → A(X)∗ restricts to
an affine homeomorphism of SY onto SX . By the identification above, the
mapping

ϕ = (φX)−1 ◦ T ∗ ◦ φY

is the required affine homeomorphism.

Remark 2.9. It is worth noting that, without the assumption of posi-
tivity, X and Y in Lemma 2.8 need not even be affinely homeomorphic; see
Example in [9] attributed to J. T. Chan.

Proof of Theorem 1.1. Define X =
∏

i∈I Xi and Y =
∏

j∈J Yj . Let
T : A(Y ) → A(X) be the positive surjective isometry given by the map-
ping ϕ, that is, Tg = g ◦ ϕ, g ∈ A(Y ). Then T provides a bijection between
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V0(Y ) and V0(X). By Proposition 2.7, each element of V0(X) or V0(Y ) can
be uniquely identified with some A(Xi) or A(Yj), respectively.

For i ∈ I, let b(i) ∈ J be the unique index such that T (A(Yb(i))) = A(Xi).
By the reasoning above, b : I → J is indeed a bijection and T : A(Yb(i)) →
A(Xi) is a positive surjective isometry. In view of Lemma 2.8, there exists
an affine homeomorphism ϕi : Xi → Yb(i) such that

(g ⊗ χQ
j∈J\{b(i)} Yj

) ◦ ϕ = (g ◦ ϕi)⊗ χQ
k∈I\{i} Xk

, g ∈ A(Yb(i)).

Then, for all g ∈ A(Yb(i)) and x ∈ X, we have

g(ϕ(x)b(i)) = (g ⊗ χQ
j∈J\{b(i)} Yj

)(ϕ(x))

= ((g ◦ ϕi)⊗ χQ
k∈I\{i} Xk

)(x) = g(ϕi(xi)).

Hence
ϕ(x)b(i) = ϕi(xi), i ∈ I, x ∈ X,

and thus
ϕ((xi)i∈I) = (ϕi(xi))i∈I , (xi)i∈I ∈ X.

This concludes the proof.

Remark 2.10. We note that the proof of Theorem 1.1 used only the fact
that each four-point subset of extXi, i ∈ I, is affinely independent.

Remark 2.11. By [1, Proposition II.3.19], there exists a compact convex
set X with extX affinely independent that is not a simplex. We note that
such sets, with the set of extreme points closed and countable, can be con-
structed in the Hilbert space `2 (and even in an arbitrary infinite-dimensional
Banach space by [11, Theorem]).

To construct such a set, let {en : n ∈ N} be the standard basis of `2 and
let

X0 =
{ ∞∑

n=1

λn

n
en : λn ≥ 0,

∞∑
n=1

λn ≤ 1
}
.

We have extX0 = {0} ∪ {n−1en : n ∈ N}. Denote by N1 and N2 the sets of
odd and even natural numbers, respectively, and let

xi =
∑
n∈Ni

2−n

n
en, i = 1, 2, x0 = 2x1 − x2.

Then
X := conv(X0 ∪ {x0})

is a compact convex set with extX = extX0 ∪ {x0}. Moreover, x1, x2 ∈ X0,
x0 /∈ span{en : n ∈ N} and∑

n∈N1

2−n

n
en = x1 =

1
2
(x0 + x2) =

1
2

(
x0 +

∑
n∈N2

2−n

n
en

)
.
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It follows that extX is an affinely independent set but X is not a simplex.
Indeed, the point x1 can be expressed as a σ-convex combination of extreme
points of X in two different ways (see [1, Theorem II.3.6]). Hence X has all
the desired properties.

Remark 2.12. Recall that a compact convex set X is a Bauer simplex
if and only if A(X) is a lattice under pointwise order of functions ([20,
Theorem 23.7.1]). By similar arguments to those above (and this was the
original idea of the proof for the case of Bauer simplices), one can show the
following: Assume thatXi, i ∈ I, are Bauer simplices. If A is a maximal linear
sublattice of A(

∏
i∈I Xi) containing the constant functions, then there exists

j ∈ J such that A = A(Xj) (embedded as above). For the more general class
of sets Xi appearing in Theorem 1.1, one can formulate a corresponding
statement as follows: If F is a finite set of extreme points of X, consider
its convex hull XF and the corresponding projection pF : A(X) → A(XF )
obtained by restriction of functions. Then, if Xi, i ∈ I, are compact convex
sets whose sets of extreme points are affinely independent and X =

∏
i∈I Xi,

the following holds. If A ⊆ A(X) contains the constant functions and A is
maximal for the property that pF (A) is a linear sublattice of A(XF ) for
every finite set F of extreme points of X, then there exists j ∈ J such that
A = A(Xj) (in fact, the sets F with four elements are sufficient for this
conclusion).

3. Three more questions. In the following, for compact convex sets
X and Y we write X ≈ Y whenever X and Y are affinely homeomorphic.

Question 3.1. Let S be a simplex and let X and Y be compact convex
sets such that S ×X ≈ S × Y . Does it follow that X ≈ Y ?

Question 3.2. Which compact convex sets X are prime in the sense
that there are no compact convex sets X1 and X2 (both containing at least
two points) such that X ≈ X1 ×X2?

Question 3.3. Do there exist compact convex sets X and Y such that
X 6≈ Y but X ×X ≈ Y × Y ?

Similar questions are classical in some other categories. For a few ex-
amples in connection with Question 3.1 see [3], [4], [6], [14] or [21].

As for Question 3.2, see [5, p. 137]. Finally, Question 3.3 is the problem
of the “extraction of the square root”, according to [22, Section III.3]; see
also [21] and some of its reference items, and [12].
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