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Summary. We introduce and study a natural class of variable exponent `p spaces, which
generalizes the classical spaces `p and c0. These spaces will typically not be rearrangement-
invariant but instead they enjoy a good local control of some geometric properties. Some
geometric examples are constructed by using these spaces.

1. Introduction. In this paper we will introduce a natural schema for
producing geometrically complicated Banach spaces with a 1-unconditional
basis. The idea is, however, very simple, almost to the extent of being naive.
The resulting class of Banach spaces is still quite flexible, so that within it
one can construct easily Banach spaces with various combinations of suitable
geometric and isomorphic properties.

Consider a map p : N→ [1,∞]. We will study variable exponent sequen-
tial spaces `p(·) given formally by

`p(·) = · · · (· · · (((R⊕p(1) R)⊕p(2) R)⊕p(3) R)⊕p(4) · · ·
(This definition will be made rigorous shortly.) For example, for a constant
function p(·) ≡ p ∈ [1,∞] we have `p(·) = `p isometrically.

The variable exponent sequence spaces have been studied a great deal.
For example, the class studied here appears to be related to modular spaces,
whose norm is defined in a spirit similar to the definition of the Orlicz norm
(see e.g. [5]). However, the class of `p(·) spaces studied here does not coincide
in the natural way, at least isometrically, with the modular spaces (see the
discussion in Section 1.1). The author suspects that the class presented here
has been previously overlooked because there exist attractive alternative
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definitions of variable exponent norms. The philosophy of Orlicz type norms
is a bit different compared with the `p(·) norm. One feature of Orlicz type
norms is that they are often rearrangement-invariant in some sense, possibly
weaker than usual, whereas the norm of `p(·) spaces here is kind of localized.
Another difference is that in Orlicz type spaces the norm is given by an
infimum, whereas for finitely supported vectors in an `p(·) space there is a
simple formula for calculating the norm. Also, the norm of any vector can
be approximated by using finitely supported vectors in the obvious way, so
that the norm of `p(·) becomes rather explicit.

By starting from an `p(·) type space one can prove the following main
result.

Theorem 1.1. There exists a Banach space with a 1-unconditional
Schauder basis that contains all spaces `p, 1 ≤ p < ∞, isomorphically, in
fact almost isometrically.

The crux of this paper is that the sequential spaces studied are concrete.
Recall the classical fact that `p and `q are not isomorphic when p 6= q.
For this reason the above result is perhaps surprising, as the claimed space
is separable but must contain continuum many (mutually non-isomorphic)
`p spaces. Recall that C([0, 1]) is a (concrete) separable space, which is uni-
versal for all separable spaces. However, it does not admit any unconditional
basis (see [5, p. 24]). For a classical result on existence of a space universal
for spaces with an unconditional basis, see Pełczyński’s work [7].

We will also study the basic properties of `p(·) spaces. These spaces have
some nice properties analogous to the classical `p spaces. On the other hand,
some unexpected open problems arise as well. For example, we do not know
whether [(en)] ⊂ `p(·), the closed linear span of the natural unit vectors,
coincides with c0 ∩ `p(·) in general. As regards the structural properties of
`p(·) spaces, it turns out for example that type and cotype become useful
concepts and behave nicely in this setting.

1.1. Preliminaries. The references [1], [5] and [6] provide suitable back-
ground information on Banach spaces. We denote by X a real Banach space,
by BX the closed unit ball and by SX the unit sphere. Given t, s ∈ [0,∞)
and p ∈ (0,∞) we denote

t �p s = (tp + sp)1/p and t �∞ s = max(t, s).

Clearly �p gives a commutative semigroup for a fixed p.
Fact 1.2. Let 0 < p0 ≤ p1 ≤ ∞ and a, b, c ∈ [0,∞). Then

(a �p0 b) �p1 c ≤ a �p0 (b �p1 c).

Proof. The claim is clearly equivalent to
(1.1) ((ap0 + bp0)p1/p0 + cp1)p0/p1 ≤ ap0 + (bp1 + cp1)p0/p1 ,
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where p0 ≤ p1 <∞, and which holds as an equality for a = 0. By substituting
u = ap0 , differentiating and using that p0/p1 − 1 ≤ 0 we obtain

∂

∂u
((u+ bp0)p1/p0 + cp1)p0/p1 = ((u+ bp0)p1/p0 + cp11 )p0/p1−1(u+ bp0)p1/p0−1

≤ ((u+ bp0)p1/p0)p0/p1−1(u+ bp0)p1/p0−1 = 1

=
∂

∂u
(u+ (bp1 + cp1)p0/p1)

for u ≥ 0, and this yields (1.1).

We denote by X⊕pY, 1 ≤ p ≤ ∞, the direct sum of spaces X and Y with
the norm ‖(x, y)‖X⊕pY = ‖x‖X �p ‖y‖Y for (x, y) ∈ X ⊕ Y. We will regard
the real line R as a 1-dimensional Banach space and sometimes write R⊕pR
as `p2.

Next we will give a precise definition for the variable-exponent `p spaces.
Let p : N→ [1,∞] be a map and x ∈ `∞. We define seminorms ‖·‖k on `∞ re-
cursively by putting ‖x‖(1) = |x1|�p(1) |x2| and ‖x‖(k) = ‖x‖(k−1) �p(k) |xk+1|
for k ∈ N, k ≥ 2. Observe that (‖x‖(k)) is a non-decreasing sequence for each
x ∈ `∞. Hence we may put Φ : `∞ → [0,∞], Φ((xn)) = limk→∞ ‖x‖(k) for
x ∈ `∞. Consider the vector space

`p(·) = {(xn) ∈ `∞ : Φ((xn)) <∞},

which is equipped with the usual pointwise linear structure. It is easy to see
that the mapping ‖ · ‖`p(·)

·= Φ|`p(·) is a norm on `p(·).
Let e1 = (1, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), . . . be the canonical unit vec-

tors of c0. We denote Pk : `p(·) → [e1, . . . , ek], (xn) 7→ (x1, . . . , xk, 0, 0, 0, . . .).
Observe that by the construction of the norm ‖ · ‖`p(·) we have ‖Pi(x)‖`p(·)
≤ ‖Pj(x)‖`p(·) for i, j ∈ N, i ≤ j, x ∈ `p(·). Note that ‖x‖`p(·) =
supk∈N ‖Pk(x)‖`p(·) for x ∈ `p(·) and that Pn is a norm-1 projection for n ∈ N.
We will denote Qn

·= I−Pn. Two sequences x, y ∈ `∞ have disjoint supports
if xnyn = 0 for all n ∈ N.

We will denote the Banach–Mazur distance of isomorphic Banach spaces
X and Y by

dBM(X,Y) = inf{‖T‖ · ‖T−1‖ : T : X→ Y is an isomorphism}.

The spaces X and Y are almost isometric if dBM(X,Y) = 1. Recall that a
Banach space X is contained almost isometrically in a Banach space Z if for
each ε > 0 there is a subspace Y ⊂ Z such that dBM(X,Y) < 1 + ε. Here we
will often encounter sequential Banach spaces X and Y such that X contains
Y almost isometrically in such a way that

(1.2) lim
n→∞

dBM(Qn(X),Y) = 1.



188 J. Talponen

In contrast, the modular norm is defined as follows:

‖(xn)‖(Mn) = inf
{
λ > 0 :

n∑
n=1

Mn(|xn|/λ) ≤ 1
}
,

where Mn : [0,∞)→ [0,∞) are suitable continuous, strictly increasing func-
tions with Mn(0) = 0 (see [5] for discussion). For example, in our setting
it would be natural to define Mn(t) = tp(n) for n ∈ N. The resulting con-
struction is justifiably a kind of variable exponent `p space. Observe that
if π : N → N is a permutation, then ‖(xn)‖(Mn) = ‖(xπ(n))‖(Mπ(n)) for each
sequence (xn) such that one of the norms is defined. The `p(·) space does not
share the above property that the norm should be invariant under the equal
permutation of the exponents and the coordinates of the space. For exam-
ple, ‖(1, 1, 1)‖(R⊕1R)⊕2R =

√
5 ≈ 2.236 and ‖(1, 1, 1)‖(R⊕2R)⊕1R =

√
2 + 1

≈ 2.414.
Recall that a Banach space X is an Asplund space if any separable sub-

space of X has a separable dual. Given a locally convex topology τ on X,
the space X is said to be τ locally uniformly rotund (τ -LUR for short) if the
following holds: For each sequence (xn) ⊂ SX such that ‖x1 + xn‖ → 2 as
n→∞ we have xn

τ→ x1 as n→∞. If τ is the norm topology then we write
LUR instead of τ -LUR. The space X is midpoint locally uniformly rotund
(MLUR) if for each point x ∈ SX and sequences (yn), (zn) ⊂ SX such that
1
2(yn + zn)→ x we have ‖yn − zn‖ → 0 as n→∞.

2. Results. The variable-exponent `p spaces can be used in constructing
Banach spaces which admit in some sense pathological, yet 1-unconditional
bases. Next we list examples of such results, the proofs of which are given
subsequently.

Theorem 2.1. The class of Banach spaces of the type `p(·) contains a
universal space up to almost isometric containment. The analogous statement
holds for spaces of the type [(en)] ⊂ `p(·).

Theorem 2.2. Let 1 ≤ p < ∞. Then there is a Banach space X with a
1-unconditional basis (fn) such that

(i) `p does not contain an isomorphic copy of X.
(ii) For each strictly increasing subsequence (i) ⊂ N and ε > 0 there is

a further subsequence (ij) such that [fij : j ∈ N] is asymptotically
isometric to `p in the sense of (1.2) via equivalence of bases.

More specifically, here X is of the type `p(·).

Theorem 2.3. Each space `q(·) contains `p almost isometrically in the
sense of (1.2) for some p ∈ [1,∞].
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2.1. Basic properties. It turns out that spaces of the type `p(·) enjoy
some basic properties similar to those of classical `p spaces.

Proposition 2.4. Let p : N → [1,∞]. Then `p(·) is a Banach space.
Moreover, (en) is a 1-unconditional basis of the space [(en)].

Proof. Clearly [e1, . . . , en] ⊂ `p(·) is a Banach space for n ∈ N. Let
(x(j)) ⊂ `p(·) be a Cauchy sequence. Note that (x(j)) is bounded in `∞. Since
Pk is a contractive projection for k ∈ N, it follows that (Pn(x(j))) is a Cauchy
sequence for a fixed n and hence converges in [e1, . . . , en]. We conclude that
x(j) → x pointwise as j →∞, for some x ∈ `∞. Let ε > 0. Since (x(j)) ⊂ `p(·)
is Cauchy, there is i0 ∈ N such that ‖x(j)−x(i0)‖ < ε for j ≥ i0. In particular

(2.1) ‖Pk(x(j) − x(i0))‖`p(·) < ε for n ∈ N.
By the definition of Φ and (2.1) we get

Φ(x− x(i0)) = sup
k
‖Pk(x− x(i0))‖`p(·) < ε.

This yields Φ(x) ≤ Φ(x(i0))+ε <∞. Moreover, since ε was arbitrary, x(j) → x
in `p(·) as j →∞. This completes the proof that `p(·) is complete.

To check the last claim, let x = (xn) ∈ [(en)]. We apply an auxiliary
sequence (y(j)) ⊂ span((en)) such that y(j) → x in `p(·) as j →∞. Set ki ∈ N
for i ∈ N such that Pki(y

(j)) = y(j) for j ≤ i. Observe that ‖x−Pki(x)‖`p(·) ≤
‖x− Pki(y(j))‖`p(·) for j ≤ i. This yields

sup
i≥j
‖x−Pki(x)‖`p(·) ≤ sup

i≥j
‖x−Pki(y

(j))‖`p(·) = ‖x−y(j)‖`p(·) → 0 as j →∞.

We conclude that (en) is a Schauder basis. By the construction of Φ, we
have ‖(xn)‖`p(·) = ‖(θ(n)xn)‖`p(·) for any sequence of signs θ ∈ {−1, 1}N.
Thus (en) is a 1-unconditional basis of [(en)].

Clearly `p(·) ∩ c0 is a closed subspace of `p(·) for any p, and hence it con-
tains [(en)]. We do not know if the space `p(·)∩c0 coincides with [(en)] ⊂ `p(·).
If lim supn→∞ p(n) <∞, then it is easy to check that `p(·) ⊂ c0.

Proposition 2.5 (Hölder inequality). For a given sequence p : N→ [1,∞]
define p∗ : N → [1,∞] by 1/p(n) + 1/p∗(n) = 1 for each n ∈ N. If (xn) and
(yn) are real-valued sequences then∑

n∈N
|xnyn| ≤ ‖(xn)‖`p(·)‖(yn)‖`p∗(·) .

Proof. By induction.

Proposition 2.6. Let p : N → [1,∞] and let X = [(en)] ⊂ `p(·). Then
X∗ = `p

∗(·), where the duality is given by x∗(x) =
∑

n xnx
∗
n(en).

Proof. Recall that (en) is the 1-unconditional basis of [(en)]. We claim
that P ∗m(X∗) = {x∗◦Pm : x∗ ∈ X∗} is isometric to Pm(`p

∗(·)) for each m ∈ N.
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Indeed, (R⊕p R)∗ = R⊕p∗ R, so that the claim holds for m = 2. More gen-
erally, (X⊕p R)∗ = X∗⊕p∗ R for any Banach space X and 1 ≤ p ≤ ∞. Thus,
by induction on m we obtain P ∗m(X∗) = (Pm`p(·))∗ = Pm`

p∗(·) isometrically.
For each m we identify these spaces and the corresponding projection is de-
noted by P ∗[e∗1,...,e∗m] : X∗ → [e∗1, . . . , e

∗
m]. The projections of the type P ∗[e∗1,...,e∗m]

clearly commute. Since (en) is a Schauder basis of [(en)], we obtain

(2.2) x∗(x) = lim
m→∞

P ∗[e∗1,...,e∗m](x
∗)(x) = lim

m→∞
x∗(Pm(x))

for each x ∈ X.
There exists for each x∗ ∈ X∗ a unique vector fx∗ ∈ `∞ such that fx∗ =

ω∗-limm→∞ P
∗
[e∗1,...,e

∗
m](x

∗), where we consider [e∗1, . . . , e
∗
m] in the canonical

way as a subspace of `∞. Note that the continuity of given functionals f, g ∈
X∗ implies that if f(en) = g(en) for n ∈ N, then f − g = 0. Thus, if x∗ 6= y∗,
then fx∗ 6= fy∗ .

In fact fx∗ ∈ `p
∗(·) and moreover ‖fx∗‖`p∗(·) = ‖x∗‖X∗ . Indeed, by using

(2.2) and the basic properties of (en) we get

‖x∗‖X∗ = sup
x∈SX

|x∗(x)| = sup
x∈SX

lim
m→∞

|P ∗[e∗1,...,e∗m](x
∗)(x)|

= lim
m→∞

‖P ∗[e∗1,...,e∗m](x
∗)‖`p∗(·) = ‖fx∗‖`p∗(·) .

Hence X∗ can be regarded isometrically as a subspace of `p∗(·) respecting the
given duality. Finally, the Hölder inequality gives X∗ = `p

∗(·).

2.2. Almost isometric containment. Next we will prove the results
formulated previously. The arguments share some common auxiliary obser-
vations and we proceed by proving these facts.

Fact 2.7. If (nk) ⊂ N is a sequence, then

{(xj) ∈ `p(·) : xj 6= 0⇒ j ∈ {n1, n1 + 1, n2 + 1, n3 + 1, . . .}} ⊂ `p(·)

is isometric to `q(·), where q(k) = p(nk) for k ∈ N.

This justifies the notation `q(·) ↪→ `p(·). It is clear that if mappings
p1, p2 : N→ [1,∞] satisfy p1 ≤ p2 pointwise, then `p2(·) ⊂ `p1(·).

Recall that we are denoting the 2-dimensional space R⊕pR by `p2 (where
p may possibly depend on some given parameters). For p1, p2 : N → [1,∞]
and k ∈ N we denote by p1|(k)p2 : N→ [1,∞] the map given by p1|(k)p2(n) =
p2(n) for n ≥ k and p1|(k)p2(n) = p1(n) for n < k. Consider a finite sequence
of mappings

`p1|
(k)p2

ψk−1−−−→ `p1|
(k−1)p2

ψk−2−−−→ · · · ψk−i−−−→ `p1|
(k−i)p2 ψk−i−1−−−−→ · · · ψ1−→ `p2(·),

where ψj = I : `p1|
(j+1)p2 → `p1|

(j)p2 for 1 ≤ j ≤ k−1. Then ‖ψ1◦· · ·◦ψk−1‖ ≤∏k−1
j=1 ‖ψj‖.
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Lemma 2.8. Under the above notation,

(2.3) ‖ψj‖ = ‖I : `p1(j)
2 → `

p2(j)
2 ‖.

Proof. Write C = ‖I : `p1(j)
2 → `

p2(j)
2 ‖; then clearly C ≥ 1. By inspecting

the subspace [ej , ej+1] we note that ‖ψj‖ ≥ C. Next we will check that the
converse inequality holds. Fix x=

∑k
n=1 anen. Then ‖

∑j
n=1 anen‖`p1|(j+1)p2

=

‖
∑j

n=1 anen‖`p1|(j)p2 = ‖
∑j

n=1 anen‖`p1 . Thus∥∥∥ j+1∑
n=1

anen

∥∥∥
`p1|

(j)p2
=
∥∥∥ j∑
n=1

anen

∥∥∥
`p1

�p2(j) |aj+1|

≤ C
(∥∥∥ j∑

n=1

anen

∥∥∥
`p1

�p1(j) |aj+1|
)

= C
∥∥∥ j+1∑
n=1

anen

∥∥∥
`p1|

(j+1)p2
.

Then∥∥∥ j+1∑
n=1

anen

∥∥∥
`p1|

(j)p2
�p2(j+1) |Caj+2|

≤ C
(∥∥∥ j+1∑

n=1

anen

∥∥∥
`p1|

(j+1)p2
�p2(j+1) |aj+2|

)
.

More generally, we obtain∥∥∥ j+1∑
n=1

anen +
k∑

n=j+2

Canen

∥∥∥
`p1|

(j)p2
≤ C

∥∥∥ k∑
n=1

anen

∥∥∥
`p1|

(j+1)p2

and in particular ‖x‖
`p1|

(j)p2
≤ C‖x‖

`p1|
(j+1)p2

.

Lemma 2.9. Let p, q : N→ [1,∞] and ε > 0. If lim infn→∞ |q(k)−p(n)|
= 0 for k ∈ N, then there is a strictly increasing sequence (nk) ⊂ N such
that φ : yk 7→ xnk defines an embedding `q(·) ↪→ `p(·) such that (1+ ε)−1‖y‖ ≤
‖φ(y)‖ ≤ (1 + ε)‖y‖ for y ∈ `q(·). Moreover, φ is an embedding satisfy-
ing (1.2).

Proof. Extract a subsequence (nk) ⊂ N such that∏
k∈N
‖I : `p(nk)2 → `

q(k)
2 ‖ ≤ 1 + ε and

∏
k∈N
‖I : `q(k)2 → `

p(nk)
2 ‖ ≤ 1 + ε.

Define a linear map φ : `q(·) → `∞ by φ : ak+1ek+1 7→ ak+1enk+1. Fix y ∈ `q(·)
andm ∈ N. Next we will apply the preceding observations in (2.3). We obtain

(1 + ε)−1‖Pm(y)‖`q(·) ≤ ‖φ(Pm(y))‖`p(·) ≤ (1 + ε)‖Pm(y)‖`q(·) .
Thus by recalling the definition of the norms ‖ · ‖`q(·) and ‖ · ‖`p(·) we see
that φ : `q(·) → `p(·) is defined, and this is the claimed isomorphism. By
inspecting the construction of φ it is clear that also the last part of the
statement holds.
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Proof of Theorem 2.1. Enumerate Q∩ [1,∞) = (q(n)), where q : N→ Q.
Let `q(·) be the corresponding space. It is easy to see that, given p : N →
[1,∞] and k ∈ N, we have lim infn→∞ |q(n) − p(k)| = 0. Lemma 2.9 shows
that `q(·) contains `p(·) almost isometrically, so that the first claim holds.

For the other claim, [(en)] ⊂ `q(·) is a suitable universal space. Indeed,
according to Proposition 2.4, (en) is an unconditional basis and the 1 + ε-
isomorphism φ appearing in the proof of Lemma 2.9 takes (en) ⊂ `p(·) to
(fn1 , fn1+1, fn2+1, . . .) ⊂ `q(·).

In the above proof the space `q(·) contains `∞ almost isometrically in the
sense of (1.2). Hence it is easy to see that `q(·)/c0 contains `∞/c0 isomet-
rically. It is a classical fact that `∞ contains all separable Banach spaces
isometrically, and using the same argument, so does `∞/c0. We conclude
that `q(·)/c0 contains all separable spaces isometrically.

Proof of Theorem 2.2. Let 1 < p < ∞. Let (ri) ⊂ (1,∞) be a sequence
such that ri → p as i→∞, rn < p for n ∈ N if p ≤ 2, and rn > p for n ∈ N
if p > 2. The space `p has type p if p ≤ 2 and cotype p if p ≥ 2, and in both
cases, given i ∈ N, `p does not contain `rin s uniformly (see e.g. [8]). Hence we
may pick for each i ∈ N a number ji ∈ N such that

inf
E
dBM(E, `riji ) > i,

where the infimum is taken over all ji-dimensional subspaces E of `p. Define
q : N → [1,∞] by putting q(n) = r1 for 1 ≤ n ≤ r1 and q(n) = rl for∑

i<l ri < n ≤
∑

i≤l ri and l > 1. Then it follows from the selection of
q : N→ [1,∞] that `q(·) does not embed linearly into `p.

Consider the canonical unit vectors (fn) of `q(·). According to Proposi-
tion 2.4, (fn) is an unconditional basis of X = [(fn)]. Since q(n) → p as
n→∞, an application of Lemma 2.9 yields the claim.

Proof of Theorem 2.3. Let q : N → [1,∞]. Since [1,∞] is a compact
metrizable space, therefore sequentially compact, there exists a subsequence
(q(nk)) ⊂ (q(n)) convergent in [1,∞]. Let p = limk→∞ q(nk) ∈ [1,∞]. Thus
we may apply Lemma 2.9 to conclude that `q(·) contains `p almost isometri-
cally.

Theorem 2.10. Let p : N → [1,∞]. Then the following conditions are
equivalent:

(1) `p(·) is reflexive.
(2) `p(·) is superreflexive.
(3) lim infn→∞ p(n) > 1 and lim supn→∞ p(n) <∞.
(4) `p(·) is an Asplund space.

Let us observe before passing to the proof that `1 has the RNP but is
not a reflexive space and thus one cannot replace Asplund by RNP in (4).
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Proof. Recall the well-known characterization of superreflexive spaces,
due to Enflo: a space is superreflexive if and only if it is isomorphic to a space
both uniformly convex and uniformly smooth. Clearly (2)⇒(1). By using
Lemma 2.9 we deduce that if lim infn→∞ p(n) = 1 (resp. lim supn→∞ p(n)
= ∞), then `p(·) contains `1 (resp. `∞) almost isometrically, and thus fails
to be reflexive. Indeed, the bidual of `1 is the non-separable space `∞, and,
on the other hand, if a Banach space contains an isomorphic copy of a non-
reflexive space, then it is itself non-reflexive (see the first chapters of [1]).

Hence (1)⇒(3). Similarly (4)⇒(3) and it is well-known that reflexive
spaces are Asplund.

It suffices to verify (3)⇒(2), so let us assume that (3) holds. Then there
exist p0 ∈ (1, lim infn→∞ p(n)], q0 ∈ [lim supn→∞ p(n),∞) and k0 ∈ N
such that p(n) ∈ [p0, q0] for n ≥ k0. Define p̃ : N → [p0, q0] by p̃(n) =
min(q0,max(p(n), p0)) for n ∈ N. Note that span(e1, . . . , ek) is a bicontrac-
tively complemented subspace regardless of whether it is considered as being
contained in `p(·) or `ep(·). It follows that the identity mapping I : `p(·) → `ep(·)
is an isomorphism. Thus our task is reduced to proving that `ep(·) is super-
reflexive.

We will require the notions of upper p-estimate and lower q-estimate of
Banach lattices. If X is a Banach lattice and 1 ≤ p ≤ q < ∞ then the
upper p-estimate and the lower q-estimate, respectively, are defined (for the
relevant multiplicative constants being 1) as follows:∥∥∥ ∑

1≤i≤n
xi

∥∥∥ ≤ ( ∑
1≤i≤n

‖xi‖p
)1/p

,
∥∥∥ ∑

1≤i≤n
xi

∥∥∥ ≥ ( ∑
1≤i≤n

‖xi‖q
)1/q

,

respectively, for any vectors x1, . . . , xn ∈ X with pairwise disjoint supports.
We will apply the fact that a Banach lattice which satisfies an upper p-
estimate and a lower q-estimate for some 1 < p < q < ∞ is isomor-
phic to a Banach space both uniformly convex and uniformly smooth (see
[6, 1.f.1, 1.f.7]). Note that in that case X is superreflexive and the space `ep(·),
having a 1-unconditional basis, carries a natural Banach lattice structure.
Thus, it suffices to show that `ep(·) satisfies upper and lower estimates for p0

and q0, respectively.
Denote by Pm : `ep(·) → span(e1, . . . , em) the natural projection preserving

the first m coordinates. To check that `ep(·) satisfies the upper p0-estimate,
let x1, . . . , xn ∈ `p̃(·) be disjointly supported vectors. We claim that∥∥∥ ∑

1≤i≤n
xi

∥∥∥
`ep(·) ≤

( ∑
1≤i≤n

‖xi‖p0`ep(·)
)1/p0

.

Indeed, assume to the contrary that this does not hold and let m ∈ N be the
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least natural number such that∥∥∥ ∑
1≤i≤n

Pmxi

∥∥∥
`ep(·) >

( ∑
1≤i≤n

‖Pmxi‖p0`ep(·)
)1/p0

.

Clearly m > 1. We may assume without loss of generality that (Pm −
Pm−1)xn

·= aem 6= 0. It follows from the disjointness of the supports of
x1, . . . , xn that (Pm − Pm−1)xi = 0 for 1 ≤ i < n. Observe that

(2.4)
∥∥∥ ∑

1≤i≤n
Pm−1xi

∥∥∥
`ep(·) ≤

( ∑
1≤i≤n

‖Pm−1xi‖p0`ep(·)
)1/p0

by the selection of m. Then∥∥∥ ∑
1≤i≤n

Pmxi

∥∥∥
`ep(·) =

∥∥∥ ∑
1≤i≤n

Pm−1xi

∥∥∥
`ep(·) �p̃(m−1) |a|

≤
( ∑

1≤i≤n
‖Pm−1xi‖p0`ep(·)

)1/p0
�p̃(m−1) |a|

=
((( ∑

1≤i<n
‖Pmxi‖p0`ep(·)

)1/p0
�p0 ‖Pm−1xn‖`ep(·)

)p0)1/p0
�p̃(m−1) |a|

≤
( ∑

1≤i<n
‖Pmxi‖p0`ep(·)

)1/p0
�p0 (‖Pm−1xn‖`ep(·) �p̃(m−1) |a|)

=
( ∑

1≤i<n
‖Pmxi‖p0`ep(·)

)1/p0
�p0 (‖Pmxn‖`ep(·)

=
( ∑

1≤i≤n
‖Pmxi‖p0`ep(·)

)1/p0
.

Above we applied the selection of m, (2.4), the disjointness of the supports
and Fact 1.2. Thus we arrive at a contradiction, which means that `ep(·)
satisfies the upper p0-estimate. The lower q0-estimate is checked in a similar
manner.

3. Final remarks. A question was raised in [4, p. 174] whether each
MLUR Banach space X is LUR. It has been established by now that this
is not the case (see e.g. [2]). Next we will give a rather simple and natural
example, which is related to these convexity conditions.

Proposition 3.1. Let p : N→ (1,∞) be such that∏
k∈N
‖I : `p(k)2 → `12‖ < 2.

Then `p(·) satisfies the following condition: Given x ∈ S`p(·) and sequences
(yn), (zn) ⊂ B`p(·) such that 1

2(yn + zn) → x and ‖Pkyn‖, ‖Pkzn‖ → ‖Pkx‖
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as n→∞ for each k ∈ N, then ‖yn − zn‖ → 0 as n→∞. However, `p(·) is
not ω-LUR.

Recall that X is ω-LUR if for each x ∈ SX and each sequence (xn) ⊂ BX

such that limn→∞ ‖x+ xn‖ = 2 the sequence xn converges weakly to x as n
tends to infinity.

Proof of Proposition 3.1. Clearly the sequence of canonical unit basis
vectors (en) ⊂ `1 ⊂ `p(·) is a Schauder basis for `p(·), since `p(·) and `1 are
isomorphic by the construction of p(·). We denote by Pk : `p(·) → [e1, . . . , ek]
the projection given by

∑
i∈N aiei 7→

∑k
i=1 aiei for k ∈ N.

Fix x ∈ S`p(·) and (yn), (zn) ⊂ B`p(·) as in the assumptions; we wish
to show that yn − zn → 0 as n → ∞. Indeed, if this is not the case,
that is, lim supn→∞ ‖yn − zn‖ = c > 0, then there exists a subsequence
(nj) ⊂ N such that ‖ynj − znj‖ → c as j → ∞. However, this possibility is
excluded, as it turns out that there is a further subsequence (njk) ⊂ (nj)
such that limk→∞ ‖ynjk − znjk‖ = 0. Let us write uj = ynj and vj = znj for
j ∈ N.

By the continuity of Pk we find that 1
2Pk(uj + vj) → Pk(x) for k ∈ N.

Observe that [e1, . . . , ek] ⊂ `p(·) is a uniformly convex subspace for each
k ∈ N. Thus Pk(uj), Pk(vj) → Pk(x) as j → ∞ for all k ∈ N by the
assumptions and the uniform convexity of [e1, . . . , ek]. Hence one can pick a
sequence (jk) ⊂ N such that Pk(ujk)− Pk(vjk)→ 0 as k →∞.

As earlier in (2.3), one can consider I : `p(·) → `1 formally as ψ1 ◦ ψ2 ◦
· · · : `p(·) → `1. By applying the fact that limi→∞ limk→∞ ‖ψk−i◦· · ·◦ψk‖ = 1
we conclude that the sequence of mappings Rk : `p(·) → R given by Rk(x) =
‖Pk(x)‖+ ‖(I− Pk)(x)‖ for k ∈ N satisfies ‖Rk‖ → 1 as k →∞.

This is applied as follows. Since ‖Pk(ujk)‖, ‖Pk(vjk)‖ → 1 as k →∞, we
see that ‖(I− Pk)(ujk − vjk)‖ → 0 as k →∞. Hence

‖ujk − vjk‖`p(·) ≤ (‖Pk(ujk − vjk)‖`p(·) + ‖(I− Pk)(ujk − vjk)‖`p(·))
k→∞−−−→ 0.

Consequently, `p(·) satisfies the first part of the claim.
One can pick a strictly increasing sequence (ni) ⊂ N such that

‖(1− 2−i, 1− 2−i)‖
`
p∗(ni)
2

≤ 1− 2−i−1 for all i ∈ N.

Define a sequence (xn) by xni+1 = 1 − 2−i for all ni and xn = 0 for all
n ∈ N \ (ni + 1). Observe that (xn) ∈ B`p

∗(·) and that x1 = 0. According
to the Hölder inequality, f : `p(·) → R, (yn) 7→

∑
n∈N xnyn, is defined and

f ∈ B(`p(·))∗ .
Finally, observe that ‖e1 + eni+1‖`p(·) → 2 as i → ∞. However,

limi→∞ f(eni+1) = 1 6= 0 = f(e1). This means that `p(·) is not ω-LUR.
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Observe that for each ε > 0 the space `p(·) above can be additionally
defined so that its Banach–Mazur distance to `1 is less than 1 + ε. In fact,

lim
n→∞

dBM(Qn(`p(·)), `1) = 1.

Finally we reiterate the open problems that have arised in this note:
• We do not know if the space in Proposition 3.1 is MLUR.
• Does `p(·) ∩ c0 always coincide with [(en)] ⊂ `p(·)?
• Given p : N→ (1,∞), is `p(·) necessarily strictly convex or smooth?
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