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Ty
hono� Produ
ts of Two-Element Sets andSome Weakenings of the Boolean Prime Ideal TheorembyKyriakos KEREMEDISPresented by Czesªaw RYLL-NARDZEWSKI
Summary. Let X be an in�nite set, and P(X) the Boolean algebra of subsets of X. We
onsider the following statements:BPI(X): Every proper �lter of P(X) 
an be extended to an ultra�lter.UF(X): P(X) has a free ultra�lter.We will show in ZF (i.e., Zermelo�Fraenkel set theory without the Axiom of Choi
e) thatthe following four statements are equivalent:(i) BPI(ω).(ii) The Ty
hono� produ
t 2R, where 2 is the dis
rete spa
e {0, 1}, is 
ompa
t.(iii) The Ty
hono� produ
t [0, 1]R is 
ompa
t.(iv) In a Boolean algebra of size ≤ |R| every �lter 
an be extended to an ultra�lter.We will also show that in ZF, UF(R) does not imply BPI(R). Hen
e, BPI(R) is stri
tlystronger than UF(R). We do not know if UF(ω) implies BPI(ω) in ZF.Furthermore, we will prove that the axiom of 
hoi
e for sets of subsets of R does notimply BPI(R) and, in addition, the axiom of 
hoi
e for well orderable sets of non-emptysets does not imply BPI(ω).1. Notation and terminology. Let X be a non-empty set. We saythat a family H ⊂ P(X) \ {∅} has the �nite interse
tion property, fip forabbreviation, i� ⋂

Q 6= ∅ for every �nite subset Q of H.It is well known that there are many 
hara
terizations of the notionof �
ompa
t�, all equivalent in ZFC set theory (i.e., ZF plus the Axiom ofChoi
e). However, in the absen
e of the Axiom of Choi
e these �types� of
ompa
tness may fail to be equivalent. Consequently, the notion of a 
om-2000 Mathemati
s Subje
t Classi�
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e, Ty
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ts.[349℄
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pa
t topologi
al spa
e does not have a 
lear meaning in ZF set theory. In thispaper we shall be using the Heine�Borel de�nition of 
ompa
tness, i.e., atopologi
al spa
e (X, T ) is 
ompa
t i� every open 
over of X has a �nite sub-
over. Equivalently, X is 
ompa
t i� every family of 
losed subsets of X hav-ing the fip has a non-empty interse
tion. For the interrelation between severalde�nitions of 
ompa
tness in ZF, the reader is referred to [1℄, [2℄, [6℄, [7℄.We will 
onsider the following statements:1. BPI: Every Boolean algebra has a prime ideal. {It is known that BPIis equivalent in ZF to the statement that every Boolean algebra hasan ultra�lter and also to the statement (for every X)BPI(X); see [8℄.}2. UF: For every in�nite set X, P(X) has a free ultra�lter (i.e., (for everyin�nite set X)UF(X)).3. AC(R): Every family of non-empty subsets of R has a 
hoi
e fun
tion.4. CAC(R): AC(R) restri
ted to 
ountable families.5. PW(R): The powerset P(R) of R is well orderable.6. IDI: Every in�nite set is Dedekind in�nite (i.e., it has a 
ountablyin�nite subset).7. WOAC: Every well orderable set of non-empty sets has a 
hoi
e fun
-tion.8. TP(2R): The Ty
hono� produ
t 2R, where 2 is the dis
rete spa
e

{0, 1}, is 
ompa
t.9. DC, the axiom of dependent 
hoi
es: If R is a non-empty relationon a non-empty set X su
h that (∀x)(∃y)(xRy), then there exists afun
tion f : ω → X su
h that f(n)Rf(n + 1) for all n ∈ ω.The reader is referred to [5℄ for notions on Boolean algebras whi
h areused but not de�ned in this paper.
Note. Most of the propositions whi
h are listed above are dis
ussed inthe book [8℄ on the 
onsequen
es of the Axiom of Choi
e by P. Howardand J. E. Rubin as �Form x�, �x� being some numeral. For example, in[8℄, the Boolean Prime Ideal Theorem BPI is named �Form 14�. The au-thors [8℄ have developed software available at http://www.math.purdue.edu/~jer/Papers/
onseq.html where one 
an insert Form numerals to retrieveall known provable or refutable impli
ations between these Forms. For thereader's 
onvenien
e we give the Form numerals of [8℄ for those propositionswhi
h 
an be found in the latter book:BPI (Form 14), BPI(ω) (Form 225), UF (Form 63), UF(ω) (Form 70),AC(R) (Form 79), CAC(R) (Form 94), PW(R) (Form 130), IDI (Form 9),WOAC (Form 40), TP(2R) (Form 139), DC (Form 43).2. Introdu
tion and some preliminary results. The main purposeof this paper is to give six answers to questions in the table below (whi
h



Boolean Prime Ideal Theorem 351
were not given in [8℄). In this table if the entry in row A and 
olumn B is:

• �?�, then nothing is known about the impli
ation A → B in ZF;
• �→�, then A → B in ZF;
• � 6→�, then A 6→ B in ZF.

BPI(ω) UF(ω) AC(R) CAC(R) WOAC TP(2R) DC

BPI(ω) → → 6→ 6→ 6→ → 6→

UF(ω) ? → 6→ 6→ 6→ ? 6→

AC(R) → → → → 6→ → 6→

CAC(R) 6→ 6→ 6→ → 6→ 6→ 6→

WOAC 6→ 6→ 6→ → → 6→ →

TP(2R) → → 6→ 6→ 6→ → 6→

DC 6→ 6→ 6→ → 6→ 6→ →

The entries of the table whi
h are established in this paper are the fol-lowing: BPI(ω) → TP(2R), AC(R) → BPI(ω) (this impli
ation is not listedin [8℄ but it is well known and added here for 
ompleteness), CAC(R) 6→TP(2R), WOAC 6→ TP(2R), TP(2R) → BPI(ω), TP(2R) → UF(ω), DC 6→TP(2R). For the positive and independen
e results for the rest of the entriesof the above table, the reader is referred to P. Howard and J. E. Rubin'sbook [8℄ and to its webpage.It was shown in [14℄ and independently in [18℄ that BPI is equivalent toTy
hono�'s Produ
t Theorem for Hausdor� (T2) spa
es:TPT2: The Ty
hono� produ
t of 
ompa
t T2 spa
es is 
ompa
t.J. My
ielski [15℄ proved that BPI is equivalent to the statement:
S: For every set X the Ty
hono� produ
t 2X , where 2 has the dis
retetopology, is 
ompa
t.It is part of the folklore (see [10℄) that for a well ordered 
ardinal m, thestatement �the Ty
hono� produ
t 2m, where 2 has the dis
rete topology, is
ompa
t� is dedu
ible in ZF. J. Truss in analogy with statement S (see [19℄)introdu
ed the statement TP(2R) and in [8℄ it was asked whether TP(2R)is dedu
ible in ZF0 (i.e., ZF without the axiom of regularity). In [10℄ itwas shown that TP(2R) fails in Cohen's Se
ond Model (see Model M7 in[8℄). However, the status of the impli
ations CAC(R) → TP(2R), WOAC →TP(2R), and DC → TP(2R) remained unknown.Clearly, BPI implies TP(2R) be
ause 2 with the dis
rete topology is a
ompa
t T2 spa
e. Sin
e BPI holds but CAC(R) fails in Cohen's basi
 model(see Model M1 in [8℄) it follows that TP(2R) does not imply CAC(R). InTheorem 8 we show that WOAC, hen
e DC and CAC(R), do not implyTP(2R). Hen
e CAC(R) and TP(2R) are independent of ea
h other.
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In [8℄, TP(2R) and BPI(ω) are treated as di�erent statements. However,the equivalen
e BPI ↔ S is an indi
ation that TP(2R) and BPI(ω) expressthe same truth. We show in Theorem 6 that this is indeed the 
ase.The propositions UF and UF(ω) were introdu
ed in [9, Prob. 8.5, p. 172,and Prob. 5.24, p. 82, respe
tively℄, and BPI(ω) was introdu
ed by Y. Rav(see [16℄).Clearly, BPI → BPI(ω) → UF(ω) and BPI → UF → UF(ω), and itis known (see the table of impli
ations at http://www.math.purdue.edu/~jer/Papers/
onseq.html) that UF(ω) 9 UF and BPI(ω) 9 BPI.In 
ontrast with the status of UF(ω) → BPI(ω), we show in Theorem 10that UF(R) 9 BPI(R).Theorem 1. UF(ω) + IDI → UF. In parti
ular , UF(ω) → UF(R).Proof. Fix an in�nite set A and let, by IDI, X be a 
ountably in�nitesubset of A. Fix, by UF(ω), a free ultra�lter H of P(X) and let F = {Y ∈

P(A) : Y in
ludes a member of H}. We show that F is an ultra�lter of P(A).To this end, it su�
es to show that F is maximal with respe
t to the fip. Fix
B ⊂ A su
h that F ∪ {B} has the fip. Fix Y ∈ H. Then Z = B ∩ Y meetsnon-trivially ea
h member of H. Thus, Z ∈ H and 
onsequently B ∈ F and
F is maximal as required.The se
ond assertion follows trivially be
ause ω ⊂ R.Remark 2. It is known that in Cohen's basi
 model M1 in [8℄, UF holdsbut IDI fails. Thus, the �rst impli
ation in Theorem 1 is not reversible. Wedo not know whether the se
ond one is. We 
onje
ture that it is not.Theorem 3.(i) PW(R) → BPI(R) → BPI(ω) → UF(ω) → UF (R).(ii) AC(R) implies BPI(ω).Proof. (i) PW(R) → BPI(R). Fix a �lter H of P(R) and let {Xi : i ∈ ℵ},where ℵ is a well-ordered 
ardinal, be a well-ordering of P(R). Via a straight-forward indu
tion on ℵ, H 
an be extended to an ultra�lter F of P(R).

BPI(R) → BPI(ω) → UF(ω). These are straightforward.(ii) This 
an also be proved indu
tively.Theorem 4 ([20, Theorem 16.4(
)℄). In ZFC , a produ
t of Hausdor�spa
es with at least two points ea
h is separable i� ea
h fa
tor is separableand there are ≤ |R| fa
tors. In parti
ular , if (X, T ) is a separable Hausdor�spa
e then, in ZF , the produ
t XR is separable.3. Positive results. In [13℄, Azriel Lévy proved that BPI, hen
e itsequivalent (see [15℄) statement:
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S: For every set X the Ty
hono� produ
t 2X , where 2 has the dis
retetopology, is 
ompa
t,implies the axiom of 
hoi
e for families of non-empty �nite sets, hen
e itimplies the weaker statement:
C: Every family of two-element sets has a 
hoi
e fun
tion.We will show similar propositions in the next theorem.Theorem 5.(i) TP(2R) implies that every disjoint family of non-empty sets of realsis linearly orderable.(ii) TP(2R) implies that every family A = {Ai : i ∈ I} of non-empty�nite subsets of P(R) su
h that ⋃

A is disjoint has a 
hoi
e fun
tion.(iii) TP(2R) implies that for all n ∈ ω \ 2, every family A = {Ai : i ∈ R}of ≤ n-element subsets of P(R) has a 
hoi
e fun
tion.Proof. (i) Let A be a disjoint family of non-empty sets of reals. Let L bea propositional language with propositional variables pxy, x, y ∈ R, whi
hhave intended meaning (x ∈ A ∈ A) ∧ (y ∈ B ∈ A). Let P be the set of allpropositions of the language L, and Σ be the subset of P 
onsisting of thefollowing four types of propositions:(1) pxy ∧ pyx for every A ∈ A and all x and y in A,(2) (¬pxy) ∨ (¬pyx) for all A, B ∈ A with A 6= B and all x ∈ A and
y ∈ B,(3) pxy ∧ pyz → pxz for all x, y, z ∈ R,(4) pxy ∨ pyx for all x, y ∈ R.Clearly, |P | = |2ℵ0 |. We seek for a valuation mapping σ ∈ 2P su
h that

σ(φ) = 1 for all φ ∈ Σ. Then the required linear ordering on A will be
R = {(A, B) ∈ A2 : (∀x ∈ A)(∀y ∈ B)(σ(pxy) = 1)}.By TP(2R) the Ty
hono� produ
t 2P is 
ompa
t. For ea
h �nite subset

X of Σ let CX = {f ∈ 2P : f is a valuation satisfying X}. It is easy toverify that C = {CX : X ∈ [Σ]<ω} is a family of non-empty 
losed subsetsof 2P with the �nite interse
tion property. Hen
e, there exists a valuation
σ ∈

⋂

C. Clearly, σ satis�es Σ, �nishing the proof of (i).(ii) This follows immediately from (i).(iii) The proof is by indu
tion on n ∈ ω \ 2.For n = 2, �x a family A = {Ai : i ∈ R} of two-element subsets of P(R).For every i ∈ R we may assume that the elements of Ai are in
omparableunder the relation ⊂. (Otherwise, we may 
hoose the element ⋂

Ai of Ai.)It follows that if a, b are the elements of Ai, then a \ b 6= ∅ and b \ a 6= ∅.Thus, without loss of generality we may assume that for every i ∈ R the
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members of Ai are disjoint. For every i ∈ R, let hi : R → R × R be thefun
tion given by hi(x) = (i, x) for all x ∈ R. Fix a 1 : 1 and onto fun
tion
f : R × R → R (in ZF, |R × R| = |R|) and let fi : R → R be the fun
tiongiven by fi = f ◦ hi. Clearly, B = {fi[Ai] : i ∈ R} is a family as in (i) ofthe present theorem and any 
hoi
e fun
tion of the family B yields a 
hoi
efun
tion of the family A.Assume that the result holds for n = k, k > 2. Fix a family A = {Ai :
i ∈ R} of (k+1)-element subsets of P(R). Without loss of generality we mayassume that for every i ∈ R and any A, B ∈ Ai, A \ B 6= ∅ and B \ A 6= ∅.(Otherwise repla
e Ai by A∗

i = {A ∈ Ai : A is maximal with respe
t toin
lusion}.) Under the previous assumption we may also infer that ⋂

Ai = ∅for all i ∈ R. (Working with A∗
i instead of Ai we �nd that ⋂

{(
⋃

A∗
i ) \ A :

A ∈ A∗
i } = ∅.) Fix an i ∈ R. For every x ∈

⋃

Ai we de�ne the degreeof x by deg(x) = |{A ∈ Ai : x ∈ A}|. Let ni = min{deg(x) : x ∈
⋃

Ai}and Bi = {x ∈
⋃

Ai : deg(x) = ni}. De�ne a binary relation ∼i on Bi byrequiring for all x, y ∈ Bi,
x ∼i y iff (∀A ∈ Ai)(x ∈ A ↔ y ∈ A).It 
an be easily veri�ed that ∼i is an equivalen
e relation on Bi (the sym-metry follows from the fa
t that the elements of Bi have the same degree).Let Ci = {[x]∼i
: x ∈ Bi}. Clearly, Ci is a disjoint �nite subset of P(R).Put C = {Ci : i ∈ R}. As in the 
ase n = 2 we may assume that ⋃

Cis a disjoint set, hen
e we may view C as a family in (ii) of the presenttheorem. By TP(2R) let f be a 
hoi
e fun
tion for C. For every i ∈ R, let
A1

i = {A ∈ Ai : A ∩ f(Ci) 6= ∅}. Then A1
i is a proper subset of Ai for all

i ∈ R. (If f(Ci) = [x∗]∼i
, then sin
e ⋂

Ai = ∅, it follows that x∗ /∈ A forsome A ∈ Ai. By the de�nition of ∼i we have [x∗]∼i
⊂ (

⋃

Ai) \ A.) By theindu
tion hypothesis, the family A1 = {A1
i : i ∈ R} has a 
hoi
e fun
tion.Thus, A has a 
hoi
e fun
tion and the indu
tion terminates. This 
ompletesthe proof of (iii) and of the theorem.Theorem 6. The following statements are equivalent :(i) In a Boolean algebra B of size ≤ |R| every �lter 
an be extended toan ultra�lter.(ii) BPI(ω).(iii) For every separable 
ompa
t T2 spa
e (X, T ) the produ
t XR is 
om-pa
t.(iv) The produ
t [0, 1]R is 
ompa
t.(v) Ty
hono� produ
ts of �nite subspa
es of R are 
ompa
t.(vi) TP(2R).(vii) For every propositional language L of size ≤ |R| and every 
onsistentsubset Σ of L there exists a valuation mapping whi
h satis�es Σ.



Boolean Prime Ideal Theorem 355
Proof. (i)→(ii). This follows from the observation that (P(ω),△,∩) is aBoolean algebra.(ii)→(iii). Fix a separable 
ompa
t T2 spa
e (X, T ) and by Theorem 4,let D = {dn : n ∈ ω} be a 
ountable dense subset of XR. We show that theprodu
t XR is 
ompa
t. Assume by way of 
ontradi
tion that U is an open
over of XR su
h that no �nite subfamily of U has dense union in X. (Sin
e

X is 
ompa
t and T2 it follows, in ZF, that X is T3. Furthermore, the proofof Theorem 14.4 of [20℄ uses no 
hoi
e. Hen
e, XR is T3. Moreover, it is easyto see that in ZF a regular spa
e (X, T ) is 
ompa
t i� every open 
over of Xhas a �nite subfamily whose union is dense in X.) Let F be an ultra�lter of
P(D) extending the �lter H generated by the family G = {U c ∩D : U ∈ U}.Clearly, for every i ∈ R, Fi = {πi[F ] : F ∈ F} is an ultra�lter of P(πi[D]).Sin
e X is 
ompa
t and T2, and Fi is an ultra�lter of P(πi[D]), it follows that
⋂

{πi[F ] : F ∈ F} is a singleton, say {xi}. It is straightforward to verify thatthe element x ∈ XR su
h that for all i ∈ R, x(i) = xi, is in ⋂

{U c : U ∈ U}.Hen
e, U is not a 
over of XR and we have arrived at a 
ontradi
tion.(iii)→(iv). This is straightforward.(iv)→(v). Fix a family {Xi : i ∈ I} of �nite subsets of R. Sin
e |[R]<ω| =
|R| in ZF, without loss of generality we may assume that |I| = |R|. Sin
e
|[0, 1]| = |R|, we may assume that Xi ⊂ [0, 1] for all i ∈ R. The 
on
lusionnow follows from our hypothesis and the fa
t that the produ
t X =

∏

i∈R
Xiis a 
losed subspa
e of the 
ompa
t T2 spa
e [0, 1]R.(v)→(vi). This is straightforward.(vi)→(vii). Let L be a propositional language having a 
ontinuum-sizedset P of propositions, and let Σ be a 
onsistent subset of P (i.e. for every�nite subset Π of Σ there is a valuation whi
h satis�es Π). By TP(2R) theTy
hono� produ
t 2P is 
ompa
t. For ea
h �nite subset X of Σ let CX =

{f ∈ 2P : f is a valuation satisfying X}. Clearly, C = {CX : X ∈ [Σ]<ω}is a family of non-empty 
losed subsets of 2P having the �nite interse
tionproperty. Hen
e, there exists a valuation σ ∈
⋂

C. It follows that σ satis�es
Σ as required.(vii)→(i). Fix a Boolean algebra (B, +, ·, 1) of size ≤ |R| and let H bea �lter in B. Let L be a propositional language with propositional variables
pb, b ∈ B. Here, the propositional variable pb is intended to assert that b liesin the desired ultra�lter.Let P be the set of all propositions of the language L and let Σ be theset of propositions of the following types:(1) pb for all b ∈ H,(2) pb → pa for all a, b ∈ B su
h that b ≤ a,(3) pa ∧ pb → pa·b for all a and b in B,(4) pb ∨ p1+b for all b ∈ B.
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Clearly, |P | = |2ℵ0 | and Σ is a 
onsistent set of propositions. By our hypoth-esis there exists a valuation σ ∈ 2P whi
h satis�es Σ. It is easy to see that
F = {b : σ(pb) = 1} is an ultra�lter of B in
luding H as required.Remark 7. It is known (see [8℄) that in ZF:(A) BPI i� in every Boolean algebra every �lter 
an be extended to anultra�lter.However, with respe
t to Theorem 6, the analogy is not quite the same. Wedo not know whether the following impli
ation is provable in ZF:(B) Every Boolean algebra of size ≤ |R| has an ultra�lter implies inevery Boolean algebra of size ≤ |R| every �lter 
an be extended toan ultra�lter.We remark here that if we assume either of the statements:

• PR: Ea
h partition of R has size ≤ |R| (see [11℄),
• for every Boolean algebra B su
h that |B| ≤ |R| and every ideal I of B,
|B/I| ≤ |R|,then the usual proof of (A) as given in [17, p. 101℄ 
an be used in order toestablish (B).3. Independen
e resultsTheorem 8. None of WOAC, DC and CAC(R) implies TP(2R).Proof. R. Solovay (see [4, p. 166℄) has shown that WOAC holds in Fe-ferman's model M2 in [8℄ (see also [3℄ and [9, Prob. 5.24℄). Sin
e WOACimplies DC (see [8℄) and 
learly CAC(R), it follows that DC and CAC(R)are also valid in M2. We shall prove that TP(2R) fails in M2.Let us give a brief des
ription of M2 (see, also [9, Prob. 5.24℄). Let Mbe a 
ountable transitive model of ZF + 2ℵ0 = ℵ1 and let P = Fn(ω × ω, 2)be the set of all �nite partial fun
tions p from ω×ω into 2 = {0, 1} partiallyordered by: p ≤ q i� p ⊇ q. Let G be a P-generi
 set over M and M[G] the
orresponding generi
 extension of M. For every X ⊂ ω × ω the fun
tion

πX : (P,≤) → (P,≤),

(πXp)((n, m)) =

{

p(n, m) if (n, m) /∈ X,

1 − p(n, m) if (n, m) ∈ X,is an order automorphism of (P,≤), and G = {πX : X ∈ P(ω ×ω)} with the
omposition operation ◦ is a group. Furthermore, E = {fix(E) : E ∈ [ω]<ω},where
fix(E) = {πX : (X ∈ P(ω × ω)) ∧ (X ∩ (E × ω) = ∅)},is a �lterbase. Let F be the normal �lter whi
h is generated by E . Then M2is the 
orresponding symmetri
 model of ZF.
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Clearly, in M[G], g =

⋃

G is a fun
tion from ω×ω → 2. For every n ∈ ωlet gn : ω → 2, gn(m) = g(n, m) and an = g−1
n (1). Clearly, both an and ac

nare in�nite subsets of ω.For a set a ⊂ ω we denote by [a] the set {x △ a : x ∈ [ω]<ω}.It is known (see [8℄) that for ea
h n ∈ ω, the sets an belong to M2.Hen
e, ac
n, [an], and [ac

n] belong to M2 too. It is also known (see [8℄ and [9,Prob. 5.24℄) that UF(ω) fails in M2 and we haveLemma 9 ([3℄). A = {{[X], [Xc]} : X ∈ P(ω)} has no 
hoi
e fun
tion.Sin
e ⋃

A is 
learly a partition of P(ω) and |P(ω)| = |R| we may 
onsiderea
h member of ⋃

A as a subset of R. Hen
e, we may view ⋃

A as a partitionof R. If TP(2R) were valid in M2, then by Theorem 5(ii), A would have toadmit a 
hoi
e fun
tion, 
ontradi
ting Lemma 9. Thus, TP(2R) fails in M2as 
laimed.Theorem 10.(i) AC(R) does not imply BPI(R).(ii) BPI(ω) does not imply BPI(R). In parti
ular , none of UF(ω), UF(R)implies BPI(R).Proof. We shall 
onstru
t a symmetri
 model N in whi
h AC(R), hen
eUF(ω) and UF(R) are true but BPI(R) fails. This model N will be the nexthigher 
ardinal analogue of Feferman's model M2.Let M be a 
ountable transitive model of ZF + 2ℵ0 = ℵ1. Let P =
Fn(ω × ω1, 2, ω1) be the set of all 
ountable partial fun
tions p from ω × ω1into 2 partially ordered by reverse in
lusion. Let G be a P-generi
 set over Mand M[G] the 
orresponding generi
 extension of M. As in the 
ase of M2any X ⊂ ω × ω1 yields an order automorphism πX : (P,≤) → (P,≤), (G, ◦),where G = {πX : X ∈ P(ω×ω1)}, is a group, and E = {fix(E) : E ∈ [ω]<ω},where

fix(E) = {πX : (X ∈ P(ω × ω1)) ∧ (X ∩ (E × ω1) = ∅)},is a �lterbase. Let N be the symmetri
 model of ZF produ
ed by the normal�lter F whi
h is generated by E . As P is 
ountably 
losed (i.e., every 
ountable
hain C of P has a lower bound) it is known (see [12, Theorem 6.14, p. 214℄)that no new subsets of ω are added to M. Thus, |R| = ℵ1 in N . Hen
e,AC(R), UF(ω), BPI(ω), and UF(R) are all true in N .Let g =
⋃

G and for every n ∈ ω, an = g−1
n (1), where gn : ω1 → 2,

gn(m) = g(n, m). Clearly an as well as ac
n are un
ountable subsets of ω1.For ea
h set a ⊂ ω1 we denote by [a] the set {x △ a : x ∈ [ω1]

≤ω}.
Claim 1. For ea
h n ∈ ω, the sets an, ac

n, [an], [ac
n], and {[an], [ac

n]}belong to N .
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Proof of Claim 1. It su�
es to show that an ∈ N for every n ∈ ω. Let

an = {(m̌, p) : m ∈ ω1, p ∈ P and p((n, m)) = 1}, where m̌ = {(y̌, 1P) :
y ∈ m} (1P = ∅ is the maximal element of P) is the name of m given in [12,De�nition 2.10, p. 190℄. It 
an be readily veri�ed that any πX ∈ fix({n})�xes an as well as ea
h m̌ with m ∈ ω1. Thus, an is a hereditarily symmetri
name for an and an ∈ N as required.
Claim 2. The family A = {{[X], [Xc]} : X ∈ P(ω1)} has no 
hoi
e set.Proof of Claim 2. Assume the 
ontrary and let c ∈ N be a 
hoi
e setof A. Let c,A be hereditarily symmetri
 names for c and A respe
tivelywith fix(E) ⊆ sym(c) ∩ sym(A), where for a name τ , sym(τ) = {π ∈ G :

π(τ) = τ}. Fix n ∈ Ec and assume that c ∩ {[an], [ac
n]} = [an]. Let g ∈ Gsatisfy

g 
 c is a 
hoi
e set of A and c ∩ {([an], 1P), ([ac
n], 1P)} = [an],where [an], [ac

n] are hereditarily symmetri
 names for [an] and [ac
n] respe
-tively. Let X = ({n} × ω1) \ dom(g). Then πX ∈ fix(E), πX(c) = c,

πX({([an], 1P), ([ac
n], 1P)}) = {([an], 1P), ([ac

n], 1P)} and πX(g) = g. It followsthat
g 
 c is a 
hoi
e set of A and c ∩ {([an], 1P), ([ac

n], 1P)} = πX([an]).Sin
e g ∈ G, it follows that c∩{[an], [ac
n]} = val(πX([an])). It is not hardto verify that val(πX([an])) = [ac

n]. This is a 
ontradi
tion �nishing the proofof Claim 2.We now prove that BPI(R) fails in N . Let H be the �lter of all 
o
ount-able subsets of ω1, i.e., H = [ω1]. We show that there is no ultra�lter F of
P(ω1) in
luding H. Assume the 
ontrary and let F be su
h an ultra�lter.We 
laim that for every X ∈ P(ω1) su
h that X ∈ [ω1]

ω1 and Xc ∈ [ω1]
ω1 ,either [X] ⊂ F or [Xc] ⊂ F . Indeed, sin
e F is an ultra�lter it follows thateither X ∈ F or Xc ∈ F but not both. Assume that X ∈ F . Sin
e H ⊂ F itfollows that {X∩H : H ∈ H} ⊂ F . Therefore, X \A ∈ F for all A ∈ [ω1]
≤ω.Thus, X △A ∈ F for all A ∈ [ω1]

≤ω and 
onsequently [X] ⊂ F as required.Furthermore, no member of [Xc] belongs to F as otherwise we would easilyderive that ∅ ∈ F .Thus, the family A has a 
hoi
e set in N , whi
h is a 
ontradi
tion.Hen
e, H 
annot be extended to an ultra�lter of P(ω1) and BPI(R) failsin N , �nishing the proof of the theorem.A
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