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Summary. Let X be an infinite set, and P(X) the Boolean algebra of subsets of X. We
consider the following statements:

BPI(X): Every proper filter of P(X) can be extended to an ultrafilter.
UF(X): P(X) has a free ultrafilter.

We will show in ZF (i.e., Zermelo—Fraenkel set theory without the Axiom of Choice) that
the following four statements are equivalent:
(i) BPI(w).

(ii) The Tychonoff product 2%, where 2 is the discrete space {0, 1}, is compact.

(iii) The Tychonoff product [0, 1]¥ is compact.

(iv) In a Boolean algebra of size < |R| every filter can be extended to an ultrafilter.
We will also show that in ZF, UF(R) does not imply BPI(R). Hence, BPI(R) is strictly
stronger than UF(R). We do not know if UF(w) implies BPI(w) in ZF.

Furthermore, we will prove that the axiom of choice for sets of subsets of R does not

imply BPI(R) and, in addition, the axiom of choice for well orderable sets of non-empty
sets does not imply BPI(w).

1. Notation and terminology. Let X be a non-empty set. We say
that a family H C P(X) \ {0} has the finite intersection property, fip for
abbreviation, iff (| Q # () for every finite subset @ of H.

It is well known that there are many characterizations of the notion
of “compact”, all equivalent in ZFC set theory (i.e., ZF plus the Axiom of
Choice). However, in the absence of the Axiom of Choice these “types” of
compactness may fail to be equivalent. Consequently, the notion of a com-
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pact topological space does not have a clear meaning in ZF set theory. In this

paper we shall be using the Heine—Borel definition of compactness, i.e., a

topological space (X, T') is compact iff every open cover of X has a finite sub-

cover. Equivalently, X is compact iff every family of closed subsets of X hav-

ing the fip has a non-empty intersection. For the interrelation between several

definitions of compactness in ZF, the reader is referred to [1], [2], [6], [7].
We will consider the following statements:

1. BPI: Every Boolean algebra has a prime ideal. {It is known that BPI
is equivalent in ZF to the statement that every Boolean algebra has
an ultrafilter and also to the statement (for every X)BPI(X); see [8].}

2. UF: For every infinite set X, P(X) has a free ultrafilter (i.e., (for every

infinite set X)UF(X)).

AC(R): Every family of non-empty subsets of R has a choice function.

CAC(R): AC(R) restricted to countable families.

PW(R): The powerset P(R) of R is well orderable.

IDI: Every infinite set is Dedekind infinite (i.e., it has a countably

infinite subset).

7. WOAC: Every well orderable set of non-empty sets has a choice func-
tion.

8. TP(2%): The Tychonoff product 2%, where 2 is the discrete space
{0,1}, is compact.

9. DC, the axiom of dependent choices: If R is a non-empty relation
on a non-empty set X such that (Vz)(3y)(xRy), then there exists a
function f:w — X such that f(n)Rf(n+ 1) for all n € w.

oo e w

The reader is referred to [5] for notions on Boolean algebras which are
used but not defined in this paper.

NOTE. Most of the propositions which are listed above are discussed in
the book [8] on the consequences of the Axiom of Choice by P. Howard
and J. E. Rubin as “Form x”, “x” being some numeral. For example, in
[8], the Boolean Prime Ideal Theorem BPI is named “Form 14”. The au-
thors [8] have developed software available at http: //www.math.purdue.edu/
“jer/Papers/conseq.html where one can insert Form numerals to retrieve
all known provable or refutable implications between these Forms. For the
reader’s convenience we give the Form numerals of [8] for those propositions
which can be found in the latter book:

BPI (Form 14), BPI(w) (Form 225), UF (Form 63), UF(w) (Form 70),
AC(R) (Form 79), CAC(R) (Form 94), PW(R) (Form 130), IDI (Form 9),

3 Y

WOAC (Form 40), TP(2®) (Form 139), DC (Form 43).

2. Introduction and some preliminary results. The main purpose
of this paper is to give six answers to questions in the table below (which
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were not given in [8]). In this table if the entry in row A and column B is:

e “?” then nothing is known about the implication A — B in ZF;
e “—” then A — B in ZF;
e “A” then A 4 B in ZF.

BPI(w) UF(w) AC(R) CAC(R) WOAC TP(2%) DC

BPI(w) - - 7 7 7 - 7
UF(w) ? - 7 7 7 ? 7

AC(R) - - - - 7 - 7

CAC(R) 7 vad 7 - 7 vad 7
WOAC A A s - - /> -
TP(2%) - - 7 7 7 - 7
DC 7 vad 7 - 7 vad -

The entries of the table which are established in this paper are the fol-
lowing: BPI(w) — TP(2®), AC(R) — BPI(w) (this implication is not listed
in [8] but it is well known and added here for completeness), CAC(R) /4
TP(2R), WOAC 4 TP(2F), TP(2F) — BPI(w), TP(28) — UF(w), DC 4
TP(2®). For the positive and independence results for the rest of the entries
of the above table, the reader is referred to P. Howard and J. E. Rubin’s
book [8] and to its webpage.

It was shown in [14]| and independently in [18] that BPI is equivalent to
Tychonoff’s Product Theorem for Hausdorff (7%) spaces:

TPTy: The Tychonoff product of compact To spaces is compact.
J. Mycielski [15] proved that BPI is equivalent to the statement:

S: For every set X the Tychonoff product 2%, where 2 has the discrete
topology, is compact.

It is part of the folklore (see [10]) that for a well ordered cardinal m, the
statement “the Tychonoff product 2", where 2 has the discrete topology, is
compact” is deducible in ZF. J. Truss in analogy with statement S (see [19])
introduced the statement TP(2%) and in [8] it was asked whether TP(2®)
is deducible in ZF° (i.e., ZF without the axiom of regularity). In [10] it
was shown that TP(2R) fails in Cohen’s Second Model (see Model M7 in
[8]). However, the status of the implications CAC(R) — TP(2®), WOAC —
TP(2%), and DC — TP(2¥) remained unknown.

Clearly, BPI implies TP(2R) because 2 with the discrete topology is a
compact T» space. Since BPI holds but CAC(R) fails in Cohen’s basic model
(see Model M1 in [8]) it follows that TP(2®) does not imply CAC(R). In
Theorem 8 we show that WOAC, hence DC and CAC(R), do not imply
TP(2%). Hence CAC(R) and TP(2%) are independent of each other.
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In [8], TP(2®) and BPI(w) are treated as different statements. However,
the equivalence BPI «++ S is an indication that TP(2®) and BPI(w) express
the same truth. We show in Theorem 6 that this is indeed the case.

The propositions UF and UF(w) were introduced in [9, Prob. 8.5, p. 172,
and Prob. 5.24, p. 82, respectively|, and BPI(w) was introduced by Y. Rav
(see [16]).

Clearly, BPI — BPI(w) — UF(w) and BPI — UF — UF(w), and it
is known (see the table of implications at http://www.math.purdue.edu/
~jer/Papers/conseq.html) that UF(w) - UF and BPI(w) - BPL.

In contrast with the status of UF(w) — BPI(w), we show in Theorem 10
that UF(R) - BPI(R).

THEOREM 1. UF(w) + IDI — UF. In particular, UF (w) — UF(R).

Proof. Fix an infinite set A and let, by IDI, X be a countably infinite
subset of A. Fix, by UF(w), a free ultrafilter H of P(X) and let F ={Y €
P(A) : Y includes a member of H}. We show that F is an ultrafilter of P(A).
To this end, it suffices to show that F is maximal with respect to the fip. Fix
B C A such that F U {B} has the fip. Fix Y € H. Then Z = BNY meets
non-trivially each member of H. Thus, Z € ‘H and consequently B € F and
JF is maximal as required.

The second assertion follows trivially because w C R. =

REMARK 2. It is known that in Cohen’s basic model M1 in [8], UF holds
but IDI fails. Thus, the first implication in Theorem 1 is not reversible. We
do not know whether the second one is. We conjecture that it is not.

THEOREM 3.

(i) PW(R) — BPI(R) — BPI(w) — UF(w) — UF(R).
(ii) AC(R) implies BPI(w).

Proof. (i) PW(R) — BPI(R). Fix a filter H of P(R) and let {X; : i € X},
where N is a well-ordered cardinal, be a well-ordering of P(R). Via a straight-
forward induction on X, H can be extended to an ultrafilter F of P(R).

BPI(R) — BPI(w) — UF(w). These are straightforward.

(ii) This can also be proved inductively. m

THEOREM 4 (|20, Theorem 16.4(c)|). In ZFC, a product of Hausdorff
spaces with at least two points each is separable iff each factor is separable
and there are < |R| factors. In particular, if (X,T) is a separable Hausdorff
space then, in ZF, the product X® is separable.

3. Positive results. In [13], Azriel Lévy proved that BPI, hence its
equivalent (see [15]) statement:
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S: For every set X the Tychonoff product 2%, where 2 has the discrete
topology, is compact,

implies the axiom of choice for families of non-empty finite sets, hence it
implies the weaker statement:

C: Every family of two-element sets has a choice function.
We will show similar propositions in the next theorem.
THEOREM 5.

(i) TP(2®) implies that every disjoint family of non-empty sets of reals
is linearly orderable.
(ii) TP(2R) implies that every family A = {A; : i € I} of non-empty
finite subsets of P(R) such that|J A is disjoint has a choice function.
(iii) TP(2R) implies that for alln € w\ 2, every family A = {A; : i € R}
of < n-element subsets of P(R) has a choice function.

Proof. (i) Let A be a disjoint family of non-empty sets of reals. Let £ be
a propositional language with propositional variables p,,, =,y € R, which
have intended meaning (z € A € A) A (y € B € A). Let P be the set of all
propositions of the language £, and X be the subset of P consisting of the
following four types of propositions:

(1) puoy A pya for every A € Aand all z and y in A,

(2) (—pay) V (—pyz) for all A,B € A with A # B and all z € A and
y € B,

(3) Pay ADyz — pa» for all z,y, z € R,

(4) pay V pya for all z,y € R.

Clearly, |P| = |2%|. We seek for a valuation mapping o € 2 such that
o(¢) =1 for all ¢ € X. Then the required linear ordering on A will be

R ={(A,B) € A: (Vz € A)(Vy € B)(o(pay) = 1)}

By TP(2®) the Tychonoff product 27 is compact. For each finite subset
X of X let Ox = {f € 2P : f is a valuation satisfying X}. It is easy to
verify that C = {Cx : X € [¥]<“} is a family of non-empty closed subsets
of 2P with the finite intersection property. Hence, there exists a valuation
o € C. Clearly, o satisfies X/, finishing the proof of (i).

(ii) This follows immediately from (i).

(iii) The proof is by induction on n € w \ 2.

For n = 2, fix a family A = {A; : i € R} of two-element subsets of P(R).
For every i € R we may assume that the elements of A; are incomparable
under the relation C. (Otherwise, we may choose the element (] A4; of A;.)
It follows that if a,b are the elements of A;, then a\ b # () and b\ a # 0.
Thus, without loss of generality we may assume that for every ¢ € R the
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members of A; are disjoint. For every i € R, let h; : R — R x R be the
function given by h;(z) = (i,z) for all z € R. Fix a 1 : 1 and onto function
f:RxR—R (in ZF, |[R x R| = |R]|) and let f; : R — R be the function
given by fi = f o h;. Clearly, B = {fi[A;] : i € R} is a family as in (i) of
the present theorem and any choice function of the family B yields a choice
function of the family A.

Assume that the result holds for n = k, k > 2. Fix a family A = {4, :
i € R} of (k+1)-element subsets of P(R). Without loss of generality we may
assume that for every i € R and any A, B € A;, A\ B# () and B\ A # (.
(Otherwise replace A; by A = {A € A; : A is maximal with respect to
inclusion}.) Under the previous assumption we may also infer that (| A; = 0
for all i € R. (Working with A} instead of A; we find that ({(lJA}) \ A :
A e A} = 0.) Fix an ¢ € R. For every z € |JA; we define the degree
of x by deg(z) = [{A € A; : © € A}|. Let n;, = min{deg(z) : = € |JA4;}
and B; = {x € |JA; : deg(x) = n;}. Define a binary relation ~; on B; by
requiring for all x,y € B;,

xr~yy ff (VAeA)(re AeyeA).

It can be easily verified that ~; is an equivalence relation on B; (the sym-
metry follows from the fact that the elements of B; have the same degree).
Let C; = {[z]~, : © € B;}. Clearly, C; is a disjoint finite subset of P(R).
Put C = {C; : i € R}. As in the case n = 2 we may assume that |JC
is a disjoint set, hence we may view C as a family in (ii) of the present
theorem. By TP(2®) let f be a choice function for C. For every i € R, let
Al ={A € A;: AN f(C;) # 0}. Then A} is a proper subset of A; for all
i € R. (If f(C;) = [2*]~,, then since (N A; = 0, it follows that z* ¢ A for
some A € A;. By the definition of ~; we have [z*]., C (lJA4;) \ 4.) By the
induction hypothesis, the family A! = {A} : i € R} has a choice function.
Thus, A has a choice function and the induction terminates. This completes
the proof of (iii) and of the theorem. =

THEOREM 6. The following statements are equivalent:

(i) In a Boolean algebra B of size < |R| every filter can be extended to
an ultrafilter.

(ii) BPI(w).

(iii) For every separable compact Ty space (X, T) the product X® is com-
pact.

(iv) The product [0, 1] is compact.

(v) Tychonoff products of finite subspaces of R are compact.

(vi) TP(2R).

(vii) For every propositional language L of size < |R| and every consistent
subset X of L there exists a valuation mapping which satisfies 3.
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Proof. (i)—(ii). This follows from the observation that (P(w),A,N) is a
Boolean algebra.

(ii)—(iii). Fix a separable compact T» space (X,T) and by Theorem 4,
let D = {d,, : n € w} be a countable dense subset of X®. We show that the
product X® is compact. Assume by way of contradiction that ¢/ is an open
cover of X® such that no finite subfamily of &/ has dense union in X. (Since
X is compact and T5 it follows, in ZF, that X is T5. Furthermore, the proof
of Theorem 14.4 of [20] uses no choice. Hence, X* is T3. Moreover, it is easy
to see that in ZF a regular space (X, T') is compact iff every open cover of X
has a finite subfamily whose union is dense in X.) Let F be an ultrafilter of
P (D) extending the filter H generated by the family G = {U°ND : U € U}.
Clearly, for every i € R, F; = {m;[F] : F € F} is an ultrafilter of P(m;[D]).
Since X is compact and T», and F; is an ultrafilter of P(m;[D]), it follows that
({m[F]: F € F} is a singleton, say {z;}. It is straightforward to verify that
the element » € X® such that for all i € R, x(i) = ;, is in ({U°: U € U}.
Hence, U is not a cover of X® and we have arrived at a contradiction.

(iii)—(iv). This is straightforward.

(iv)—(v). Fix a family {X; : ¢ € I} of finite subsets of R. Since |[R]<¥| =
IR| in ZF, without loss of generality we may assume that |I| = |R|. Since
I[0,1]| = |R|, we may assume that X; C [0,1] for all i € R. The conclusion
now follows from our hypothesis and the fact that the product X = [ [, pX;
is a closed subspace of the compact T3 space [0, I]R.

(v)—(vi). This is straightforward.

(vi)—(vii). Let £ be a propositional language having a continuum-sized
set P of propositions, and let X be a consistent subset of P (i.e. for every
finite subset IT of X there is a valuation which satisfies IT). By TP(2F) the
Tychonoff product 2¥ is compact. For each finite subset X of X let Cx =
{f € 2P : f is a valuation satisfying X}. Clearly, C = {Cx : X € [¥]<“}
is a family of non-empty closed subsets of 2© having the finite intersection
property. Hence, there exists a valuation o € (|C. It follows that o satisfies
2 as required.

(vii)—(i). Fix a Boolean algebra (B,+,-, 1) of size < |R| and let H be
a filter in B. Let £ be a propositional language with propositional variables
Py, b € B. Here, the propositional variable py is intended to assert that b lies
in the desired ultrafilter.

Let P be the set of all propositions of the language £ and let X' be the
set of propositions of the following types:

(1) pp for all b € H,

(2) pp — pg for all a,b € B such that b < a,
(3) pa App — pap for all @ and b in B,

(4) pp V p14p for all b € B.

1
2
3
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Clearly, |P| = |2%| and ¥ is a consistent set of propositions. By our hypoth-
esis there exists a valuation o € 2 which satisfies X. It is easy to see that
F ={b:o(py) =1} is an ultrafilter of B including H as required. =

REMARK 7. It is known (see [8]) that in ZF:

(A) BPI iff in every Boolean algebra every filter can be extended to an
ultrafilter.

However, with respect to Theorem 6, the analogy is not quite the same. We
do not know whether the following implication is provable in ZF:

(B) Every Boolean algebra of size < |R| has an ultrafilter implies in
every Boolean algebra of size < |R| every filter can be extended to
an ultrafilter.

We remark here that if we assume either of the statements:

e PR: Each partition of R has size < |R| (see [11]),
e for every Boolean algebra B such that |B| < |R| and every ideal Z of B,
1B/1] < [R],

then the usual proof of (A) as given in [17, p. 101] can be used in order to
establish (B).

3. Independence results
THEOREM 8. None of WOAC, DC and CAC(R) implies TP(2R).

Proof. R. Solovay (see [4, p. 166]) has shown that WOAC holds in Fe-
ferman’s model M2 in [8] (see also [3] and [9, Prob. 5.24]). Since WOAC
implies DC (see [8]) and clearly CAC(R), it follows that DC and CAC(R)
are also valid in M2. We shall prove that TP(2R) fails in M2.

Let us give a brief description of M2 (see, also [9, Prob. 5.24]). Let M
be a countable transitive model of ZF + 2% = X; and let P = Fn(w x w, 2)
be the set of all finite partial functions p from w X w into 2 = {0, 1} partially
ordered by: p < ¢ iff p D q. Let G be a P-generic set over M and M|[G] the
corresponding generic extension of M. For every X C w X w the function

X - (P’ S) - (P’ S)a
p(n,m) if (n,m) ¢ X,
(mxp)((n.m) = { 1—-p(n,m) if (n,m) € X,
is an order automorphism of (P, <), and G = {rx : X € P(w x w)} with the
composition operation o is a group. Furthermore, £ = {fix(E) : E € [w]<“},
where
fix(E)={rx: (X e Plwxw)A(XN(Exw)=0)},

is a filterbase. Let F be the normal filter which is generated by £. Then M2
is the corresponding symmetric model of ZF.
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Clearly, in M[G], g = JG is a function from w x w — 2. For every n € w
let g, : w — 2, gn(m) = g(n,m) and a, = g,,*(1). Clearly, both a,, and af,
are infinite subsets of w.

For a set a C w we denote by [a] the set {z Aa:x € [w]<¥}.

It is known (see [8]) that for each n € w, the sets a, belong to M2.
Hence, af, [a,], and [af)] belong to M2 too. It is also known (see [8] and [9,
Prob. 5.24|) that UF(w) fails in M2 and we have

LEmMMA 9 ([3]). A= {{[X],[X°]}: X € P(w)} has no choice function.

Since | J A is clearly a partition of P(w) and |P(w)| = |R| we may consider
each member of | J A as a subset of R. Hence, we may view | J A as a partition
of R. If TP(2®) were valid in M2, then by Theorem 5(ii), .A would have to
admit a choice function, contradicting Lemma 9. Thus, TP(2R) fails in M2
as claimed. =

THEOREM 10.

(i) AC(R) does not imply BPI(R).
(ii) BPI(w) does not imply BPI(R). In particular, none of UF(w), UF(R)
implies BPI(R).

Proof. We shall construct a symmetric model A in which AC(R), hence
UF(w) and UF(R) are true but BPI(R) fails. This model A will be the next
higher cardinal analogue of Feferman’s model M2.

Let M be a countable transitive model of ZF + 2% = R;. Let P =
Fn(w X wi,2,w;) be the set of all countable partial functions p from w x wq
into 2 partially ordered by reverse inclusion. Let GG be a P-generic set over M
and M|G] the corresponding generic extension of M. As in the case of M2
any X C w X wy yields an order automorphism 7x : (P, <) — (P, <), (G, o),
where G = {mx : X € P(wxw1)}, is a group, and & = {fix(F) : F € [w]<¥},
where

fix(E)={rx : (X € Plwxw))AN(XN(Exw)=0)},

is a filterbase. Let A be the symmetric model of ZF produced by the normal
filter 7 which is generated by £. As P is countably closed (i.e., every countable
chain C' of P has a lower bound) it is known (see [12, Theorem 6.14, p. 214])
that no new subsets of w are added to M. Thus, |R| = N; in A. Hence,
AC(R), UF(w), BPI(w), and UF(R) are all true in NV,

Let ¢ = |JG and for every n € w, a, = g, (1), where g, : w1 — 2,
gn(m) = g(n,m). Clearly a,, as well as af, are uncountable subsets of w;.

For each set a C w; we denote by [a] the set {z A a:z € [w]5*}.

CLAIM 1. For each n € w, the sets an, af), [an], [aS)], and {[a,], [a]}
belong to N
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Proof of Claim 1. It suffices to show that a, € N for every n € w. Let
a, = {(m,p) : m € wi, p € P and p((n,m)) = 1}, where 1 = {(7, 1p) :
y € m} (1p = () is the maximal element of P) is the name of m given in [12,
Definition 2.10, p. 190]. It can be readily verified that any mx € fix({n})
fixes @, as well as each m with m € w;. Thus, @, is a hereditarily symmetric
name for a, and a,, € N as required.

CLAIM 2. The family A = {{[X],[X]} : X € P(w1)} has no choice set.

Proof of Claim 2. Assume the contrary and let ¢ € N be a choice set
of A. Let ¢, A be hereditarily symmetric names for ¢ and A respectively
with fix(E) C sym(¢) N sym(A), where for a name 7, sym(r) = {7 € G :
n(7) = 7}. Fix n € E° and assume that ¢ N {[a,], [a5]} = [ay]. Let g € G

satisfy

g I- ¢ is a choice set of A and €N {([an)], 1p), ([aS], 1p)} = [an],
where [a,], [a5] are hereditarily symmetric names for [a,] and [a] respec-
tively. Let X = ({n} x wi) \ dom(g). Then 7x € fix(E), mx(¢) = ¢,

Wﬁc({([an], 1e), (lag], 1p)}) = {([an], 1p), ([a5], 12)} and mx (g) = g. It follows
that

g IF ¢ is a choice set of A and €N {([a], 1p), ([aS], 1@2 7x ([an]).

Since g € G, it follows that ¢ {[a,], [a},]} = val(7mx ([a,])). It is not hard
to verify that val(mwx ([an])) = [a$,]. This is a contradiction finishing the proof
of Claim 2.

We now prove that BPI(R) fails in N. Let H be the filter of all cocount-
able subsets of wy, i.e., H = [w1]. We show that there is no ultrafilter F of
P(w1) including H. Assume the contrary and let F be such an ultrafilter.

We claim that for every X € P(w;) such that X € [w;]*“! and X€ € [wq]“",
either [X] C F or [X¢] C F. Indeed, since F is an ultrafilter it follows that
either X € F or X¢ € F but not both. Assume that X € F. Since H C F it
follows that {XNH : H € H} C F. Therefore, X \ A € F for all A € [w;]=%.
Thus, X A A € F for all A € [w1]=¥ and consequently [X] C F as required.
Furthermore, no member of [X¢] belongs to F as otherwise we would easily
derive that ) € F.

Thus, the family A has a choice set in N, which is a contradiction.
Hence, H cannot be extended to an ultrafilter of P(w;) and BPI(R) fails
in V, finishing the proof of the theorem. m
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