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Summary. We present two existence results for the Dirichlet elliptic inclusion with an
upper semicontinuous multivalued right-hand side in exponential-type Orlicz spaces in-
volving a vector Laplacian, subject to Dirichlet boundary conditions on a domain 2 C R?.
The first result is obtained via the multivalued version of the Leray—Schauder principle
together with the Nakano-Dieudonné sequential weak compactness criterion. The sec-
ond result is obtained by using the nonsmooth variational technique together with a
formula for Clarke’s subgradient for Lipschitz integral functionals on “nonregular” Orlicz
spaces.

1. Introduction. Let £2 C R? be an open bounded domain. We estab-
lish two results (see Theorems 3.1 and 5.1) for the Dirichlet elliptic inclu-
sion on {2 involving an upper semicontinuous multivalued right-hand side
with exponential-growth-type conditions (in connection with Pokhozhaev—
Trudinger’s theorem on the exact embedding of the Sobolev space H}(2)
into the Orlicz space Lg,(£2) with ®(t) = exp(t?) — 1). The proof of Theo-
rem 3.1 is based on the multivalued version of the Leray—Schauder principle
(see, e.g., [2, 3]) and on the Nakano-Dieudonné sequential o(Y,Z)-weak
compactness and completeness criteria [14, 8, 31| together with [28, The-
orem 2.1|. Note that Theorem 2.1 of [28] can be regarded as a generalization
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of the strong-weak closedness theorem from the work of C. Olech, A. Lasota,
L. Cesari, C. Castaing and others (for references, see e.g., [21]). The proof of
Theorem 5.1 relies on a generalization of the non-smooth variational tech-
nique [11] (see also [19, 25]) but via using a formula (see Theorem 4.3) for
Lipschitz integral functionals defined on a “nonregular” Orlicz space Lg(£2).
Observe that the formula of this type in [32, Theorem 2| cannot be applied
to the above problem, since it holds only for integral functionals defined on
regular Orlicz spaces Ly (i.e., with ¥ satisfying the As-condition).

Many results for the Dirichlet elliptic inclusion were obtained via differ-
ent techniques (see [2, 3, 6, 7, 9, 11, 18, 19, 21, 24, 25, 29, 30, 33]). In fact,
Theorem 3.1 gives a new sufficient solvability condition for the application
of |2, Theorem 2|. Existence results in exponential-type Orlicz spaces for the
Dirichlet inclusion involving a lower semicontinuous multivalued right-hand
side were obtained in [29]. Theorem 5.1 is an Lg-generalization of the scheme
of [11] (see also [25]) where the Dirichlet elliptic inclusion had a multivalued
right-hand side with polynomial-growth-type conditions and Clarke’s for-
mula in the Lebesgue spaces L,(f2) was used [12, 13] (cf. [11]).

Other non-smooth variational techniques (see [19, 25] and the references
therein) can also be generalized (by using arguments analogous to those
in the proof of Theorem 5.1) and applied to the Dirichlet elliptic inclusion
with multivalued right-hand side satisfying exponential-growth-type condi-
tions. We shall present these generalizations in our subsequent paper which
uses the formula of Theorem 4.3. Observe that Theorem 4.3 can also be
generalized to functionals defined on Banach lattices, non-solid generalized
Orlicz spaces, and Banach M-spaces (for the definitions, see respectively [5],
[22, 23, 26], and [27]).

2. Some terminology and notation. Our terminology and notation
from set-valued analysis follows [3, 4, 10, 18|, from function space theory
follows [5, 26, 34|, and from nonsmooth analysis follows [13, 24]|. Through-
out this paper I/ denotes a separable Banach space, and FE; . its dual space
endowed with the weak topology w* = o(E*, E). Put Bg(u,r) := {w € E :
lw—u|lg <7} for r € (0,00) and let Int Bg(u,r) denote the corresponding
open ball. Given a Suslin locally convex space F' (e.g. F'= FE or F = E.)
[10], we denote by B(F') the o-algebra of Borel subsets of F', and by Cp(F)
(resp., CvCp(F)) the family of all nonempty compact (resp., convex com-
pact) subsets of F. A multifunction I': £2 — 2 is called Sel-measurable if
Sel I' # () where Sel I" denotes the set of all measurable selections of I". Given
a function a: 2 — E and a multifunction H: 2 x E — Cp(E}.), define the
multivalued superposition

Np(a) :=Sel H(-, a(+)).
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Let X,Y be metric spaces and let I': X — 2¥ \ {(} be a multifunction.
Then I' is called closed if its graph Gr ' = {[z,y] e X xY :y e I'(z)} isa
closed subset of X x Y; locally compact (resp., locally bounded) if each point
x € X has a neighborhood U such that I'(U) is compact (resp., bounded);
upper semicontinuous (or u.s.c.) at x € X if, for any open set V C YV
with I'(z) € V, one may find an open neighborhood U C X of x such
that I'(u) C V for all u € U. Now let Z be a vector metric space. Then
I': X — 27 is called sequentially strong-weakly closed if Gr I is sequentially
closed in X x Z,, where Z,, is endowed with the weak topology o(Z, Z*).

Further, L°(£2, E) denotes the space of all (equivalence classes of ) mea-
surable functions z: 2 — E. Given Z C L°(£2,R™), define Z' := {n €
LY(2,R™) : (n,¢) € R(Vp € Z} where

(n:9)« = [ (n(2), (@) du,
[0

and (+,-) is the usual scalar product in the m-dimensional Euclidean space
R™ equipped the norm | - |.

Let #: R — [0,00) be some N-function (see, e.g., [26, 34]). The Orlicz
space is defined by

Lg = La(2,R) = {u e L°(2,R) : S P (o|u(x)]) de < oo for some o > O}
2
equipped with the Luxemburg norm

lulln, = inf{)\ >0: | B(ju(z)|/A) de < 1}.

Q
Define
Ep = Es(2,R) = {u e LY(2,R) : S D (a|u(x)]) dx < oo for all a > O}.
Q

It is known that Eg = Lg if and only if @ satisfies the so-called As-
condition [26]. Further (see, e.g., [26, 34]), (Eg)* = (Ep) = (Lg)' and
(Eg)" = Lg« with equivalent norms where @* is the N-function dual to
@ and any functional u* € (Fg)* is identified with some n € L°(§2,R) such
that u*(¢) = (n,¢)« (Vo € Ep). We denote by M[E] the Orlicz-Bochner

space of u € L°(§2, E) equipped with the norm [[u|| 1z = |||u(-)[| 2l < oo
where
(2.1) M :=Lg(2,R) or M := Eg(2,R).

Let U be an open subset of a Banach space E. If f: U — R is Lipschitz
continuous on U, then f has Clarke’s generalized derivative f°(x;-):
) —
(2.2) f°(z;v) = limsup Hly+Av) = /()

Yy—T A
Al0

(veE).
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The set
dof(z) ={C € E": (¢, v) < f°(z;0) (Vo € E)}
is called the generalized gradient (Clarke’s subgradient) of f at x (then
dcf(x) € CvCp(E:.) [13, 24]).
The symbol 1p denotes the characteristic function of a measurable set D
and X; — Xo means that the embedding X; C X5 is continuous.

3. Existence theorem via the multivalued version of the Leray—
Schauder principle. Let 2 be a bounded domain in R?, and f: 2 xR™ —
2™ be a multifunction of two variables (z,u) € £2 x R™. We shall consider
the weak solvability of the Dirichlet problem
{ —Apu(x) € f(z,u(x)) forae. z e (2,

3.1
(3.1) uan =0,
where A,, = (4,..., A) is the m-vector Laplacian.

In what follows, we denote the norm in the Lebesgue space Lo =

Lo(2,R™) by || - ||£,- As usual, H!(£2,R™) is the Sobolev space defined by
the norm |Jul| g1 = ||ull L, + | Vmul|L,, while HE = H}(£2,R™) is the closure
of C§°(£2,R™) with respect to this norm. Denote by H~! = H~1(£2,R™) the
dual space to H}. It is known (see, e.g., [20, Section 8.2, Theorem 5.8]) that
there exists an invertible continuous linear operator L: H& — H~! with
(3.2) (Lu, u) > of|ul|7,

for some a > 0 such that Lu = v* if and only if (V,,u, Vi) = u*(p) for

all p € Hi(£2,R™). Recall that the weak solvability of (3.1) in H} means

the existence of u € Hj and 1 € N¢(u) such that n € H~! and Lu = 1.
From now on, we denote by X, Y and Z the Orlicz spaces

X =F$ [R"], Y =Lg:[R"], Z=Lg[R"],
D (t) =exp(|t]>f) -1, O0<e<l.

THEOREM 3.1. Let 2 C R? and let f: 2 x R™ — CvCp(R™) be a
multivalued nonlinearity with the following properties:

(E1)  f(-,u) is Sel-measurable for each u and f(z,-) is locally bounded and
closed a.e.;

(E2)  Ny: X — 2Y maps any ball Bx(0,r) into the set N' = N;(Bx(0,7))
which is bounded and o(Y, Z)-weakly equicontinuous, i.e.

meail(%l)_)osui)/s [(Ip(@)y(x), 2(2))|dz =0 (2 € Z);

(3.3)

9]
(E3)  sup{(u,v) : v € f(z,u)} < alul?> + b(z) (Vu € R™) a.e. where 0 <
a<pa,be L1(£2,]0,00)) and pa is the first Dirichlet eigenvalue of

the Laplacian Am on {2.
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Then the Dirichlet problem (3.1) has a weak solution u, € H}(2,R™) C
Eg,[R™] where ®o(t) = exp(t?) — 1.

Proof. We shall apply [2, Theorem 2| (the proof of that theorem was
based on the multivalued version of the Leray—Schauder principle) together
with the scheme of [2, pp. 118-119]. Then it remains to check that KNy :
X — CvCp(X) is u.s.c. and compact where K := L~!. We divide this proof
into Steps 3.1-3.5. First, we recall some notions [14, 8, 31]. A set M C Y is
called sequentially o(Y, Z)-weakly pre-compact (or conditionally sequentially
o(Y, Z)-compact) if each sequence y; € M has some o(Y, Z)-weak Cauchy
subsequence y; ), that is, z € Z = limk,l_)oo<yj(k) — Y 2. = 0.

STEP 3.1. Since the embedding I: H& — X is compact (by the Pokho-
zhaev—Trudinger theorem [20, Theorem 7.15, Section 7.8]) and X* =X Y
with equivalent norms [5, 26], J: Y — H~! is compact. Then the operator
Ky =IoKoJ:Y — X is compact.

STEP 3.2. By (E2), A := N¢(Bx(up,)) is bounded in Y for any r €
(0,00). By [28, Proposition 2.1], (E1)-(E2) imply A # (). By Step 3.1, Ky A
is pre-compact in X. Hence, the multivalued operator KNy: X — 2%\ {0}
is compact.

STEP 3.3. We claim that B := KN¢(u) € Cp(X) for any v € X. Let
{wn}nen C B. Then w, = K(vy,) for some v, € N¢(u). By (E2), the
sequence v, is o(Y, Z)-weak equicontinuous, and so sequentially o(Y, Z)-
weakly pre-compact, due to the Nakano—Dieudonné o (Y, Z)-weak pre-com-
pactness theorem [14, 8, 31| for Y = Y” with Z = Y’. By the Nakano—
Dieudonné o(Y, Z)-weak completeness theorem [14, 8, 31|, each o(Y, Z)-
weakly Cauchy sequence is o(Y, Z)-weakly convergent in Y and so there
exist a subsequence n; and vg € Y such that
(3.4) vp, —vg ino(Y,Z).

J
Since @} satisfies the Ag-condition [34], we have Y* = Z with equivalent
norms |5, 26]. By [28, Theorem 2.1|] we deduce that the graph Gr Ny is
sequentially closed with respect to || - [y x o(Y,Z). Hence, vy € Ny(u)
follows.

By Step 3.1, Ki: X* - Y™, Ky := Kjy: Y — X, and so (Kjv,;,m") =
(Vn;, Kym*) for m* € X*. Given m’ € X' = X* 2V [5, 26], we deduce that
Kim' e Y*= Z and

(K1vp,,m')y = (K1vn;,m') = (vy,, Kim') = (vp,;, Kim')..
By (3.4), (vn,, Kim')« — (vo, Kym/), for all m’ € X'. Since

(vo, Kim') = (Kyvo, m') = (vo, Kim'). = (K1vo,m')x,
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we get (K1v,,,m')« — (Kjvg,m'), for all m’ € X’ =Y, and so
(35) Wn; ZKl(Un].) 4[(1('1}0) = Wo in U(X,X/):O'(X,Y).

By Step 3.2, there exist a subsequence n(j) of n; and wy € X such that
Wy(;) — Wo in X-norm. Hence, wy,;y — wo in measure. By (3.5) and the
Hahn-Saks-Vitali theorem [16], we get wo=wo =K (vg). Therefore, wp € B.
Hence, B is compact in X.

STEP 3.4. We claim that KNy is closed. Let [u,,w,] € Gr KNy with
Up — Uy, Wy, — Wo. Then w, = K(v,) for some v, € N¢(uy,). By (E2), the
sequence Ny (uy) is o (Y, Z)-weakly equicontinuous, and then by the Nakano—
Dieudonné o(Y, Z)-weak pre-compactness theorem, {v,},ecn is sequentially
o(Y, Z)-weakly pre-compact. By the Nakano—Dieudonné o (Y, Z)-weak com-
pleteness theorem (Y = Y”,Z = Y’), there exist a subsequence n; and
vp € Y such that v,, — vg in o(Y, Z). By [28, Theorem 2.1] for the case
Y* = Z, the graph Gr N is sequentially closed with respect to ||-||y xo (Y, Z).
So, v9 € Ny(up). By the same argument such as in Step 3.3, we deduce
that wy,;, = K(vn;) = K(vo) =: wp in o(X,X’) = o(X,Y). Observe that
wp; — Wo in measure. By the Hahn—Saks—Vitali theorem, wo = wo = K (vp).
Hence, wo € K N¢(up), and so K Ny is closed.

STEP 3.5. By Steps 3.1-3.4, KN¢: X — CvCp(X) is closed and locally
compact. Then (see e.g. [3, Lemma 2.9]) KNy is u.s.c. =

4. The calculation of Clarke’s subgradient for Lipschitz integral
functionals on open balls of Orlicz spaces. If g: 2x E — R is Lipschitz
continuous with respect to the second variable, then ¢°(x, ug; v) denotes the
Clarke derivative at ug in direction v of the function u +— g(x,u). By [13,
24] the function ¢°(z,u;v) is continuous in v. For simplicity, let dcg(x, up)
denote the generalized gradient of g(x,-) at ug. The proof of Lemma 4.1 is
standard via the known measurable selection theorems [18].

LEMMA 4.1. Let g: 2 x E — R be a function such that g(-,u) is mea-
surable for any u € E and g(x,-) is Lipschitz continuous an each ball of E
for almost all x € (2. Then, given any measurable functions w,v: {2 — FE,
the function x € 2 — ¢°(x,u(z);v(x)) is measurable.

We shall use the Lebourg theorem [13, Theorem 2.3.7|: Let f: U — R be
Lipschitz continuous on an open subset U of E. Assume that U contains the
convez interval v, z|. Then there exists a point u € (v, z) such that

fv) = f(2) € (Ocf(u),v—z).
Let 2 be the o-algebra of measurable subsets of £2. A function f: 2xF —

R =: RU{4o0} is called a normal integrand if f(z,-) is lower semicontinuous
for almost all (a.a.) z € £2 and there exists {2y with meas({2\ {29) = 0 such
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that f is (A x B(F), B(R))-measurable on 2 x F. If F is a Lusin space (e.g.
F = FEor F = E}.) then by [10, Lemma 1.2.3] every Carathéodory function
on {2 x F' is a normal integrand. If f is a normal integrand on {2 x E then the
dual convex normal integrand f*: 2 x E¥. — R is defined by f*(z,u*) =
sup{(u,u*) — f(z,u) : uw € E}. Denote by (M[E])¥ the space of singular
linear functionals on M[E] (see [22, 23|). Lemma 4.2 below is taken from
V. Levin [23, Corollary 1 of Theorem 6.7, p. 216] in the general case, and from
A. Kozek [22] in the case of E* separable (in this case, M'[E}.] = M'[E*]).

LEMMA 4.2. Let f be a normal convez integrand on {2 X E and con-
sider the functional Iy, Ir(u) = \,, f(x,u(x))dz, on M[E]. Suppose that
dom Iy := {u € M[E] : Iy(u) < oo} # (. Then for every uy € domI; the
subdifferential 0I¢(ug) consists of all linear functionals X\ € (M[E])* of the
form A(u) = (u,y) + As(u) (v € M[E]) where y € M'[E}.] NSel0f (-, uo(+)),
As € (M[E])E, Xs € K(domIf,ug) == {l € (M[E))* : l(z —up) < 0
(Vz € domIf)}, and Of (x,ug) denotes the subdifferential at ug of the convex
function u— f(z,u).

Given R € (0,00), we shall use the following conditions (¢1) and ($2):

(@1)  There exists {2y € A with meas(§2\ {2y) = 0 and there exist br,dr €
(0,00) and ar € L1(£2,[0,00)) such that

u* € dog(z,u) = O llw* |l < ap(z) + bpd lu|l g
dr R

for all z € {29 and u € E.
(#2)  There exists 2y € A with meas(§2\ 2p) = 0 and there exist bg,dr €

(0,00), ar € L1($2,[0,00)), and hr: 2 x [0,00) — [0, 00) such that
lg(z,u) = g(x,v)| < hr(z, |u] + |v])|u—v|
for all x € {2y and for all u,v € E, and

& (h(dxi:[)) < ap(z) + b;ﬁ(%)

for all z € 2 and « € [0, ).

Given a function g: 2 x E — R, define the integral functional

(4.1) G(u) := S g(z,u(x)) dz.
02
THEOREM 4.3. Let g: {2 x E — R be a Carathéodory function such that
g(z,-) is Lipschitz continuous on each ball of E for almost all x € (2. Suppose
that either Ocg satisfies (1) or g satisfies (P2) for some R € (0,00) where
M=Lg or M = Ep.
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If G is finite at least for one U € Byg)(0, R/2), then G is Lipschitz on
Bg) (0, R/2) and
(4.2) u € Int By (0, R/2) = 0cG(u) C Nogg(u),
i.e. v € 0cG(u) = () = ((¢,-)s for some ( € Lg-[E} .| with ((z) €
Ocg(x,u(x)) a.e. If additionally the function g(x,-) is regular (in Clarke’s
sense) at u(x) for almost all x € (2, then the functional G is reqular at u

and 0cG(u) = Noqg(u).

Proof. We shall mimic Clarke’s proof of his Theorem 2.7.5/(B) in [13]
but new elements in our proof will be emphasized and given in detail. We
divide the proof into Steps 4.1-4.7. Observe that ($2) implies (¥1) . Later
on, we suppose (91) .

STEP 4.1. Let (®*)7!(z,-) be the right pre-image of &*(z,-). Define
hr: 2 x[0,00) — [0, 00),
hp(z, ) ;== dr(®*) ' (x,ar(s) + brd(z,a/R)).
There exists 21 C {29 with meas({2 \ £2;) = 0 such that hgr(z,-) is nonde-
creasing for z € (2;. Hence,
sup{||u*||g-: u* € dcg(x,u), |ullg < a(z)} < hg(z,a(z)) a.e.
for each a € By, (0, R) where
My :={ueM:u(x)>0ae}.
Since M’ = Lg+(£2,R) with equivalent norms, it is easy to check (see, e.g.,
[5]) that the superposition operator Ny, : Bar, (0, R) — M', Ny, (a)(z) :=
hr(z,a(x)), is bounded.

STEP 4.2. We claim that the operator Ny, : Int By, (0, R) — M’ has the
U-property, i.e., given any a € Int By, (0, R), for each sequence {ax} C My
with

o0
ri = llallar + ) lax —ally < R
k=1
there exists d € M' such that
|Nhy(ag)(z)| < d(z) a.e. on 2 for every k € N.

To prove this, fix a sequence {ap} C M, such that 71 < R. Then by the
Riesz—Fischer property for the Banach lattice M (see, e.g., [5]; this property
for the Orlicz space can be directly deduced from the Lebesgue dominated
convergence theorem), there exists {22 C §2; with meas({2 \ %) = 0 such
that the series aoo(2) 1= Y 5oy |ar(z) — a(z)| converges for x € {25; moreover
putting ac(z) := 0 for x € 2\ 22, we get aoe € My with ||ace|rs

<
Y req llak — allar < oo. Note that ag(z) < aco(z) + a(z) a.e. and |ag||a <
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r1 < R, and then by Step 4.1 we have

Npp,(a)(z) = hr(z, ap(x)) < hr(z, as(x)+a(z)) = Niy(aso+a)(z) =: d(x)

a.e. Since Ny, maps By, (0, R) into M’, we have N, . (aoo +a) = d(-) € M,
STEP 4.3. We claim that the functional G is Lipschitz continuous on

Bag)(0, R/2). In fact, let y, 2z € Byg)(0, R/2). By Lebourg’s theorem [13,

Theorem 2.3.7] for g(x,-) on some open ball containing the convex interval
[2(x),y(z)], we can find &y(z) € Ef«, ug(x) € E and Oy(x) € [0, 1] such that

uo(x) = Op(x)z(x) + (1 — Op(z))y(x) and &o(x) € Oog(x,up(z))
with
9(z,2(z)) — g(z,y(x)) = (Co(z), 2(x) —y(z)) ae.

We point out that the functions &y, ug, 0y are not, in general, measurable.
Note that

uo(z)||e < [|0o(z)z(z)||lE + I(1 — Oo(2))y(2)|lEe < |2(2)]|g + [ly(z)|E ae.
Therefore,
[zOle + lyOlelar < HzOelav + [y lellar
= |zl sy + Yl ae < R

By Step 4.1, 7o defined by yo(z) = Nu,(, [2(2)|E + [[y(z)|£) satisfies
[ollar < C(R) where C(R) := sup{||Nng(@)|lar = ol < R} < oo
Observe that ||€o(z)|| g+ < Yo(x) a.e. Since

9(x,2(2)) — g(z,y(2))| < [|So(@)]|e+2(2) —y(@)|e  ae.,
by the generalized Holder inequality [26, 34|, we have

G(2) = Gy)| < | |9, 2(x)) — g(, y(2)| da

12(z) = y(2) ||z dz < [lvollae [12() =y ()l £llar

IN
KDL”‘ Q

< CR)||z = yllmge  for 2,y € Bag (0, R/2).
Since W € By (0, R/2) with G(u) € R, the claim of Step 4.3 follows.

STEP 4.4. We shall prove that G°(x;v) <\, ¢°(x, u(x);v(x)) dz for u €
Int Bys(g)(0, R/2) and v € M[E]. Observe that both sides of this inequality
are positively homogeneous in v, so it suffices to prove this inequality for v
from B(g(0,1). From the definition (2.2) and (4.1) we have

43 G (wv) = lmsup | LEYDFIWD) 9@ y@) 5
Y 2
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Choose arbitrary sequences i, in R and y; in Int Bysg(0, R/2) such that
e L 0, |y — ullarig) — 0 and the limit

(4.4) b:= kli)ngo S Fi(x)dx

19
exists, where

Fi(z) == g(z, yp(x) + )\kv)fliv)) — g(m,yk(m))

By [5] together with Riesz’s theorem, we can choose a subsequence k; and
Do with meas({2\ Dg) = 0 such that y;. (z) — u(x) as j — oo (Vx € Dy),
Yk, — ullargz) < R/27F% and Ay, < R/27F2,

We claim that there exist € L1(§2,R) and D1 C Dy with meas(£2\ D1)
= 0 such that |Fy;(x)] < B(x) on Dy for all j € N. To prove this, by
Lebourg’s theorem for g(z,-) on some open ball containing the convex in-
terval [yx(z),yr(z) + Agv(z)], there exist &(z) € Ef., ur(x) € E and
ax(z) € [0, 1] such that

ug () = ag(@)[ye (@) + Mev(2)] + (1 — ap(2))yr(z),
9(@, yr(x) + Arv(z)) — g(z, ye(x)) = (€(2), Apv()),
&k(x) € Ocg(x,ur(x)) ae.
So Fi(x) = (&x(x),v(z)). We point out that the functions &, uy and oy, are
not, in general, measurable. We have
[[ur, ()| £
< [u(@)l[ + llok; (@) vk, (x) + A 0(@)] + (1 — o, (2))yr, () — u(z)| e

< lw(@)ll + llyk; (2) = u(@)lle + Ax,llo(@)][2 =: aj(z)  ae.

Observe that for the sequence a; and a, a(z) := ||u(z)||g with |la||ym < R/2,
we get
lag — allar = [ lyk, (-) = u(C)lle + Ak oGl el

< Hllye,; ) = wC el + A HHTvC) 2]
= llyk, — ullargey + [Nk 0l arm) < R/27F2 + R/27F2 vl army.
so that

ri=llalls+ Y llaj —ally < R/2+ R/2=R
j=1
By Steps 4.1-4.2, [[&, (2)||+ < h(z,ai(z)) = Nrg(a;j)(z) ae. and there
exists d € M’ such that |[Nyp(a;)(z)] < d(x) a.e. Hence, as |Fy,(z)| <
€k, (2)]| g+ [|v(x)]| £, we deduce the existence of Dy C Dy with meas(£2\ D1)
= 0 such that |Fy, (2)| < d(x)[|v(z)||g =: B(z) (Vx € D1). Since |[v(-)||r € M,
we obtain § € L;(£2,R).
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Using the above claim together with the measurability of the function
x +— g°(z,u(x);v(x)) (see Lemma 4.1), we can apply the Fatou lemma to the
functions x +— [(z) — Fg;(x) € [0,00) and deduce that

= limsup \ Fi.(x)dz < \ limsup Fj.(z) dx = imsup Fj.(z) dx
b=1li Fy;(z)d l" Fy;(z)d li Fy;(z)d

j—00 ) o J—oo Dy Jj—00
9+ A — Y
< S lim sup 9(x, 9+ M(s)) = g(x. )dx = Sgo(x,u(x);v(x))dx.
Dy Y—u(z) A 0

Al0
Therefore, by (4.3) and (4.4), we get

G (uiv) = sup {b = lim | Fiu(@)da s |y = ullars — 0, A 10}
2

< | g°(x, u(z); v()) da.
n
STEP 4.5. We claim that the function x € 2 +— ¢°(x,u(x);v(x)) belongs
to L1(£2,R) for any u € Int Bysg)(0, R/2) and v € M[E]. Again, it suffices
to prove this for v € Byg)(0, R/4). Since M is a Banach lattice, by [5] there
exists a € M such that ||a|y < R/4 with a(z) > 0 for z € supp M = (2.
Then, by Lebourg’s theorem, Step 4.1 implies that

|9° (2, u(); v(@))|

< sup {\c] Ce= g(z, u+ Iv(z)) — g(z,u)

A
< sup{[(v(z),u")| : v € dog(z,u), u € [U,u+ Mo(z)], A € (0,1],

@ —u(z)|lp < o)}

,Aemﬂhw—u@ﬂESamﬁ

< sup{|(v(x), u")| s w” € Deg(w, u), |ullp < p(e)}

< |lv(@)llehr (e, p(z))  ae.
where p(z) = |[u(x)|| g + a(z) + ||v(z)| g satisfies p € M, with
pllar < r2 = [llluC)lell + lallar + oGl el < R/2+ R/4 + R/4 = R.
Hence, by Step 4.1, the above claim follows.

STEP 4.6. Fix u € Int By (g (0, R/2). We mimic Clarke’s argument in the
proof of [13, Theorem 2.7.2]. We know (see Lemma 4.1) that the function
(x,v) € 2 x E — ¢°(x,u(x);v) is a Carathéodory convex integrand, and
v e M[E] — G(v) :={, ¢°(x,u(x);v(x)) dr is a convex functional on M[E]
such that G(0) = 0. If v € ¢ G(u), then by Step 4.4 for every v € M[E] we
have

Y(v) < G°(u;0) < | g°(, u(z); v(x)) do = G(v) — G(0),
2



372 Hoéng Thai Nguyén and Dariusz Paczka

and so v is an element of the subdifferential 85(0). By Lemma 4.2 together
with dom Iz = M[E] (see Step 4.5), we can deduce that dG(0) consists
of linear functionals v € (M[E])* of the form (vy,v) = {,(¢(z),v(x))dx
(v e M[E]) with ¢ € M'[E}.] and ¢((z) € dcg(x,u(x)) a.e. on (2. Hence, the
inclusion (4.2) follows.

STEP 4.7. Fix u € Int Bysg(0, R/2). Suppose that g(z,-) is regular (in
Clarke’s sense [13, Section 2.3]) at u(x) for a.a. z € £2. Fix v € M[E]. By an
analogous argument to the one in Step 4.4, we can apply the Fatou lemma
to the functions z +— B(x) + Fy,(z) € [0,00) and deduce that

lim jnf G AV — G) [ tim inf 9(@, u@) + (@) - gl u(@))
Al0 A A0 A

— | (e u(@);v(@)) do = | ¢° (2, u(@); v(@)) do > G°(usv).
(0] (0]

Now by Clarke’s argument in the proof of [13, Theorem 2.7.3, p. 87] we
conclude that G is regular at v and Ng,4(u) C OcG(u). =

5. Existence theorem via the nonsmooth variational technique.
By the Poincaré inequality [20], [|u[|3;, = [|[Vu[|L, defines an equivalent norm
0

in H}(£2,R™), and so by the Pokhozhaev-Trudinger embedding theorem [20,
Theorem 7.15, Section 7.8] there exists ¢(e) € (0, 00) such that

(5.1) lull g, @) < c()IVullL,  (Vu€ Hy(2,R™)).

THEOREM 5.1. Let 2 C R? and let g: 2 x R™ — R be a Carathéodory
function such that g(z,-) is Lipschitz continuous on each ball of R™ for
almost all x € (2. Assume the Hammerstein condition:

(E4)  g(z,u) < %7|u|2 + 6(z) (Vu € R™) a.e. where 0 < v < pa, 6 €
L1(£2,]0,00)), and pa is the first Dirichlet eigenvalue of the Lapla-
cian —A,, on 2.

Moreover, let ¢ € (0,00) and either ($1) or (P2) be valid for d(t) = D.(t) =
exp([t|?~°) — 1 with R := 2c(¢) 0. where g, € (0,00) satisfies

2
(E5) 02>~ J6(@) g0 € 0, 0).

Then the problem (3.1) with f(z,u) = dcg(x,u) C R™ has at least one weak
solution u, € H}(2,R™) C Eg,[R™] where $y(t) = exp(t?) — 1.

Proof. We divide this proof into Steps 5.1-5.5.
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STEP 5.1. Define the energy functional

(5.2) J(u) = % VIVulde - g(a,u(2))de (v HJ(2,R™)).
2 2

We claim that J: BH(%(O,Q*) — R is sequentially weakly l.s.c. Fix u with
Hu||*H(% < o0« By (5.1), [[ullpy rm) < c(e)ox = R/2. By Theorem 4.3 for
¢ = &, under (1) or (92) for R = 2¢(e)p«, G: Bx (0, R/2) — R is Lipschitz
continuous. By the Alaoglu-Bourbaki theorem for the reflexive separable
space Hi(2,R™), BH(% (0, o«) is sequentially weakly compact. Fix u,, — ug
in BH& (0, 0«). Since H& — X compactly by the Pokhozhaev-Trudinger the-
orem [20, Theorem 7.15, Section 7.8|, the sequence u,, is pre-compact in X.
Hence, there exists a subsequence n; such that u,; — up in X-norm. It is
known (see, e.g., [17]) that liminf; .o §,, [Vun,|? dz > {, [Vug|? dz. Hence,
liminf,, o J(u,) > J(up), i.e. J is sequentially weakly l.s.c. on By (0, 04).

STEP 5.2. We claim that J(0) < J(u) for u € 0By (0, 04). Fix u with
[lul[3;1 = 0« Then, by (E4) and (E5), we get
0

J(u) > % [ [Vl dz - %7 [ [u(@)? do — | 8(x) da
(9] 2 (9}
1 Y
> 3 (1 - ,U_A> ;}\Vu|2dx - }Zé(aj) dx
_ 1 (pa—n)e?

2

STEP 5.3. From Step 5.1, by [17, Theorem 1.1], J attains its minimum
on BH&(O, 0«) at some u, € BH(%(O,Q*). By Step 5.2, u, € Int BH(%(O,Q*),
and by (5.1), us € Int Bx (0, R/2). By [13, Proposition 2.4.11], we infer that
0 € dcJ(us) C Hy'(2,R™) = (H} (2, R™))*.

STEP 5.4. By (4.1) and (5.2), we have J(u) = Ji(u) — Ja(u) where
Ji(u) = 3§, [Vul?dz, Jo(u) == G (u)=(GoP)(u),and P: Int BHé(O, 0x)
— X. The functional J; is continuously Fréchet differentiable, i.e. J; € Cc!
and Ji(u)(-) = (Lu,-) (see [17]). By [15, Lemma 2.1], the set C§°(2,R™) C
H}(£2,R™) is dense in X. By [12], [13, Proof of Part 3 of Theorem 2.3.10,
p- 46], [13, Corollary in p. 47] or [11, Theorem 2.2] for u. € Int By (0, 0«)
(see Step 5.3), we have 0c(G o P)(us) = 0cG(us). Hence, by [13, Propo-
sition 2.3.3, Proposition 2.3.1, Corollary 1, Proposition 2.2.4] together with
Theorem 4.3 for u, € Int Bx (0, R/2) (see Step 5.3), we get

8C<](u*) = ach(u*) + 80(_J2(U*)) = ‘]{(u*) - 8CJQ(U*)
= Ji(ux) — 0cG(ux) C Ji(ux) — Nogg(us) = Luy — Nogg(us).
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STEP 5.5. By Steps 5.3-5.4, 0 € Lu, — N 4(ux), which is equivalent to
Lu, € Np,g(us). By the assumption f(z,-) = 0cg(x,-), us is a weak solution
of (3.1). m

REMARK 5.2. By the proof of Theorem 5.1, the statement of Theorem 5.1
remains valid if we assume instead of (E4) any verifiable condition that
implies the coerciveness of J (i.e. J(u) — oo as H“HH& — 00). Many such
conditions can be found in [1]. Further, Theorems 3.1 and 5.1 have analogs
for the Dirichlet inclusion involving a general uniformly elliptic operator.
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