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Summary. We study the relation between transitivity and strong transitivity, introduced
by W. Parry, for graph self-maps. We establish that if a graph self-map f is transitive
and the set of fixed points of f* is finite for each k > 1, then f is strongly transitive.
As a corollary, if a piecewise monotone graph self-map is transitive, then it is strongly
transitive.

1. Introduction. The purpose of this paper is to study (strong) tran-
sitivity properties for graph self-maps. W. Parry [7]| pointed out a sufficient
condition for the existence of a special measure on a symbolic dynamics,
which has a close relation to a linearization of the dynamics on intervals.
Then, as an application, he introduced the concept of strong transitivity
that is one of conditions under which an interval map is conjugate to a uni-
formly piecewise linear map |7, §5, §6]. E. Coven and I. Mulvey [6, Theorem
B and C] stated the relation between transitivity and strong transitivity
properties for interval (or circle) self-maps.

In this paper, we extend the above relation to graph self-maps (see §4).
A motivation for studying graph maps is that higher-dimensional dynamics
can often be reduced to one-dimensional dynamics: this is the case in the
study of the structure of attractors of a diffeomorphism, the quotient maps
generated by maps on manifolds with an invariant foliation of codimension
one and the dynamics of pseudo-Anosov homeomorphisms on a surface.
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Throughout this paper, by a graph we mean a connected compact one-
dimensional polyhedron, and a tree is a graph which contains no loops. We
also assume that any graph G is endowed with a metric d; we define B(z; ¢),
x € GG, € > 0, to be the set of points of G whose distance from z is less
than €. B(G) and E(G) denote the sets of branch points and of endpoints
of G, respectively. A map f is a continuous function from a space X to itself;
fO is the identity map, and for every n > 0, f"*1 = f? o f. We denote
by Fix(f) and Per(f) the sets of fixed points and of periodic points of f,
respectively. For a subset K of X, Int K and Cl K denote the interior and
closure of K in X.

2. Preliminaries. An onto map f : X — X is called (topologically)
transitive if any of the following equivalent conditions holds.

(1) There exists a point with dense orbit.

(2) Whenever U, V are non-empty open sets, there exists an n > 1 such
that f~"(U) NV # 0.

(3) The only closed invariant set K with Int K # () is K = X.

REMARK. We note that, in the case of a graph map f : G — G, f is

transitive if and only if for every pair of non-empty open sets U and V in G,
there exists a k > 1 such that U N Int f5(V) # 0.

We first recall some basic, but important results for transitive graph
maps.

THEOREM 2.1 ([4]). Let f : G — G be a transitive graph map without
periodic points. Then G is the circle and f is conjugate to an irrational
rotation.

THEOREM 2.2 ([4]). Let f : G — G be a transitive graph map with
periodic points. Then the set of periodic points of f is dense in G.

In the study of transitive maps, the subclass of those maps having all
iterates transitive plays a significant role. A map f is totally transitive if f™
is transitive for all n > 1 (see [1]); note that a transitive map is not always
totally transitive.

The following splitting theorem is quite useful, since it allows us to reduce
the study of transitive graph maps to that of totally transitive graph maps.

THEOREM 2.3 ([1], [2], [5]). Let f : G — G be a transitive graph map.
Then exactly one of the following two statements holds:

(1) f is totally transitive.
(2) There exist a k > 1 and non-degenerate connected subgraphs Gy, . . .
..., Gr_1 of G such that

(a) G = U G,
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(b) Gi 1 G; = E(Go) NE(G) for i # ],
(c) f(Gi) = Git1(modk) fori=0,....k—1,
(d) f*|q, is totally transitive for i =0,... k — 1.

3. Strong transitivity. A map f : X — X is called strongly transi-
tive if for every non-empty open set J of X, there exists an n such that
UZ:of’“(J) =X.

We first recall a useful proposition which shows a backward structure of
a strongly transitive map for each point; we omit the straightforward proof.

ProprosiTION 3.1. The following conditions are equivalent for a map
f:X—-X:

(1) For each xz € X, Cl1{J,2, f"(z) = X.

(2) For every non-empty open subset U of X, \U;~, f"(U) =X
Furthermore, if f is open, then (1) and (2) are equivalent to

(3) If EC X is a closed set with f~Y(E) C E, then E = or X.

The examples below clarify the difference between transitivity and strong
transitivity.

EXAMPLE 1. There exists a transitive map of the interval which is not
strongly transitive. This example appears in [3, Example 3] to illustrate
another property. For completeness, we give a construction of the map here.

Let {p, | n € Z} be a two-sided sequence of real numbers in [0, 1] such
that

< P-2<PpP-1<po<p1<p2<---,
and p, — 1 and p_,, — 0 as n — oo. For n € Z put I,, = [pn, pn+1]. Define
the map f, : I, = I,_1 UI, U, by

fn(pn) = DPn; fn(pn+1) = DPn+1,
20, + +2
f<%) oo I <2%> I

and f, is linear on the intervals complementary to these points. Then f :
[0,1] — [0,1] is given by f(0) = 0, f(1) = 1, and f(z) = fu(x) if z € I,
(see Figure 2 in [3]). This map is not strongly transitive, because f~1(0) = 0
(recall Proposition 3.1).

By Example 1 taken mod 1, we also have

EXAMPLE 2. There exists a transitive map of the circle which is not
strongly transitive.

Let B, be the bouquet with n petals generated by n copies of the unit
circle, where n > 1. Using Example 1 taken mod 1 and a rotation among
petals with respect to the origin, we can easily have an example on B,.
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ExXAMPLE 3. There exists a transitive map of B, which is not strongly
transitive.

EXAMPLE 4. Since the map f in Example 1 is actually totally transitive
as stated in [3, Example 3|, we have a totally transitive interval map which
is not strongly transitive. On the other hand, the interval map g below is
strongly transitive, but not totally transitive:

2 4+1/2 (0<x<1/4),
glx) =< —2x+3/2 (1/4<xz<3/4),
2x —3/2 (3/4<z<1).
(We note that if Iy = [0,1/2] and Iy = [1/2,1], then g(I1) = I3, g(I2) = 11
and 92|1j : Ij — I is strongly transitive for j =1,2.)

4. Main results. Here is our main result.

THEOREM 4.1. Let f : G — G be a graph map with # Fix(f*) < co for
each k > 1. If f is transitive, then it is strongly transitive.

A map f on a graph G is piecewise monotone if there is a finite set A
in G such that f is monotone on each component of G . A. We note that
the kth iterate of a piecewise monotone transitive graph map has at most
finitely many fixed points for each k& > 1.

COROLLARY 4.2. Let f : G — G be a piecewise monotone graph map. If
f s transitive, then it is strongly transitive.

REMARK. The interval case of the corollary above was proved by Coven—
Mulvey [6].

EXAMPLE 5. Let f : [0,1] — [0,1] be the map whose graph appears
below. Then f is transitive and the set of fixed points of f* is finite for each
k > 1. Therefore f is strongly transitive, in fact, for each non-degenerate
subinterval J of [0, 1], there exists an n such that f"(.J) = [0, 1].
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Proof of Theorem 4.1. 1f Per(f) = (), then by Theorem 2.1, f is conjugate
to an irrational rotation over the circle. Hence f is open and | J;~ , f"(U) = G
for any non-empty open subset U of G. It follows from compactness of G
that f is strongly transitive.

We now assume that Per(f) # (); then ClPer(f) = G by Theorem 2.2.
In view of Theorem 2.3, we begin by showing that f is strongly transitive
when it is totally transitive.

Let J be a connected subset of G with Intg J # (). We have to see that
{f™(J) : n > 0} contains a finite subcovering of G.

If G =J,_,Intg f"(J), then by compactness of G, we have

G=Intf""(J)U---Ulnt f*"(J) = f"(J)U---U f"(J)
for some ny,...,n, € NU{0}: thus the conclusion holds in this case.
We next assume that

G # | Intg /().
n=0

Putting S=G~\U,—, Intg f™(J), we now show that G\.S=J,;~, Intg f"(J)
is connected and the set S is finite. Take a periodic point z € IntJ of
period p (Theorem 2.2). Then (J;°, Int fP(.J) is connected, because Int.J N
Int fPL(J) # 0 for every I > 1. (If z € Int fP/(J), then this is trivial; if
z & Int fP(J), then z € Bd fP!(J) = BdInt fP!(J), thus the intersection is
non—empty) We now find that

oo
Ulntfpl Ulntf" =G\ S CG=ClJnt f71()).
=0
Here, the last equality follovvs from transitivity of fP (by total transitivity
of f) and the Remark following the definition of transitivity in Section 2.
Therefore, G \. S is connected. Since S contains no non-degenerate intervals
by transitivity of f, it must be finite.
Our task is now to show that

(1) for every x € S, there exist an open neighborhood K, of z in G and
ne € NU{0} such that z € K, C fO(J)uU---U f=(J).

Let x € S. When there is an [ > 1 such that f~{(x) NS = (), then by
closedness of f!, we have an open neighborhood K of z in G such that

) fFUK) C fFYCIK) C G\ S.
By compactness there exists an m,; > 0 satisfying
FTHCIE) € FU(T) U U (),

hence,

re K CCIK C fl'H)(J)U...Ufl-i-mz(J)'
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Next, we assume that f~!(z) NS # 0 for every [ > 1; this is the hardest
case. Since #S < oo we can take a natural number k such that f¥(z) = z.
We choose a small tree neighborhood T of z in GG such that

(2) TN B(G)US) ={z},
and represent T" by arcs [z, z;] with endpoints = and x;, i = 1,...,p, as
T=z,z1]U---Ulx,zp,

where [z,2;] N[z, 2;] = {«} for i # j. Further, we may assume by continuity
of f that for i € {1,...,p},

(3) f¥(T) is a tree and f*(T)N (B(G)U S) = {z}.
We put
) there exist j # i, n; € NU{0} and ¢; > 0
b= {Z €L} such that ([z,z;] U [z, z;]) N B(x; &) C f”’(J)}

We shall show that for i € {1,...,p} \ P,
(4);  there exist a non-negative integer n; and an ¢; > 0 for which
[z, 2] N B(z;8) € f™(J).

Let i € {1,...,p} ~ P. We first prove (4); under the condition that there
is a 6 > 0 such that

(5) oz, x]) O (z, 2] N B(;0) =0 for any j # i.

As # Fix(f*) < oo, there is a small tree neighborhood U of x in T N
B(z;0) C G such that

(6) UNFix(f*) ={z} and f*¥U)CT.
Then for each z € (U ~\ {z}) N [z, x;], we have
(7) f(z) € G~ (z,2].
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Indeed, suppose, on the contrary, that there exists a zo € (U ~ {z}) N [z, 2]
such that f*(z9) € (x,20]). We will show that f*([x,20]) C [z, 20], which
contradicts the transitivity of f¥. Indeed, if not, there exists a y € (x, zp) with
f¥(y) & [z, 20]. Then by the inclusion in (6), we have either f*(y) € (20, z;]
or f¥(y) € (z,z] for some j # i. However, neither can occur by the following
reasoning. If f*(y) € (2o, ;], then there exists a y' € (y,29) C U such that
f¥(y') = v/, contrary to the first statement of (6). If f*(y) € (z,z;] for some
J # i, then there exists a yo € (y, 20) such that for any € > 0 there exists
a 8. > 0 satisfying ([z,z;] U [z,2;]) N B(z;8:) C f*([z, 2] N B(yo;€)) and
f¥(yo) = x. Take an ng and an & > 0 such that [z, z;] N B(yo;e) C fm0(J)
(note yo € S). Then ([z, z;]U[z, z;]) NB(x;6:) C f*+0(.J). This contradicts
the assumption that ¢ € P.

Moreover, for each z € (U \ {z}) N [z, z;] we have
(8) (z,2]N RGN U) #0D.
Indeed, suppose not; that is, assume that there exists a zg € (U ~ {z}) N
[z, 2;] such that (x,20] N f¥(G ~ U) = (. Then we have the conclusion
f7%((x,20)) C (z,20], contradicting the transitivity of f¥; indeed, if there
isa z1 € f7F((x, 20]) ™ (, 2], then f*(z1) € (x,20] CU C TNB(x;). This
implies 21 € U~ {r}. Then if z; € [z, z;], we have f*(z1) € G\ (x,21] C G~
(z,20) by (7);if 21 € [x, x;] for some j # i, we have f*(21) & (@, x;] N B(x;0)
by (5);. In any case, it is a contradiction.

By (8), we can choose y,,y € G\ U, n € N, such that

(1) limy, 00 Yn =Y,

(i1) #{f*(yn) | n € N} = 0o,

(i) limy, oo fF(yn) = fF(y) = = on [z, z;).

If y € S, then there exist numbers n and mg such that y,,,y € f"(J) for
any m > mg. Thus, we have an ¢; > 0 such that [z, z;]NB(z; ;) C f*(f™(J)).

If y € S, then it follows from f¥(z) = z, f*(y) = z and y # x that
there is an [ > 1 such that f~!(y) NS = . From the same argument as in
the proof above, y has an open neighborhood which is covered by finitely
many f™(J)’s, so there exist numbers n and ny < ny < --- such that y,;,y €
f™(J). Thus, we again have an &; > 0 such that [z, z;]NB(z; ;) C f*(f™(J)).

We must next examine the statement (4); in the case when (5); is not
satisfied; that is, for each § > 0, there exists a j # ¢ such that

FE, 25) N (2, 23] N B(a36) # 0.

Then we note by the first assumption in (3) that there exists an i; # i such
that

(9> [x7m2] n B(x5 61'1) - fk([xamll])

for some 6;, > 0.
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Whenever [z, z;]NB(z;6;,) C f*((z,24]), there is a y € (z, 4] such that

(i) ffy) =

(ii) for each v > 0, there exists an () > 0 such that [z, z;] NB(z;7(7))

C [l za] NB(y; 7).

Since y € G\.S by (2), there is an n such that y € Int f(J). Thus, we have a
~ > 0 such that B(y;~y) C f™(J). Therefore [x,z;] NB(x;n(y)) C fk(f"( ))-

Next, if [z, 2;] N B(z;0;,) € f*((x,z4]), then 2 & f*((z,z;]) by (9).
Thus, we have a ~y;; > 0 such that

([ 2] NB(2; 7)) € [, 24).
We note by transitivity of f* that for any (75, >) 1 > 0, there exists a
&i,(n) > 0 such that

(10);" [, 23] VB2 &, () C (2, 20] N B(57)).

If i1 € P, then there exist an n;;, € NU {0} and an ¢;; > 0 such that
[z, 2] N B(z;6i,) C f1(J). Thus, we have

[, 2] N B(2:€(n)) C f¥([z, 2] N B m) S fH(f"1 (),
where n = min{e;,, i, }.
If i1 € P, then we begin proving (4);, by the same process as above. Note
that by (10)2 statement (4);, implies (4);.
With this strategy, it will again remain to prove our statement in the
following case:

e there exist an i3 # 41 and a d;, > 0 such that [z, x;] N B(z;d;,) C
fk([xvxlé])’

o [r,20] N B(2385) € FH((2 70,

e there exists a 5, > 0 such that f*([z, 2;,] N B(z;7:,)) C [=, z4],

e for any (7, >) n > 0, there exists a &,(n) > 0 such that

(10)3? [x7mi1] N B(m;fh (?7)) - fk([wa $i2] N B(xS 77))7
o ir & P.

We note again by (10)2 that (4);, = (4);,. Continuing this process, as
#{1,...,p} P < 00, we must finally examine our statement in the following
cyclic case:

e there exist pairwise distinct ig (= ©),01,...,4—1 € {1,...,p} ~ P
and positive numbers d;,,...,d; _, such that [z,z; ] N B(x;d C
fk([x7xij+l]) (IIlOd ’I“),

o [mvxij] mB(x;(sij+1) < fk<($7xij+1]) (mOd T’),

e there exist positive numbers v, ...,7;,_, such that f*([z, 2, ] N
B<x§’7ij+1)) - [z?xij] (mOd 7’),

7‘J+1)
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e for any 1 > 0, there exist positive numbers &;,(n),...,&, ,(n) such
that

(10)Z+1 [zv xij] N B(‘T; é-'ij+1 (77)) - fk([m7 ‘Tij+1] N B(%; 77))?
i (4)i0 = (4)1}71 == (4)i1 = (4)i0-
Then we have a positive number ~ such that for any j € {0,...,r — 1},
fkr([l,’ xij] N B(:Ev 7)) - [:Ev xl]]

Therefore we are able to finish our proof by showing (4);, under the condi-
tion: there is a § > 0 such that

47 (2, 27)) 0 (0, 230) VB(30) = 0 for any j # io,

and this follows from the same argument as in the proof of (4); under (5);.
This completes the proof of (4); for i« € {1,...,p} ~ P and the proof of
statement (1).

Since G\ |, cg Kz is compact, there exist ni,...,n, € NU {0} such
that G\ J,cg Ko C f"(J)U---U f*m(J). Thus we have

G=(foI)U-UfrsU))u(f(I)u---ufrm(J)),
where ng = max{n, | z € S}. Therefore f is strongly transitive.
We must next show this theorem in the case when f is not totally tran-
sitive. This follows easily from the first case and the splitting theorem 2.3,
and the proof of Theorem 4.1 is finally finished. =

PROPOSITION 4.3. Let f : T — T be a totally transitive tree map. Then f

18 strongly transitive if and only if for every non-degenerate connected subset
J of T, there exists an M such that f™(J) =T for any m > M.

Proof. The sufficiency is clear. We show the necessity. Assume that f is
strongly transitive. Let J be a non-degenerate connected set of 7. We denote
the set of all end points of T' by E(T') = {ey, ..., ex}. By Proposition 3.1, for
eachi =1,...,k, there exist an n; and a z; € T\E(T) such that f"i(z;) = e;.
Let K be the smallest subtree of T' containing {z1, ..., z;}. Since f is totally
transitive, it follows from [9, Lemma 6] that there exists an N such that
K C f*(J) for any n > N. Then we have f"*"(J) = T for any n > N,
where ng = max{ni,...,n;}, since for any n > N and i € {1,...,k},

ei = ["i(z) € fU(K) C fri(frrreTmd(g)) = (). m

The following generalizes the result for interval maps of Coven-Mulvey
[6] to one for tree maps.

THEOREM 4.4. Let f : T — T be an onto tree map. Let v(T) be the max-
imum order of any branch point in T" and Ny ) the least common multiple
of {2,...,v(T)}. Then the following are equivalent:



386 K. Yokoi

(1) f is transitive and has a point of period which is prime to 2,...,v(T).
(2) fN s transitive.

(3) f is totally transitive.

(4) f is topologically mizing.

Furthermore, if # Fix(f*) is finite for each k > 1, then the above are equiv-
alent to

(5) for every non-degenerate connected subset J of T, there exists an M
such that f™(J) =T for any m > M.

Proof. The equivalences (1)< (2)<(3)<(4) are well known [8, Theorem
4.1], [1]. The implication (3)=>(5) if # Fix(f*) is finite for each k > 1 follows
from Theorem 4.1 and Proposition 4.3. The converse implication (5)=(3) is
trivial. m

5. Remarks. (I) It is useful to investigate the relation between the dy-
namics of a graph map and the dynamics of the induced self-homeomorphism
of the inverse limit space [2], [3].

Let f: X — X be an onto map. Associated with f is the inverse limit
space (X, f) = {(z0,21,...) | ; € X, and f(z;+1) = x;}, and the induced
homeomorphism [ (X, f) — (X, f) (called the shift homeomorphism),

given by f((xo,z1,...)) = (f(x0), z0,x1,...).

PROPOSITION 5.1. Let f : X — X be an onto map of a melrizable
compact space X . If the shift homeomorphism f : (X, f) — (X, f) is strongly
transitive, then f is strongly transitive.

Proof. Note that 7T00fA: fom, where 7y : (X, f) — X is the projection
to the first coordinate space. Let U be an open subset of X. Since f is
strongly transitive, there exists an n € N such that

n n n
(x,) = Pt o) = Ums o) ==t (U ro).
k=0 k=0 k=0
Therefore we have |Ji_, f*(U) = X. u

Unfortunately, the shift homeomorphism of a strongly transitive graph
map is not always strongly transitive. In fact, we have the following.

PROPOSITION 5.2. Let G be a non-degenerate graph and f : G — G be
an onto map. Then the shift homeomorphism f : (G, f) — (G, f) is strongly
transitive if and only if G is the circle and f is conjugate to an irrational
rotation.

Proof. The sufficiency is clear. We show the necessity. Assume that fis
strongly transitive. We note that f is (strongly) transitive. By Theorem 2.1,
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it suffices to prove that f has no periodic points. Suppose, on the con-
trary, that Per(f) # (. Let € Per(f) have period n. Then the point

x = (f"x),.. .,f(m),m,f”_l(x),/.\. L f(@),z,...) of (G, f) is periodic un-

~

der f. Since strong transitivity of f implies its minimality, this contradicts

the fact that #(G, f) = co. m

(IT) We note that statement (2) in Proposition 3.1, which was introduced
by Parry [7], implies strong transitivity for ¢ree maps.

PROPOSITION 5.3. Let f : T — T be an onto tree map. Then f is strongly
transitive if and only if ,—, f"(U) =T for every non-empty open subset U
of T.

Proof. The necessity is trivial. We show the sufficiency. Suppose that
the condition is satisfied. Let U be any non-empty open connected set
in T. Take a fixed point g € T of f. Then, by the assumed condition,
xo € f"(U) for some ng. For the endpoints E(T) = {ei,...,ex} of the
tree T, it follows from our condition and Proposition 3.1 that for each
ie{l,....k}, C1U,2, f™(ei) = T and Int f~"(e;) = 0. Thus, for each
i € {1,...,k}, there exists an n; > ng such that f~"i(e;) NU # (). Therefore,
T = Ule[el-, xo) = Ule f™(U), where [e;, zo] denotes the smallest arc with
endpoints e; and zgin 7. =

However, this is not always true for a general graph map.

EXAMPLE 6. Let f : [0,1] — [0,1] be the map whose graph appears
below. Using it, we define the circle map g : S' — S by g(e?™) = 27/ (0)
where 0 < § < 1. Then g is transitive and satisfies statement (2) in Propo-
sition 3.1, but is not strongly transitive. (Note that if J is a non-degenerate
connected set in S' not containing the point (1,0), then for any n, there is
no 0 < e < 1 such that {e¥™ |1 —c <0 <1} C ¢g"(J).)
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