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Summary. We study the relation between transitivity and strong transitivity, introdu
edby W. Parry, for graph self-maps. We establish that if a graph self-map f is transitiveand the set of �xed points of fk is �nite for ea
h k ≥ 1, then f is strongly transitive.As a 
orollary, if a pie
ewise monotone graph self-map is transitive, then it is stronglytransitive.1. Introdu
tion. The purpose of this paper is to study (strong) tran-sitivity properties for graph self-maps. W. Parry [7℄ pointed out a su�
ient
ondition for the existen
e of a spe
ial measure on a symboli
 dynami
s,whi
h has a 
lose relation to a linearization of the dynami
s on intervals.Then, as an appli
ation, he introdu
ed the 
on
ept of strong transitivitythat is one of 
onditions under whi
h an interval map is 
onjugate to a uni-formly pie
ewise linear map [7, �5, �6℄. E. Coven and I. Mulvey [6, TheoremB and C℄ stated the relation between transitivity and strong transitivityproperties for interval (or 
ir
le) self-maps.In this paper, we extend the above relation to graph self-maps (see �4).A motivation for studying graph maps is that higher-dimensional dynami
s
an often be redu
ed to one-dimensional dynami
s: this is the 
ase in thestudy of the stru
ture of attra
tors of a di�eomorphism, the quotient mapsgenerated by maps on manifolds with an invariant foliation of 
odimensionone and the dynami
s of pseudo-Anosov homeomorphisms on a surfa
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Throughout this paper, by a graph we mean a 
onne
ted 
ompa
t one-dimensional polyhedron, and a tree is a graph whi
h 
ontains no loops. Wealso assume that any graph G is endowed with a metri
 d; we de�ne B(x; ε),

x ∈ G, ε > 0, to be the set of points of G whose distan
e from x is lessthan ε. B(G) and E(G) denote the sets of bran
h points and of endpointsof G, respe
tively. A map f is a 
ontinuous fun
tion from a spa
e X to itself;
f0 is the identity map, and for every n ≥ 0, fn+1 = fn ◦ f . We denoteby Fix(f) and Per(f) the sets of �xed points and of periodi
 points of f ,respe
tively. For a subset K of X, IntK and Cl K denote the interior and
losure of K in X.2. Preliminaries. An onto map f : X → X is 
alled (topologi
ally)transitive if any of the following equivalent 
onditions holds.(1) There exists a point with dense orbit.(2) Whenever U , V are non-empty open sets, there exists an n ≥ 1 su
hthat f−n(U) ∩ V 6= ∅.(3) The only 
losed invariant set K with IntK 6= ∅ is K = X.Remark. We note that, in the 
ase of a graph map f : G → G, f istransitive if and only if for every pair of non-empty open sets U and V in G,there exists a k ≥ 1 su
h that U ∩ Int fk(V ) 6= ∅.We �rst re
all some basi
, but important results for transitive graphmaps.Theorem 2.1 ([4℄). Let f : G → G be a transitive graph map withoutperiodi
 points. Then G is the 
ir
le and f is 
onjugate to an irrationalrotation.Theorem 2.2 ([4℄). Let f : G → G be a transitive graph map withperiodi
 points. Then the set of periodi
 points of f is dense in G.In the study of transitive maps, the sub
lass of those maps having alliterates transitive plays a signi�
ant role. A map f is totally transitive if fnis transitive for all n ≥ 1 (see [1℄); note that a transitive map is not alwaystotally transitive.The following splitting theorem is quite useful, sin
e it allows us to redu
ethe study of transitive graph maps to that of totally transitive graph maps.Theorem 2.3 ([1℄, [2℄, [5℄). Let f : G → G be a transitive graph map.Then exa
tly one of the following two statements holds:(1) f is totally transitive.(2) There exist a k > 1 and non-degenerate 
onne
ted subgraphs G0, . . .

. . . , Gk−1 of G su
h that(a) G =
⋃k−1

i=0 Gi,
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(b) Gi ∩ Gj = E(Gi) ∩ E(Gj) for i 6= j,(
) f(Gi) = Gi+1 (mod k) for i = 0, . . . , k − 1,(d) fk|Gi

is totally transitive for i = 0, . . . , k − 1.3. Strong transitivity. A map f : X → X is 
alled strongly transi-tive if for every non-empty open set J of X, there exists an n su
h that⋃n
k=0 fk(J) = X.We �rst re
all a useful proposition whi
h shows a ba
kward stru
ture ofa strongly transitive map for ea
h point; we omit the straightforward proof.Proposition 3.1. The following 
onditions are equivalent for a map

f : X → X:(1) For ea
h x ∈ X, Cl
⋃

∞

n=0 f−n(x) = X.(2) For every non-empty open subset U of X, ⋃
∞

n=0 fn(U) = X.Furthermore, if f is open, then (1) and (2) are equivalent to(3) If E ⊂ X is a 
losed set with f−1(E) ⊆ E, then E = ∅ or X.The examples below 
larify the di�eren
e between transitivity and strongtransitivity.Example 1. There exists a transitive map of the interval whi
h is notstrongly transitive. This example appears in [3, Example 3℄ to illustrateanother property. For 
ompleteness, we give a 
onstru
tion of the map here.Let {pn | n ∈ Z} be a two-sided sequen
e of real numbers in [0, 1] su
hthat
· · · < p−2 < p−1 < p0 < p1 < p2 < · · · ,and pn → 1 and p−n → 0 as n → ∞. For n ∈ Z put In = [pn, pn+1]. De�nethe map fn : In → In−1 ∪ In ∪ In+1 by

fn(pn) = pn, fn(pn+1) = pn+1,

fn

(
2pn + pn+1

3

)
= pn+2, fn

(
pn + 2pn+1

3

)
= pn−1,and fn is linear on the intervals 
omplementary to these points. Then f :

[0, 1] → [0, 1] is given by f(0) = 0, f(1) = 1, and f(x) = fn(x) if x ∈ In(see Figure 2 in [3℄). This map is not strongly transitive, be
ause f−1(0) = 0(re
all Proposition 3.1).By Example 1 taken mod 1, we also haveExample 2. There exists a transitive map of the 
ir
le whi
h is notstrongly transitive.Let Bn be the bouquet with n petals generated by n 
opies of the unit
ir
le, where n ≥ 1. Using Example 1 taken mod 1 and a rotation amongpetals with respe
t to the origin, we 
an easily have an example on Bn.
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Example 3. There exists a transitive map of Bn whi
h is not stronglytransitive.Example 4. Sin
e the map f in Example 1 is a
tually totally transitiveas stated in [3, Example 3℄, we have a totally transitive interval map whi
his not strongly transitive. On the other hand, the interval map g below isstrongly transitive, but not totally transitive:

g(x) =






2x + 1/2 (0 ≤ x ≤ 1/4),
−2x + 3/2 (1/4 ≤ x ≤ 3/4),
2x − 3/2 (3/4 ≤ x ≤ 1).(We note that if I1 = [0, 1/2] and I2 = [1/2, 1], then g(I1) = I2, g(I2) = I1and g2|Ij

: Ij → Ij is strongly transitive for j = 1, 2.)4. Main results. Here is our main result.Theorem 4.1. Let f : G → G be a graph map with # Fix(fk) < ∞ forea
h k ≥ 1. If f is transitive, then it is strongly transitive.A map f on a graph G is pie
ewise monotone if there is a �nite set Ain G su
h that f is monotone on ea
h 
omponent of G r A. We note thatthe kth iterate of a pie
ewise monotone transitive graph map has at most�nitely many �xed points for ea
h k ≥ 1.Corollary 4.2. Let f : G → G be a pie
ewise monotone graph map. If
f is transitive, then it is strongly transitive.Remark. The interval 
ase of the 
orollary above was proved by Coven�Mulvey [6℄.Example 5. Let f : [0, 1] → [0, 1] be the map whose graph appearsbelow. Then f is transitive and the set of �xed points of fk is �nite for ea
h
k ≥ 1. Therefore f is strongly transitive, in fa
t, for ea
h non-degeneratesubinterval J of [0, 1], there exists an n su
h that fn(J) = [0, 1].
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Proof of Theorem 4.1. If Per(f) = ∅, then by Theorem 2.1, f is 
onjugateto an irrational rotation over the 
ir
le. Hen
e f is open and ⋃

∞

n=0 fn(U) = Gfor any non-empty open subset U of G. It follows from 
ompa
tness of Gthat f is strongly transitive.We now assume that Per(f) 6= ∅; then Cl Per(f) = G by Theorem 2.2.In view of Theorem 2.3, we begin by showing that f is strongly transitivewhen it is totally transitive.Let J be a 
onne
ted subset of G with IntG J 6= ∅. We have to see that
{fn(J) : n ≥ 0} 
ontains a �nite sub
overing of G.If G =

⋃
∞

n=0 IntG fn(J), then by 
ompa
tness of G, we have
G = Int fn1(J) ∪ · · · ∪ Int fnm(J) = fn1(J) ∪ · · · ∪ fnm(J)for some n1, . . . , nm ∈ N ∪ {0}: thus the 
on
lusion holds in this 
ase.We next assume that

G 6=
∞⋃

n=0

IntG fn(J).Putting S =Gr
⋃

∞

n=0 IntG fn(J), we now show that GrS =
⋃

∞

n=0 IntG fn(J)is 
onne
ted and the set S is �nite. Take a periodi
 point z ∈ IntJ ofperiod p (Theorem 2.2). Then ⋃
∞

l=0 Int fpl(J) is 
onne
ted, be
ause IntJ ∩
Int fpl(J) 6= ∅ for every l ≥ 1. (If z ∈ Int fpl(J), then this is trivial; if
z 6∈ Int fpl(J), then z ∈ Bd fpl(J) = Bd Int fpl(J), thus the interse
tion isnon-empty.) We now �nd that

∞⋃

l=0

Int fpl(J) ⊆
∞⋃

n=0

Int fn(J) = G r S ⊆ G = Cl
∞⋃

l=0

Int fpl(J).Here, the last equality follows from transitivity of fp (by total transitivityof f) and the Remark following the de�nition of transitivity in Se
tion 2.Therefore, G r S is 
onne
ted. Sin
e S 
ontains no non-degenerate intervalsby transitivity of f , it must be �nite.Our task is now to show that(1) for every x ∈ S, there exist an open neighborhood Kx of x in G and
nx ∈ N ∪ {0} su
h that x ∈ Kx ⊆ f0(J) ∪ · · · ∪ fnx(J).Let x ∈ S. When there is an l ≥ 1 su
h that f−l(x) ∩ S = ∅, then by
losedness of f l, we have an open neighborhood K of x in G su
h that

f−l(x) ⊆ f−l(K) ⊆ f−l(Cl K) ⊆ G r S.By 
ompa
tness there exists an mx ≥ 0 satisfying
f−l(Cl K) ⊆ f0(J) ∪ · · · ∪ fmx(J),hen
e,

x ∈ K ⊆ Cl K ⊆ f l+0(J) ∪ · · · ∪ f l+mx(J).
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Next, we assume that f−l(x) ∩ S 6= ∅ for every l ≥ 1; this is the hardest
ase. Sin
e #S < ∞ we 
an take a natural number k su
h that fk(x) = x.We 
hoose a small tree neighborhood T of x in G su
h that(2) T ∩ (B(G) ∪ S) = {x},and represent T by ar
s [x, xi] with endpoints x and xi, i = 1, . . . , p, as

T = [x, x1] ∪ · · · ∪ [x, xp],where [x, xi]∩ [x, xj] = {x} for i 6= j. Further, we may assume by 
ontinuityof f that for i ∈ {1, . . . , p},(3) fki(T ) is a tree and fki(T ) ∩ (B(G) ∪ S) = {x}.We put
P =

{
i ∈ {1, . . . , p}

∣∣∣∣
there exist j 6= i, ni ∈ N ∪ {0} and εi > 0su
h that ([x, xi] ∪ [x, xj]) ∩ B(x; εi) ⊆ fni(J)

}
.

We shall show that for i ∈ {1, . . . , p} r P ,(4)i there exist a non-negative integer ni and an εi > 0 for whi
h
[x, xi] ∩ B(x; εi) ⊆ fni(J).Let i ∈ {1, . . . , p}rP . We �rst prove (4)i under the 
ondition that thereis a δ > 0 su
h that(5)i fk([x, xj]) ∩ (x, xi] ∩ B(x; δ) = ∅ for any j 6= i.As # Fix(fk) < ∞, there is a small tree neighborhood U of x in T ∩

B(x; δ) ⊆ G su
h that(6) U ∩ Fix(fk) = {x} and fk(U) ⊆ T.Then for ea
h z ∈ (U r {x}) ∩ [x, xi], we have(7) fk(z) ∈ G r (x, z].
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Indeed, suppose, on the 
ontrary, that there exists a z0 ∈ (U r {x})∩ [x, xi]su
h that fk(z0) ∈ (x, z0]. We will show that fk([x, z0]) ⊆ [x, z0], whi
h
ontradi
ts the transitivity of fk. Indeed, if not, there exists a y ∈ (x, z0) with
fk(y) 6∈ [x, z0]. Then by the in
lusion in (6), we have either fk(y) ∈ (z0, xi]or fk(y) ∈ (x, xj ] for some j 6= i. However, neither 
an o

ur by the followingreasoning. If fk(y) ∈ (z0, xi], then there exists a y′ ∈ (y, z0) ⊆ U su
h that
fk(y′) = y′, 
ontrary to the �rst statement of (6). If fk(y) ∈ (x, xj ] for some
j 6= i, then there exists a y0 ∈ (y, z0) su
h that for any ε > 0 there existsa δε > 0 satisfying ([x, xi] ∪ [x, xj ]) ∩ B(x; δε) ⊆ fk([x, xi] ∩ B(y0; ε)) and
fk(y0) = x. Take an n0 and an ε > 0 su
h that [x, xi] ∩ B(y0; ε) ⊆ fn0(J)(note y0 6∈ S). Then ([x, xi]∪ [x, xj ])∩B(x; δε) ⊆ fk+n0(J). This 
ontradi
tsthe assumption that i 6∈ P .Moreover, for ea
h z ∈ (U r {x}) ∩ [x, xi] we have(8) (x, z] ∩ fk(G r U) 6= ∅.Indeed, suppose not; that is, assume that there exists a z0 ∈ (U r {x}) ∩
[x, xi] su
h that (x, z0] ∩ fk(G r U) = ∅. Then we have the 
on
lusion
f−k((x, z0]) ⊆ (x, z0], 
ontradi
ting the transitivity of fk; indeed, if thereis a z1 ∈ f−k((x, z0]) r (x, z0], then fk(z1) ∈ (x, z0] ⊆ U ⊆ T ∩ B(x; δ). Thisimplies z1 ∈ U r{x}. Then if z1 ∈ [x, xi], we have fk(z1) ∈ Gr(x, z1] ⊆ Gr

(x, z0] by (7); if z1 ∈ [x, xj ] for some j 6= i, we have fk(z1) 6∈ (x, xi]∩B(x; δ)by (5)i. In any 
ase, it is a 
ontradi
tion.By (8), we 
an 
hoose yn, y ∈ G r U , n ∈ N, su
h that(i) limn→∞ yn = y,(ii) #{fk(yn) | n ∈ N} = ∞,(iii) limn→∞ fk(yn) = fk(y) = x on [x, xi].If y 6∈ S, then there exist numbers n and m0 su
h that ym, y ∈ fn(J) forany m ≥ m0. Thus, we have an εi > 0 su
h that [x, xi]∩B(x; εi) ⊆ fk(fn(J)).If y ∈ S, then it follows from fk(x) = x, fk(y) = x and y 6= x thatthere is an l ≥ 1 su
h that f−l(y) ∩ S = ∅. From the same argument as inthe proof above, y has an open neighborhood whi
h is 
overed by �nitelymany fm(J)'s, so there exist numbers n and n1 < n2 < · · · su
h that ynj
, y ∈

fn(J). Thus, we again have an εi > 0 su
h that [x, xi]∩B(x; εi) ⊆ fk(fn(J)).We must next examine the statement (4)i in the 
ase when (5)i is notsatis�ed; that is, for ea
h δ > 0, there exists a j 6= i su
h that
fk([x, xj]) ∩ (x, xi] ∩ B(x; δ) 6= ∅.Then we note by the �rst assumption in (3) that there exists an i1 6= i su
hthat(9) [x, xi] ∩ B(x; δi1) ⊆ fk([x, xi1])for some δi1 > 0.
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Whenever [x, xi]∩B(x; δi1) ⊆ fk((x, xi1 ]), there is a y ∈ (x, xi1] su
h that(i) fk(y) = x,(ii) for ea
h γ > 0, there exists an η(γ) > 0 su
h that [x, xi]∩B(x; η(γ))

⊆ fk([x, xi1] ∩ B(y; γ)).Sin
e y ∈ GrS by (2), there is an n su
h that y ∈ Int fn(J). Thus, we have a
γ > 0 su
h that B(y; γ) ⊆ fn(J). Therefore [x, xi]∩B(x; η(γ)) ⊆ fk(fn(J)).Next, if [x, xi] ∩ B(x; δi1) 6⊆ fk((x, xi1 ]), then x 6∈ fk((x, xi1]) by (9).Thus, we have a γi1 > 0 su
h that

fk([x, xi1] ∩ B(x; γi1)) ⊆ [x, xi].We note by transitivity of fk that for any (γi1 ≥) η > 0, there exists a
ξi1(η) > 0 su
h that(10)i1i [x, xi] ∩ B(x; ξi1(η)) ⊆ fk([x, xi1] ∩ B(x; η)).If i1 ∈ P , then there exist an ni1 ∈ N ∪ {0} and an εi1 > 0 su
h that
[x, xi1 ] ∩ B(x; εi1) ⊆ fni1 (J). Thus, we have

[x, xi] ∩ B(x; ξ(η)) ⊆ fk([x, xi1 ] ∩ B(x; η)) ⊆ fk(fni1 (J)),where η = min{εi1 , γi1}.If i1 6∈ P , then we begin proving (4)i1 by the same pro
ess as above. Notethat by (10)i1i statement (4)i1 implies (4)i.With this strategy, it will again remain to prove our statement in thefollowing 
ase:
• there exist an i2 6= i1 and a δi2 > 0 su
h that [x, xi1 ] ∩ B(x; δi2) ⊆

fk([x, xi2 ]),
• [x, xi1] ∩ B(x; δi2) 6⊆ fk((x, xi2]),
• there exists a γi2 > 0 su
h that fk([x, xi2 ] ∩ B(x; γi2)) ⊆ [x, xi1 ],
• for any (γi2 ≥) η > 0, there exists a ξi2(η) > 0 su
h that

(10)i2
i1

[x, xi1 ] ∩ B(x; ξi2(η)) ⊆ fk([x, xi2 ] ∩ B(x; η)),

• i2 6∈ P .We note again by (10)i2
i1
that (4)i2 ⇒ (4)i1 . Continuing this pro
ess, as

#{1, . . . , p}rP < ∞, we must �nally examine our statement in the following
y
li
 
ase:
• there exist pairwise distin
t i0 (≡ i), i1, . . . , ir−1 ∈ {1, . . . , p} r Pand positive numbers δi0 , . . . , δir−1 su
h that [x, xij ] ∩ B(x; δij+1) ⊆

fk([x, xij+1 ]) (mod r),
• [x, xij ] ∩ B(x; δij+1) 6⊆ fk((x, xij+1]) (mod r),
• there exist positive numbers γi0 , . . . , γir−1 su
h that fk([x, xij+1] ∩

B(x; γij+1)) ⊆ [x, xij ] (mod r),
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• for any η > 0, there exist positive numbers ξi0(η), . . . , ξir−1(η) su
hthat

(10)
ij+1

ij
[x, xij ] ∩ B(x; ξij+1(η)) ⊆ fk([x, xij+1] ∩ B(x; η)),

• (4)i0 ⇒ (4)ir−1 ⇒ · · · ⇒ (4)i1 ⇒ (4)i0 .Then we have a positive number γ su
h that for any j ∈ {0, . . . , r − 1},
fkr([x, xij ] ∩ B(x, γ)) ⊆ [x, xij ].Therefore we are able to �nish our proof by showing (4)i0 under the 
ondi-tion: there is a δ > 0 su
h that

fkr([x, xj]) ∩ (x, xi0] ∩ B(x; δ) = ∅ for any j 6= i0,and this follows from the same argument as in the proof of (4)i under (5)i.This 
ompletes the proof of (4)i for i ∈ {1, . . . , p} r P and the proof ofstatement (1).Sin
e G r
⋃

x∈S Kx is 
ompa
t, there exist n1, . . . , nm ∈ N ∪ {0} su
hthat G r
⋃

x∈S Kx ⊆ fn1(J) ∪ · · · ∪ fnm(J). Thus we have
G = (f0(J) ∪ · · · ∪ fnS (J)) ∪ (fn1(J) ∪ · · · ∪ fnm(J)),where nS = max{nx | x ∈ S}. Therefore f is strongly transitive.We must next show this theorem in the 
ase when f is not totally tran-sitive. This follows easily from the �rst 
ase and the splitting theorem 2.3,and the proof of Theorem 4.1 is �nally �nished.Proposition 4.3. Let f : T → T be a totally transitive tree map. Then fis strongly transitive if and only if for every non-degenerate 
onne
ted subset

J of T , there exists an M su
h that fm(J) = T for any m ≥ M .Proof. The su�
ien
y is 
lear. We show the ne
essity. Assume that f isstrongly transitive. Let J be a non-degenerate 
onne
ted set of T . We denotethe set of all end points of T by E(T ) = {e1, . . . , ek}. By Proposition 3.1, forea
h i = 1, . . . , k, there exist an ni and a zi ∈ T rE(T ) su
h that fni(zi) = ei.Let K be the smallest subtree of T 
ontaining {z1, . . . , zk}. Sin
e f is totallytransitive, it follows from [9, Lemma 6℄ that there exists an N su
h that
K ⊆ fn(J) for any n ≥ N . Then we have fn+n0(J) = T for any n ≥ N ,where n0 = max{n1, . . . , nk}, sin
e for any n ≥ N and i ∈ {1, . . . , k},

ei = fni(zi) ∈ fni(K) ⊆ fni(fn+(n0−ni)(J)) = fn+n0(J).The following generalizes the result for interval maps of Coven�Mulvey[6℄ to one for tree maps.Theorem 4.4. Let f : T → T be an onto tree map. Let v(T ) be the max-imum order of any bran
h point in T and Nv(T ) the least 
ommon multipleof {2, . . . , v(T )}. Then the following are equivalent :
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(1) f is transitive and has a point of period whi
h is prime to 2, . . . , v(T ).(2) fNv(T ) is transitive.(3) f is totally transitive.(4) f is topologi
ally mixing.Furthermore, if # Fix(fk) is �nite for ea
h k ≥ 1, then the above are equiv-alent to(5) for every non-degenerate 
onne
ted subset J of T , there exists an Msu
h that fm(J) = T for any m ≥ M .Proof. The equivalen
es (1)⇔(2)⇔(3)⇔(4) are well known [8, Theorem4.1℄, [1℄. The impli
ation (3)⇒(5) if # Fix(fk) is �nite for ea
h k ≥ 1 followsfrom Theorem 4.1 and Proposition 4.3. The 
onverse impli
ation (5)⇒(3) istrivial.5. Remarks. (I) It is useful to investigate the relation between the dy-nami
s of a graph map and the dynami
s of the indu
ed self-homeomorphismof the inverse limit spa
e [2℄, [3℄.Let f : X → X be an onto map. Asso
iated with f is the inverse limitspa
e (X, f) = {(x0, x1, . . . ) | xi ∈ X, and f(xi+1) = xi}, and the indu
edhomeomorphism f̂ : (X, f) → (X, f) (
alled the shift homeomorphism),given by f̂((x0, x1, . . . )) = (f(x0), x0, x1, . . . ).Proposition 5.1. Let f : X → X be an onto map of a metrizable
ompa
t spa
e X. If the shift homeomorphism f̂ : (X, f) → (X, f) is stronglytransitive, then f is strongly transitive.Proof. Note that π0 ◦ f̂ = f ◦π0, where π0 : (X, f) → X is the proje
tionto the �rst 
oordinate spa
e. Let U be an open subset of X. Sin
e f̂ isstrongly transitive, there exists an n ∈ N su
h that

(X, f) =
n⋃

k=0

f̂k(π−1
0 (U)) =

n⋃

k=0

π−1
0 fk(U) = π−1

0

( n⋃

k=0

fk(U)
)
.Therefore we have ⋃n

k=0 fk(U) = X.Unfortunately, the shift homeomorphism of a strongly transitive graphmap is not always strongly transitive. In fa
t, we have the following.Proposition 5.2. Let G be a non-degenerate graph and f : G → G bean onto map. Then the shift homeomorphism f̂ : (G, f) → (G, f) is stronglytransitive if and only if G is the 
ir
le and f is 
onjugate to an irrationalrotation.Proof. The su�
ien
y is 
lear. We show the ne
essity. Assume that f̂ isstrongly transitive. We note that f is (strongly) transitive. By Theorem 2.1,
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it su�
es to prove that f has no periodi
 points. Suppose, on the 
on-trary, that Per(f) 6= ∅. Let x ∈ Per(f) have period n. Then the point
x = (fn−1(x), . . . , f(x), x, fn−1(x), . . . , f(x), x, . . . ) of (G, f) is periodi
 un-der f̂ . Sin
e strong transitivity of f̂ implies its minimality, this 
ontradi
tsthe fa
t that #(G, f) = ∞.(II) We note that statement (2) in Proposition 3.1, whi
h was introdu
edby Parry [7℄, implies strong transitivity for tree maps.Proposition 5.3. Let f : T → T be an onto tree map. Then f is stronglytransitive if and only if ⋃

∞

n=0 fn(U) = T for every non-empty open subset Uof T .Proof. The ne
essity is trivial. We show the su�
ien
y. Suppose thatthe 
ondition is satis�ed. Let U be any non-empty open 
onne
ted setin T . Take a �xed point x0 ∈ T of f . Then, by the assumed 
ondition,
x0 ∈ fn0(U) for some n0. For the endpoints E(T ) = {e1, . . . , ek} of thetree T , it follows from our 
ondition and Proposition 3.1 that for ea
h
i ∈ {1, . . . , k}, Cl

⋃
∞

n=0 f−n(ei) = T and Int f−n(ei) = ∅. Thus, for ea
h
i ∈ {1, . . . , k}, there exists an ni ≥ n0 su
h that f−ni(ei)∩U 6= ∅. Therefore,
T =

⋃k
i=1[ei, x0] =

⋃k
i=1 fni(U), where [ei, x0] denotes the smallest ar
 withendpoints ei and x0 in T .However, this is not always true for a general graph map.Example 6. Let f : [0, 1] → [0, 1] be the map whose graph appearsbelow. Using it, we de�ne the 
ir
le map g : S1 → S1 by g(e2πiθ) = e2πif(θ),where 0 ≤ θ ≤ 1. Then g is transitive and satis�es statement (2) in Propo-sition 3.1, but is not strongly transitive. (Note that if J is a non-degenerate
onne
ted set in S1 not 
ontaining the point (1, 0), then for any n, there isno 0 < ε < 1 su
h that {e2πiθ | 1 − ε < θ < 1} ⊆ gn(J).)
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