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GENERAL TOPOLOGY

On Countable Dense and Strong Lo
al HomogeneitybyJan VAN MILLPresented by Czesªaw BESSAGA
Summary. We present an example of a 
onne
ted, Polish, 
ountable dense homogeneousspa
e X that is not strongly lo
ally homogeneous. In fa
t, a nontrivial homeomorphismof X is the identity on no nonempty open subset of X.1. Introdu
tion. All spa
es under dis
ussion are separable and metriz-able. A spa
e X is strongly lo
ally homogeneous (abbreviated SLH) if it hasan open base B su
h that for all B ∈ B and x, y ∈ B there is a homeo-morphism f : X → X whi
h is supported on B (that is, f is the identityoutside B) and moves x to y. This notion is due to Ford [7℄. Most of thewell-known homogeneous 
ontinua are SLH, but not all: the pseudo-ar
 is anexample of a homogeneous 
ontinuum that is not SLH.A spa
e X is 
ountable dense homogeneous (abbreviated CDH) providedthat for all 
ountable dense subsets D and E of X there is a homeomorphism
f of X su
h that f(D) = E. Bennett [2℄ showed that a 
onne
ted CDH-spa
eis homogeneous.Bennett [2℄ also showed that every lo
ally 
ompa
t SLH-spa
e is CDH.This was generalized to Polish spa
es by Flet
her and M
Coy [6℄, and inde-pendently, but later, by Anderson, Curtis and van Mill [1℄. That this 
annotbe generalized to Baire spa
es was shown by van Mill [10℄ (a similar examplewith better properties was 
onstru
ted by Saltsman [12℄).The question whether every 
onne
ted CDH-spa
e is SLH is due to theauthor [10℄, and was repeated as Problem 382 in the Open Problemsin Topology book by Fitzpatri
k and Zhou [5℄. It was solved negatively
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under the Continuum Hypothesis by Saltsman [13℄ (nonmetri
 
ounterex-amples were earlier 
onstru
ted in [4℄ and [15℄). His example is basedon a 
areful trans�nite indu
tion pro
edure in the plane, and inevitablyhas bad 
ompleteness properties. The aim of this note is to present asolution to the question without using additional set-theoreti
al assump-tions.Example 1.1. There is a 
onvex subspa
e X of Hilbert spa
e ℓ2 withthe following properties:(1) X is CDH (hen
e X is homogeneous),(2) a nontrivial homeomorphism of X is the identity on no nonemptyopen subset of X,(3) X × X ≈ ℓ2.Observe that (3) implies that X is Polish (among other things). This
omes as no surprise, sin
e Hru²ák and Zamora Avilés [8℄ re
ently provedthat all Borel CDH-spa
es are Polish, and that this extends to all spa
esunder the Axiom of Determina
y (see however [3℄).Our spa
e is 
omplete, but not 
ompa
t. The following question, whi
happeared as Problem 383 in [5℄, remains open:Question 1.2. Is every CDH-
ontinuum SLH?Kennedy [9℄ obtained an interesting partial answer to this question: sheproved that if a 
ontinuum is 2-homogeneous, and has a nontrivial homeo-morphism that is the identity on some nonempty open set, then it is SLH.I am indebted to Jim Rogers for some useful information. I am alsoindebted to the referee whose observations simpli�ed and 
lari�ed my original
onstru
tion substantially.2. Preliminaries. If X and (Y, ̺) are spa
es, then C(X, Y ) denotes the
olle
tion of all 
ontinuous fun
tions from X to Y . If f, g ∈ C(X, Y ), then

̺̂(f, g) = sup{̺(f(x), g(x)) : x ∈ X}.If X is 
ompa
t, then ̺̂ is a metri
 and the topology indu
ed by ̺̂ is separ-able. See, e.g., [11, � 1.3℄ for details.Let Q denote the Hilbert 
ube ∏
∞

n=1[−1, 1]n with its admissible metri

̺(x, y) =

∞∑

n=1

2−n|xn − yn|.We assume that the reader is familiar with the basi
 notions in in�nite-dimensional topology (see [11℄).
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The identity fun
tion on a set X will be denoted by 1X . We say that anindexing {Xn : n ∈ I} is faithful provided that Xn 6= Xm if n 6= m. We let Idenote the 
losed unit interval [0, 1].3. Dense 
olle
tions of 
ompa
ta. Let X be a nonempty 
ompa
tspa
e. We say that a 
ountable 
olle
tion X of Z-sets in Q is X-dense if(1) X is pairwise disjoint and every X ′ ∈ X is homeomorphi
 to X,(2) for every f ∈ C(X, Q) and ε > 0 there are an X ′ ∈ X and a homeo-morphism α : X → X ′ su
h that ̺̂(α, f) < ε.If X = {pt}, then the singleton subsets of any 
ountable dense subset of

Q form an X-dense 
olle
tion. Sin
e Q is CDH, all su
h {pt}-dense 
olle
tionsare �topologi
ally unique�. We will show that this holds for any nonempty
ompa
t spa
e.Lemma 3.1. Let X be a nonempty 
ompa
t spa
e. Then there exists an
X-dense 
olle
tion X of Z-sets in Q.Proof. Let F = {f1, f2, . . . } be a 
ountable dense subset of C(X, Q). Weassume that every element of F is listed in�nitely often. For every n we will
onstru
t a Z-imbedding αn : X → Q su
h that

̺̂(αn, fn) < 2−n, αn(X) ⊆ Q \
n−1⋃

i=1

αi(X).Then X = {αn(X) : n ∈ N} is the 
olle
tion we are after. Assume that
α1, . . . , αn−1 have been 
onstru
ted. Sin
e ⋃n−1

i=1 αi(X) is a Z-set in Q, thereis a map f : X → Q\
⋃n−1

i=1 αi(X) su
h that ̺̂(f, fn) < 2−n. By the MappingRepla
ement Theorem [11, Theorem 5.3.11℄, we may assume without loss ofgenerality that f is a Z-imbedding. Hen
e αn = f is as required.Lemma 3.2. Let X be a nonempty 
ompa
t spa
e. If h : Q → Q is ahomeomorphism, and X is an X-dense 
olle
tion of Z-sets in Q, then {h(A) :
A ∈ X} is X-dense as well.Proof. Use the fa
t that h is uniformly 
ontinuous.We will now prove that X-dense 
olle
tions are �topologi
ally unique�.The proof is basi
ally identi
al to the standard proof that Q is CDH. For the
onvenien
e of the reader, we will present the details.Proposition 3.3. Let X be a nonempty 
ompa
t spa
e. In addition, let
S and T be X-dense 
olle
tions of Z-sets in Q. Then there is a homeomor-phism h : Q → Q arbitrarily 
lose to the identity su
h that h(

⋃
S) =

⋃
T.Proof. Let {S1, S2, . . . } and {T1, T2, . . . } be faithful enumerations of

S respe
tively T. Using the Indu
tive Convergen
e Criterion [11, The-
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orem 1.6.2℄, we 
onstru
t a sequen
e (hn)n of homeomorphisms of Q su
hthat its in�nite left produ
t h is a homeomorphism and the following 
ondi-tions are satis�ed:(1) hn ◦ · · · ◦ h1(Si) = h2i ◦ · · · ◦ h1(Si) ∈ T for ea
h i and n ≥ 2i,(2) (hn ◦ · · · ◦h1)

−1(Ti) = (h2i+1 ◦ · · · ◦h1)
−1(Ti) ∈ S for ea
h i and ea
h

n ≥ 2i + 1.Let h1 = 1Q, assume h1, . . . , h2i−1 have been de�ned for a 
ertain i, and put
α = h2i−1 ◦ · · · ◦ h1.We �rst 
laim that if α(Si) ∩ (T1 ∪ · · · ∪ Ti−1) 6= ∅ then α(Si) ∈
{T1, . . . , Ti−1}. For assume that for some j ≤ i − 1 we have α(Si) ∩ Tj 6= ∅.Observe that by (2),

α−1(Tj) = (h2i−1 ◦ · · · ◦ h1)
−1(Tj) = (h2j+1 ◦ · · · ◦ h1)

−1(Tj) ∈ S,hen
e α−1(Tj) = Si sin
e S is pairwise disjoint.If α(Si) ∈ {T1, . . . , Ti−1}, take h2i = 1Q. Otherwise, by the above the
omplement U2i of the Z-set
K = (T1 ∪ · · · ∪ Ti−1) ∪ α(S1 ∪ · · · ∪ Si−1)is a neighborhood of α(Si). Let κ : X → α(Si) be any homeomorphism. Sin
e

T is X-dense, there are an index k ≥ i and a homeomorphism λ : X → Tksu
h that Tk ⊆ U2i, and κ and λ are as 
lose as we please. Hen
e thereexists a �small� homeomorphism ξ : α(Si) → Tk. By the Z-set Homeomor-phism Extension Theorem [11, Theorem 5.3.7℄ this homeomorphism 
anbe extended to a �small� homeomorphism h2i of Q whi
h restri
ts to theidentity on K. Then h2i 
learly satis�es the required indu
tive hypothe-ses.Put β = h2i◦· · ·◦h1. If Ti∩β(S1∪· · ·∪Si) 6= ∅ then Ti ∈ {β(S1), . . . , β(Si)}.For assume that Ti ∩ β(Sj) 6= ∅ for some j ≤ i. Observe that by (1),
β(Tj) = h2i ◦ · · · ◦ h1(Tj) = h2j ◦ · · · ◦ h1(Tj) ∈ S,hen
e β(Tj) = Si sin
e S is pairwise disjoint.If Ti ∈ {β(S1), . . . , β(Si)}, take h2i+1 = 1Q. Otherwise, by the above the
omplement U2i+1 of the Z-set

L = (T1 ∪ · · · ∪ Ti−1) ∪ β(S1 ∪ · · · ∪ Si)is a neighborhood of Ti. Observe that β(T) is X-dense by Lemma 3.2. Hen
ethere is an index ℓ ≥ i+1 su
h that β(Tℓ) is 
ontained in U2i+1 and �
loselyapproximates� Si. In fa
t, we may 
hoose β(Tℓ) so 
lose to Si that thereexists a �small� homeomorphism η : β(Tℓ) → Si. By the Z-set Homeomor-phism Extension Theorem [11, Theorem 5.3.7℄ this homeomorphism 
an beextended to a �small� homeomorphism h2i+1 of Q whi
h restri
ts to theidentity on L. Then h2i+1 
learly satis�es the required indu
tive hypothe-ses.
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If the approximations are 
hosen small enough, the 
onditions of theIndu
tive Convergen
e Criterion [11, Theorem 1.6.2℄ are satis�ed so that

h = limi→∞ hi ◦ · · · ◦ h1 exists and is a homeomorphism of Q arbitrar-ily 
lose to the identity. In addition, (1) and (2) easily imply that h(
⋃

S)
=

⋃
T.Remark 3.4. Let X and Y be nonempty 
ompa
t spa
es. If S is X-denseand T is Y -dense, and ⋃

S ∩
⋃

T = ∅, then S ∪ T is Z-dense, where Z is thetopologi
al sum of X and Y . Hen
e by Proposition 3.3 we 
an simultane-ously push two dense 
olle
tions in pla
e provided their unions are disjoint.By repeating the proof of Proposition 3.3, this 
an easily be generalized to
ountably many pairwise disjoint �dense� 
olle
tions.4. The example. Now let Q be a Q-dense 
olle
tion of Z-sets in Q(Lemma 3.1). Put Y = Q \
⋃

Q. Then Y is a Gδ-subset of Q and hen
e it isPolish. In addition, Y is 
onne
ted, being the 
omplement of a σ-Z-set in Q.By Remark 3.4 we get:Corollary 4.1. Y is CDH.Sin
e Y is 
onne
ted, this implies that Y is homogeneous. Mu
h moreis true. Observe that the identity Q → Q 
an be approximated arbitrarily
losely by maps Q → Q \ Y . Hen
e every 
ompa
t subset of Y is a Z-setin Q. By the proof of Proposition 3.3, this shows that homeomorphismsbetween 
ompa
t subsets of Y extend to homeomorphisms of Y (with 
on-trol).We will now analyze the homeomorphisms of Y . To this end, let h : Y →
Y be an arbitrary homeomorphism. Our goal is to prove that if h 6= 1Y then
h is not the identity on some 
losed non-Z-set of Y . We originally provedthis for open sets, the strengthening to 
losed non-Z-sets was suggested bythe referee. Let {Qn : n ∈ N} be a faithful enumeration of Q.Proposition 4.2. There is a permutation ̺ : N → N su
h that for every
A ⊆ Y , if A ∩ Qn 6= ∅ then h(A) ∩ Q̺(n) 6= ∅ (here 
losure means 
losurein Q).Proof. Let Γ ⊆ Q×Q be the graph of h, let M = Γ , and let πi : M → Qbe the restri
tions to M of the proje
tion maps Q × Q → Q, i = 1, 2. Itwas shown in the proof of [1, Lemma 3.6℄ that the maps π1, π2 are monotonesurje
tions su
h that π−1

1 (
⋃

Q) = π−1
2 (

⋃
Q).Now take an arbitrary n ∈ N. Then π−1

1 (Qn) is a 
ontinuum sin
e π1is monotone. Sin
e by Sierpi«ski's theorem from [14℄ no 
ontinuum is the
ountable in�nite union of disjoint nonempty 
ompa
ta, there is a uniqueelement m ∈ N su
h that π−1
1 (Qn) ⊆ π−1

2 (Qm). Sin
e π2 is monotone
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and π1 is 
ontinuous, π1(π

−1
2 (Qm)) is 
onsequently a 
ontinuum that 
on-tains Qn and is 
ontained in Q \ Y . Hen
e again by Sierpi«ski's theorem,

π1(π
−1
2 (Qm)) = Qn. So we 
on
lude that π−1

1 (Qn) = π−1
2 (Qm). Now de�ne

̺(n) = m. Sin
e n was arbitrary, this de�nes a fun
tion ̺ : N → N. It is 
learfrom the 
onstru
tion that ̺ is a bije
tion.Let A ⊆ Y be su
h that A∩Qn 6= ∅. Pi
k an arbitrary open neighborhood
U of Q̺(n). Then π−1

2 (U) is an open neighborhood of π−1
2 (Q̺(n)) = π−1

1 (Qn).Sin
e π1 is a 
losed map, there is an open neighborhood V of Qn su
h that
π−1

1 (V ) ⊆ π−1
2 (U). Pi
k an element a ∈ A ∩ V . Then (a, h(a)) ∈ π−1

1 (V ),hen
e h(a) = π2(a, h(a)) ∈ π2(π
−1
1 (V )) ⊆ U , as required.This leads us to the result we are after.Theorem 4.3. Let h : Y → Y be a homeomorphism. If h is the identityon some 
losed subset of Y that is not a Z-set in Y , then h is the identity.Proof. Let V be the 
losed non-Z-set on whi
h h is the identity. Strivingfor a 
ontradi
tion, assume that there is an element x ∈ Y su
h that h(x) 6=

x. Sin
e Q \ Y is a σ-Z-set, the 
losure V of V in Q is not a Z-set in Q.Let ε > 0 be su
h that if β : Q → Q is 
ontinuous and ̺̂(β, 1Q) < ε, then
β(Q) ∩ V 6= ∅. Sin
e singleton subsets of Q are Z-sets, there exist maps
Q → Q \ {h(x)} arbitrarily 
lose to the identity. Hen
e we may pi
k a
ontinuous fun
tion α : Q → Q su
h that x ∈ α(Q), h(x) 6∈ α(Q), and
̺̂(α, 1Q) < ε/2.There is a neighborhood W of x in Y su
h that h(W )∩ (W ∪α(Q)) = ∅(here 
losure means 
losure in Q). Observe that V ∩ W = ∅. Let W ′ bean open subset of Q su
h that W ′ ∩ Y = W . By 
onstru
tion, there arean n ∈ N and a homeomorphism fn : Q → Qn su
h that ̺̂(α, fn) < ε/2.Sin
e x ∈ α(Q), we may assume that ̺̂(α, fn) is so small that fn(Q) = Qninterse
ts W ′. Sin
e ̺̂(fn, 1Q) < ε we get Qn ∩ V 6= ∅, hen
e there is asequen
e (xn)n in V 
onverging to an element of Qn. By Proposition 4.2, thesequen
e (h(xn))n has a limit point in Q̺(n). Sin
e xn = h(xn) for every n,this means that ̺(n) = n. Now let (yn)n be a sequen
e in W 
onverging toan element of Qn. Then (h(yn))n has a limit point in Q̺(n) = Qn, again byProposition 4.2. But this is impossible sin
e h(yn) ∈ h(W ) for every n, and
h(W ) ∩ Qn = ∅.Corollary 4.4. Let h : Y → Y be a homeomorphism. If h is the iden-tity on some nonempty open subset of Y , then h is the identity.Proof. It su�
es to observe that every nonempty open set 
ontains a
losed set with nonempty interior and that Z-sets have empty interior.Remark 4.5. By Wong [16℄, there is a Cantor set K in Q whi
h is not a
Z-set. Hen
e if L = K ∩Y , then L is a zero-dimensional 
losed subset of the
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strongly in�nite-dimensional spa
e Y with the following 
urious property: if
h is any homeomorphism of Y that restri
ts to the identity on L, then h isthe identity on Y . It 
an be shown however that there are involutions on Ywith a unique �xed point.Remark 4.6. Obviously there are similar examples that are �nite-dimen-sional. For example, repla
e Q by I

3, and 
onsider an �I-dense� sequen
e of
Z1-ar
s that are 
ontained in the interior of I

3.We will now show that Y has the additional properties promised in Ex-ample 1.1. That Y is homeomorphi
 to a 
onvex subset of ℓ2 follows from [1,Theorem 3.1℄ sin
e Q \ Y is a σ-Z-set in Q. By observing that the identityfun
tion Q → Q 
an be approximated arbitrarily 
losely by maps Q → Q\Y ,
Y × Y ≈ ℓ2 follows from [1, Theorem 3.5℄.
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