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Summary. By Fin(X) (resp. Fin®(X)), we denote the hyperspace of all non-empty finite
subsets of X (resp. consisting of at most k points) with the Vietoris topology. Let £2(7)
be the Hilbert space with weight 7 and £5(7) the linear span of the canonical orthonormal
basis of £3(7). It is shown that if E = £5(7) or E is an absorbing set in £»(7) for one of
the absolute Borel classes aq(7) and M (7) of weight < 7 (a > 0) then Fin(E) and each
Fin®(E) are homeomorphic to E. More generally, if X is a connected E-manifold then
Fin(X) is homeomorphic to £ and each Fin®(X) is a connected E-manifold.

1. Introduction. Throughout the paper, spaces are metrizable and
maps are continuous. Let 7 be an infinite cardinal. Let ¢5(7) be the Hilbert
space of weight 7 and ¢5(7) the linear span of the canonical orthonormal
basis of fo(7). We write £o(Rg) = ¢2 and £5(Rg) = ¢5. Given a space E,
a paracompact Hausdorff space is called a manifold modeled on E or an
E-manifold if it can be covered by open sets which are homeomorphic to
(=) open sets in F.

In [1], Bestvina and Mogilski constructed universal spaces for separable
absolute Borel classes as absorbing sets in the Hilbert cube @ = IN or the
pseudo-interior s = (0, 1)N , and they also gave topological characterizations
of those spaces and manifolds modeled on them. Recently, in [14] and [§],
the present authors generalized the results of [1] to non-separable absolute
Borel classes. For each countable ordinal a > 0, let A,(7) and 2,(7) be
absorbing sets in /3(7) for the classes a,(7) and 9, (7), respectively, where
ao(7) and 9, (7) are respectively the additive and multiplicative absolute
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Borel classes a with weight < 7. Then A,(7) (o > 1) and 2,(7) (a > 2)
are universal spaces in the classes a,(7) and 9, (7), respectively. The space
1(7) is homeomorphic to fo(7) x £5, which is a universal space in the class
of o-completely metrizable spaces (1) with weight < 7. Note that this class
is a proper subclass of ay(7). Although a;(Rg) is the class of o-compact
metrizable spaces, a;(7) is in general the class of o-locally compact metriz-
able (2) spaces with weight < 7 (cf. [15]). Moreover, A;(7) ~ £5(7) x Q and
2o(7) m 2 (1)N = A (7)Y (see [8]).
On the other hand, in [3|, Curtis and Nguyen To Nhu proved that

the hyperspace Fin(X) of non-empty finite subsets of X with the
Vietoris topology is homeomorphic to Eg if and only if X is non-
degenerate, connected, locally path-connected o-compact and strongly
countable-dimensional.

Moreover, Curtis [2] showed that
Fin(Q) ~ Fin(f, x Q) ~ /5 x Q.
Recently, the last author [19] proved that
Fin(ly(1)) & lo(7) x b (= 21(7)).

For each k € N, let Fin®(X) be the subspace of Fin(X) consisting of subsets
with cardinality < k. For this hyperspace, the following are known:

(1) Fin*(Q) ~ Q (Fedorchuk [6]),
(2) Fin®(fy) ~ £ and Fin*(¢5 x Q) ~ ¢ x Q (Nguyen To Nhu [10]),
(3) Fin®(ly x £5) ~ £y x ¢4 and Fin® ((£5)N) =~ (£5)N (Nguyen To Nhu and
the second author [11]),
where 5 x Q ~ A1 (Rg), £2 x €5 ~ 21 (No) and (£5)N ~ 25(Xg). In this paper,
we show the following theorem:

MAIN THEOREM. Let E be one of the spaces (5(7), Aa(T), 2a(T), where
a > 0. Then Fin(E) ~ E and Fin®(E) ~ E for each k € N. More generally,
if X is a connected E-manifold then Fin(X) ~ E and each Fin*(X) is a
connected E-manifold.

2. Preliminaries. For a metrizable space X, let ag(X) and 9Mp(X) be
the collections of all open sets and of all closed sets in X, respectively. For
a countable ordinal « > 0, by transfinite induction, we define a,(X) (resp.

My (X)) as the collection of all countable unions (resp. intersections) of sets
in Ugo, a5(X) UMp(X). Then My (X) and a;(X) are the collections of all

1) A metrizable space is o-completely metrizable if it is a countable union of com-
Y
pletely metrizable closed subsets.
(2) A metrizable space is o-locally compact metrizable if it is a countable union of
locally compact (closed) subsets. See footnote 1 in [8].
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Gy sets and of all F;, sets in X, respectively. Sets in as(X), My (X),... are
said to be Gg,, Fys,... in X, respectively. For each subset A C X, we have
Fin(A) C Fin(X). It is easy to see that Fin(A) is open (resp. closed) in
Fin(X) if A is open (resp. closed) in X. Then, by transfinite induction on «,
we have

A€ ay(X) = Fin(A4) € a,(Fin(X)),
AeMy(X) = Fin(4) € My (Fin(X)).

For an infinite cardinal 7, we denote by a,(7) (resp. M, (7)) the class
of all metrizable spaces X with w(X) < 7 such that X € a,(Y) (resp.
X € M,(Y)) whenever X is embedded in a metrizable space Y. Then 9t (7),
ai (1), Ma(7), az(7), ... are the classes of absolutely G5, absolutely Fy, abso-
lutely Gs,, absolutely Fys, ... spaces with weight < 7. Note that ag(7) = )
and Mo (7) = Mo(Np) is the class of compact metrizable spaces. As is well
known, absolutely Gs spaces are nothing else than completely metrizable
spaces. A separable metrizable space is absolutely F, if and only if it is
o-compact. In the general case, a metrizable space is absolutely F, if and
only if it is o-locally compact (cf. [15]). We denote by a{(7) the class of
all spaces with weight < 7 which are countable unions of locally compact,
locally finite-dimensional closed sets.

Let C be a class of spaces. Then

e C is topological if ( X €C, X =Y)=Y €C(,

e C is closed (resp. open) hereditary if (X € C, A C X is closed (resp.
open) in X) = A€,

e C is additive if (X = X7 U X5 and X3, X9 € C are closed in X) =
X eC.

e C is productive if X1,Xo €C = X1 x X5 €C.

By C,, we denote the class consisting of all metrizable spaces which can
be expressed as countable unions of closed subspaces contained in C. Then
M1(7)s is the class of o-completely metirzable spaces with weight < 7.
Clearly, if C is closed hereditary then C, is closed and open hereditary.

Now, suppose that C is the topological class a,(7) (o > 1), My (7) (v > 2)
or ay (7). Then C = C, is open and closed hereditary, additive, productive
and contains I" x D(7) for all n € N, where D(7) is the discrete space with
card D(1) = 7.

For each space X, we denote by £(X) the class of all spaces which are
homeomorphic to a closed subset of X. Note that

E(la(r)) =aa(r) (a21), E(L2a(7)) =Ma(r) (a2>2),
E((r)) =Mi(r)y and E(fy(T)) = af (7).



412 K. Mine et al.

For each open cover U of Y, two maps f,g: X — Y are U-close (or f is
U-close to g) if each {f(x),g(x)} is contained in some U € U. A closed set
A C X is called a Z-set (resp. a strong Z-set) in X provided, for each open
cover U of X, there is a map f : X — X such that f is U-close to idx and
F(X)NA =0 (resp. cl f(X)NA=0). A subset X CY is homotopy dense in
Y if there is a homotopy h : Y x I — Y such that hg =idy and h(Y) C X
for every ¢t > 0. When X is an ANR, a closed set A is a Z-set in X if and
only if X \ A is homotopy dense in X (cf. Corollary 3.3 of [16]). A countable
union of (strong) Z-sets in X is called a (strong) Z,-set in X. A (strong)
Zg-space is a (strong) Zy-set in itself. A Z-embedding is an embedding whose
image is a Z-set.

A space X is said to be universal for a class C (simply, C-universal) if
every map f : C' — X of C € C can be approximated by Z-embeddings. We
say that X is strongly universal for C (simply, strongly C-universal) when
the following condition is satisfied:

(sue) for each C' € C and each closed set D C C,if f: C — X is a map
such that f|D is a Z-embedding, then, for each open cover U of X,
there is a Z-embedding h : C' — X such that h|D = f|D and h is
U-close to f.

A C-absorbing set in Y is a homotopy dense subset X C Y such that
X € Cy and X is a strongly C-universal strong Z,-space. In [13, Theo-
rem 3.8], Sakai and Yaguchi generalized a characterization of C-absorbing
sets by Bestvina and Mogilski [1, Theorem 5.3] to the following non-separable
case:

THEOREM 2.1. Let C be a closed hereditary additive topological class of
spaces such that I" x D(7) € C for each n € N. Suppose that there exists a
C-absorbing set E in ly(7). Then an AR X with w(X) < 7 is homeomorphic
to E if and only if X € Cy, X is strongly C-universal and X is a strong
Zs-8pace.

The open embedding theorem of E-manifolds [1, Corollary 5.7] can also
be generalized to the non-separable case [13, Theorem 3.9] as follows:

THEOREM 2.2. Under the assumption of Theorem 2.1, every connected
E-manifold can be embedded in E as an open set.

In this paper, XF] denotes the weak product of X with a base point
* € X, that is,
XN = {(2:)ieny € XV | 25 = * except for finitely many n € N}.
In order to make the base point clear, we write XF](*). As is easily observed,

Proposition 2.5 of [1] is valid for a non-separable AR X. Then we have the
following proposition:
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PROPOSITION 2.3. Under the assumptions of Theorem 2.1, if C is pro-
ductive then FE = EF].

Proof. Since C C E(E) C E(EY), it follows from Proposition 2.5 of [1]
that E} is strongly &(E)-universal. Moreover, EN C lo(7)N a~ f5(7) and
E is homotopy dense in 2(7). Then E} can be embedded into fo(7)N as
a homotopy dense subset. By Lemma 2.2 of [§], E}N is a strong Z,-space.
Since F € C, and C is productive, we have EFI € C,. Hence, F =~ EP] by
Theorem 2.1. m

The following is due to Nguyen To Nhu [9, Theorem 2.1, Corollary 2.3]:

THEOREM 2.4. For every ANR (resp. AR) X and k € N, the hyperspaces
Fin(X) and Fin*(X) are also ANR’s (resp. AR’s).

Note that every map f : X — Y induces a map f : Fin(X) — Fin(Y)
defined by f(A) = f(A) = {f(z) | = € A}. Moreover, for a homotopy
h:X xI—Y, wedefine i : Fin(X) x I - Fin(Y) and h* : Fin*(X) x I —
Fin® (V') for each k € N by h¢(A) = h¥(A) = hy(A) = {hy(x) | € A}. Then

it is easy to see that h and h* are continuous, so they are also homotopies.

3. Universality. Given an admissible metric d for X, we use the admis-
sible metric for X defined as follows:

o((wi)ien, (Yi)ien) = Sug min{d(z;, y;),27"}.
ic
Then gy is the Hausdorff metric induced by the metric p.

PROPOSITION 3.1. Let X be a non-degenerate AR and W an open set
in Fin(X}) or Fin*(XN) for some k € N. Then W is universal for £(X).

Proof. Because of similarity, we shall prove only the case of Fin(XiN).
Let Y = X}' ¢ X". Since the weak product Y{'(x) of Y with a base point
% € Y is homeomorphic to XY, we may show the universality of every open
set W in Fin(YN(x)). Let f : A — W be a map of A € £(X). For each
open cover U of W, take a collection U of open sets of Fin((XM)N) such
that U = {U NFin(Y(x)) | U € U}. Then W = (JU is an open subset
of Fin((X™M)N). Suppose that o : W - (0,1) is a map such that if a map
g : Y — Fin((XM)N) is a-close to f then g(Y) C W and g is U-close
to f. Since Y is an AR, we have a map A : ¥ XY x 1 — Y such that
Mz, z,t) = x for every t € I, A\(x,y,0) = z and A\(z,y,1) = y (such a map is
called an equi-connecting map). Using this map, we can define a homotopy
0: YN XY xI—=YN as follows:
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SO(ZL‘,Z, 1) = (33‘1,2,2,2,*,*, .. ')7

90(x7Z72_1) = (.%'1,%2,2,2’,2, Hy k. ')7
O(,2,27") = (X1, ooy Ty 2,2, 2, %%, ),

o(z,2,0) = (z1,22,23,...) =
and for 27" < t < 27"+,
oz, z,t) = (1, ..o, Ty M(Tpg1, 2, 2"t — 1), 2, 2, M2, %, 2" — 1), %, %, ... ).

Observe that o(x, ¢(x, z,t)) < t for any ¢t > 0.
Since A € £(X), we can take a closed embedding h: A — Y = X} such
that * ¢ h(A) and h(A) is closed in X. Define g : A — Fin(Y"Y) by

9(y) = {e(@, h(y),a(f(y))) |z € f(y)}.

It is clear that ¢ is continuous. Since o(x, ¢(z, h(y), a(f(y))) < a(f(y)), it
follows that on(f(y),9(y)) < a(f(y)), that is, g is a-close to f. Note that
o(YN x Y x (0,1]) € YN(x), which means g(A) C W. Thus, it remains to
prove that g : A — W is a Z-embedding.

To see that g is injective, let g(y) = ¢g(y’) and fix a point

T = (21, .. 2, %%, %,...) € gy) = g(y)
with x,, # *. Then z,_1 = h(y) = h(y’) by the definition of ¢. Since h is an
embedding, we have y = 1/. -

To see that g is closed, let a; € A (i € N) and G € W with g(a;) — G. We
show that (a;);cn has a convergent subsequence. By taking a subsequence,
we may assume that a(f(a;)) — t € I. Then t > 0. Otherwise, f(a;) — G
because on(f(a;i),g9(a;)) < a(f(a;)) — 0. Hence, a(f(a;)) — a(G) > 0,
which is a contradiction. Thus, we can choose n € Nso that 27" < ¢t < 277"
Take z = (2p)nen € G C (XM)N. Note that o(z, g(a;)) — 0. For each i € N,
we can choose z; € f(a;) so that ¢(z;, h(a;),a(f(a;))) — z. For sufficiently
large i € N, 27" < o(f(y;)) < 272, in which case

Pryi9 0 (2, h(ai), af(as))) = h(ai),
where pr,, : YN — Y is the projection onto the nth factor. Therefore, h(a;) —
Znyo € XN, Since h is a closed embedding of A not only into Y but also into
XN it follows that (a;);en is convergent in A. Thus, g : A — W is closed.
Moreover, g(A) is a closed subset of w.

Now, we shall show that g(A) is a Z-set in W. Let Y(+') be the weak
product of ¥~ with a base point ' different from . Suppose V is an open
cover of W. Choose a collection V1 of open sets of Fm((XN) ) so that V =
{(UNFin(YN() |U e M} and V = V) C W. Let V5 be an open cover
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of V which is a star-refinement of V;. Since Fin(Y{(+')) is homotopy dense
in Fin((XN)N), there exists a map i1 : V — V N Fin(Y(+')) such that iy is
Vs-close to id;. Recall that g(A) is closed in V. Hence, V \ g(A) is open in
Fin((X™N). Thus, we can find a map

iy V\ g(A) = (V\ g(4)) N Fin(Y{(x))
such that 75 is 172—close to id‘~/. Observe that
g(A) C Fin(YfN(*)) and Fin(YfN(*)) N Fin(YfN(*/)) = 0.

Then we have i1 (V) C V \ g(A). The map i = iy 0i; : W — W is V-close to
idy and i(W) N g(A) = 0. Therefore, g(A) is a Z-set in W. =

By replacing Y = X}N with Y = XY in the proof above, we can also show
the following proposition:

PROPOSITION 3.2. Let X be a non-degenerate AR and W an open set in
Fin(XY) or Fin®(XY) for some k € N. Then W is universal for £(X). u

By the same proof as for Proposition 2.2 of [1], we can obtain the following
non-separable version:

ProOPOSITION 3.3. Let C be an open and closed hereditary topological
class. If each open subset of an ANR X is C-universal and every Z-set in X
18 a strong Z-set, then X is strongly C-universal.

Due to Proposition 2.4 in [14], when C = 9t;(7) in the above, it is not
necessary to assume that every Z-set in X is a strong Z-set. Thus, we have
the following generalization of Proposition 7.3 of [19]:

COROLLARY 3.4. Let X be a non-degenerate AR such that 9 (1) C
E(X) and let k € N. Then Fin(X"), Fin(X}), Fin®(XY) and Fin*(X}Y) are
strongly 9, (7)-universal. m

By Torunczyk’s characterization of Hilbert spaces [17] (cf. [18]), The-
orem 2.4 and Corollary 3.4 imply the following non-separable version of
Corollary 2.4 of [9]:

THEOREM 3.5. For each k € N, the hyperspace Fin®((2(7)) of the Hilbert
space l2(T) with weight T is homeomorphic to {2(T). =

REMARK 1. Due to Proposition 6.1 of [19], Fin(X) is a strong Z-space
for every normed linear space X with dimX > 1. As a combination of
Theorems 2.1, 2.4 and Corollary 3.4, we have the main result of [19], that is,

THEOREM 3.6. The hyperspace Fin(¢3(7)) of the Hilbert space {o(T) with
weight T is homeomorphic to lo(T) X Eg. "
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4. Z-sets in Fin(X)

LEMMA 4.1. Let X be an ANR and A a Z-set in X. Then Fin(A) is a
Z-set in Fin(X), and Fin®(A) is a Z-set in Fin®(X) for any k € N. Thus,
if X is a Z,-space then Fin(A) and Fin*(A) are also Z,-spaces.

Proof. We deal with the case of Fin(A). Since X is an ANR, X \ A is
homotopy dense in X, hence Fin(X \ A) is homotopy dense in Fin(X). Since
Fin(A) C Fin(X) \ Fin(X \ A), it follows that Fin(A) is a Z-set in Fin(X). It
can be similarly shown that Fin®(A) is a Z-set in Fin*(X) for any k € N. u

Note that every Z-set in f3(7) is a strong Z-set [7]. Since fo(7) x £} is
homotopy dense in fo(7) X g ~ lo(T), every Z-set in l5(7) x £} is a strong
Z-set by Lemma 2.2 of [8].

PROPOSITION 4.2. Let X be a non-degenerate AR. In the spaces Fin(X})
and Fink(XEN), k € N, every Z-set is a strong Z-set. Thus, Fin(X}Y) and
Fink(Xg) are strong Z,-spaces.

Proof. We may assume that X%N can be embedded into Hilbert space as
a homotopy dense subset. Indeed, X can be embedded into a completely
metrizable AR X as a homotopy dense subset [12]. Hence, X} is homo-
topy dense in XY which is homeomorphic to f5(7) [17]. Thus, Fin(X}) and
Fin®(X}) are homotopy dense subsets of Fin(¢(7)) and Fin®(¢5(7)), respec-
tively. Since Fin(fy(7)) = fo(7) x £5 and Fin*(£y(7)) ~ £2(7) (Theorems 3.6
and 3.5), it follows from Lemma 2.2 of 8] that every Z-set in Fin(X) is a
strong Z-set. Since X} is a Z,-space, Fin(X}) and Fin*(XY) are Z,-spaces.
Thus, they are strong Z,-spaces. u

REMARK 2. Tt can also be shown that Fin(X"Y) is a strong Z,-space
if X is a non-degenerate AR. Indeed, Fin(X") can also be embedded into
the strong Z,-space Fin(lz(7)) ~ fo(7) x £5 (Theorem 3.6). Since every AR

which is a homotopy dense subset of a Z,-space is also a Z,-space, we see
that Fin(X"N) is a Z,-space.

5. Absolute Borel classes. Let d be an admissible metric for X. Then
the Vietoris topology on Fin(X) is induced by the Hausdorff metric

di(A, B) = max { sup d(a, B),supd(b, A) },
acA beB

where d(a, A) = infyc d(x,y). For each k € N, let ¢ be the metric for X*
defined as follows:

o(z,y) = maxd(zi, ;).
Let g : XF — Fink(X) be the natural surjection defined by

qk(($1, e ,xk)) = {xl, ce ,xk}.
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Then it is clear that
dH(qk(‘T)7Qk(y)) < Q(mvy) for any z,y € Xk

This means that ¢ is uniformly continuous. Note that
cardgq, '(A) < k! for each A € Fin*(X).
LEMMA 5.1. The map q s perfect.
Proof. Tt suffices to show that a sequence (2,)neny in X* has a conver-

gent subsequence if (gx(xn))nen is convergent in Fin*(X). Let g(z,) be
convergent to A € Fin*(X). For each j < k,

d(PI“j(CCn), A) < dH(Qk(xn)a A) —0 (’I’L - OO),

where pr; : X* — X is the projection onto the jth factor. Since A is finite,
any subsequence of (pr;(z,))nen has a convergent subsequence. Then it is
easy to find a subsequence (7, )ien such that (pr;(zn,))ien is convergent in
X for every j < k, which means that (x,, );cy is convergent in X*. u

PROPOSITION 5.2. For a o-locally compact metric space X, Fin(X) is
also o-locally compact, i.e., X € a1(7) = Fin(X) € a;(7).

Proof. Let X = |J, ey Xn, where X, is a locally compact subset of X
with X, C X,4+1. Since the perfect image of a locally compact space is
also locally compact ([4, Theorem 3.7.12]), it follows from Lemma 5.1 that
Fin®(X}) is locally compact. Then Fin(X) = Uken Fin®(X}) is o-locally
compact. m

Note that if f: X — Y is a closed map and 0 < card f~1(y) < k (< 0)
for every y € Y then dimY < dim X + k — 1 [5, Theorem 3.3.7]. Then, by
the same proof as for Proposition 5.2 above, we have the following:

PROPOSITION 5.3. X € a¢(7) = Fin(X) € a{(7). =

By Proposition 5.1 of [19], if X is completely metrizable then Fin(X) is
o-completely metrizable, that is,

X e Mi(r) = Fin(X) € My(7)s C ag(7).
We also have the following:
X e Mi(1)s = Fin(X) € Mi(7),.
PROPOSITION 5.4. For each countable ordinal oo > 2,
X € an(1) = Fin(X) € au(7),
X e My(r) = Fin(X) € My (7).

Proof. We handle the cases of X € as(7) and X € Msy(7). Then the
result can be obtained by transfinite induction.
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If X € ax(7), let X = J;cn Xi, where each X; is completely metrizable.
Without loss of generality, we may assume X; C X;;; for each i € N;
then Fin(X') = (J,;cy Fin(X;). Since each Fin(X;) is o-completely metrizable,
Fin(X) is also o- completely metrizable. This means Fin(X) € ag(7).

If X € My(r), let X be the completion of X. Since X is Fys in X,
Fin(X) is also F,; in Fin(X). By Proposition 5.1 of [19], Fin(X) is F,
in the completely metrizable space Cldg(X). This means Fin(X) is F,s in
Cldg(X). Thus, Fin(X) € My(7). =

REMARK 3. For each k € N, Fin®(X) is closed in Fin(X). For the spaces
Fin®*(X), k € N, we have the same results as for Fin(X) above.

6. Proof of the Main Theorem. First, we prove the following:

THEOREM 6.1. Let C be an open and closed hereditary, additive, produc-
tive and topological class of spaces such that I" x D(t) € C for each n € N.
Suppose that there exists a C-absorbing set E in l2(7). Then Fin(E) and
Fink(E), k € N, are strongly C-universal.

Proof. By the C-universality of E, we have C C £(E). Since Fin(EY) and
Fink(EFl) are AR’s by Theorem 2.4 and every Z-set is a strong Z-set in these
spaces, it follows from Propositions 3.1 and 3.3 that Fin(EY) and Fin®(EN)

are strongly C-universal. On the other hand, EfN ~ F by Proposition 2.3,
hence Fin(E) ~ Fin(E}). Thus, we have the result.

Now, we shall prove the main theorem.

THEOREM 6.2. Suppose that E is homeomorphic to (5(7), Au(T) or
24(7), where o« > 1 is a countable ordinal. Then the hyperspaces Fin(E)
and Fin®(E), k € N, are homeomorphic to E.

Proof. First, note that F is strongly universal for the class C = £(E)
and F € C, = C. In §5, we have shown that Fin(E), Fin*(E) € C. These
spaces are strong Z,-spaces by Proposition 4.2 and are strongly C-universal
by Theorem 6.1. Thus, Fin(E) ~ Fin*(E) ~ E by Theorem 2.1. =

Since every connected E-manifold X can be embedded into F as an open
set by Theorem 2.2, Fin(X) and Fin*(X) can also be embedded into Fin(E)
and Fin*(E) as open sets, respectively. Since X is connected, Fin(X) is an
AR (cf. Proposition 3.1 of [19]) and each Fin*(X) is connected. Hence, we
have the following theorem.

THEOREM 6.3. Suppose that E is homeomorphic to t5(7), Ay(T) or
024(1), where a > 1 is a countable ordinal. Let X be a connected E-manifold.
Then Fin(X) is homeomorphic to E and each Fin*(X) is a connected E-
manifold. =
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