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Hyperspa
es of Finite Sets in Universal Spa
esfor Absolute Borel ClassesbyKotaro MINE, Katsuro SAKAI and Masato YAGUCHIPresented by Czesªaw BESSAGA
Summary. By Fin(X) (resp. Fink(X)), we denote the hyperspa
e of all non-empty �nitesubsets of X (resp. 
onsisting of at most k points) with the Vietoris topology. Let ℓ2(τ)be the Hilbert spa
e with weight τ and ℓf2(τ) the linear span of the 
anoni
al orthonormalbasis of ℓ2(τ). It is shown that if E = ℓf2(τ) or E is an absorbing set in ℓ2(τ) for one ofthe absolute Borel 
lasses aα(τ) and Mα(τ) of weight ≤ τ (α > 0) then Fin(E) and ea
h
Fink(E) are homeomorphi
 to E. More generally, if X is a 
onne
ted E-manifold then
Fin(X) is homeomorphi
 to E and ea
h Fink(X) is a 
onne
ted E-manifold.1. Introdu
tion. Throughout the paper, spa
es are metrizable andmaps are 
ontinuous. Let τ be an in�nite 
ardinal. Let ℓ2(τ) be the Hilbertspa
e of weight τ and ℓf

2(τ) the linear span of the 
anoni
al orthonormalbasis of ℓ2(τ). We write ℓ2(ℵ0) = ℓ2 and ℓf
2(ℵ0) = ℓf

2. Given a spa
e E,a para
ompa
t Hausdor� spa
e is 
alled a manifold modeled on E or an
E-manifold if it 
an be 
overed by open sets whi
h are homeomorphi
 to(≈) open sets in E.In [1℄, Bestvina and Mogilski 
onstru
ted universal spa
es for separableabsolute Borel 
lasses as absorbing sets in the Hilbert 
ube Q = I

N or thepseudo-interior s = (0, 1)N, and they also gave topologi
al 
hara
terizationsof those spa
es and manifolds modeled on them. Re
ently, in [14℄ and [8℄,the present authors generalized the results of [1℄ to non-separable absoluteBorel 
lasses. For ea
h 
ountable ordinal α > 0, let Λα(τ) and Ωα(τ) beabsorbing sets in ℓ2(τ) for the 
lasses aα(τ) and Mα(τ), respe
tively, where
aα(τ) and Mα(τ) are respe
tively the additive and multipli
ative absolute2000 Mathemati
s Subje
t Classi�
ation: 54B20, 57N20, 54H05.Key words and phrases: hyperspa
e of �nite subsets, Vietoris topology, Hausdor�metri
, universal spa
es, absolute Borel 
lasses, Hilbert spa
e, absorbing set.[409℄
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Borel 
lasses α with weight ≤ τ . Then Λα(τ) (α ≥ 1) and Ωα(τ) (α ≥ 2)are universal spa
es in the 
lasses aα(τ) and Mα(τ), respe
tively. The spa
e
Ω1(τ) is homeomorphi
 to ℓ2(τ)× ℓf

2, whi
h is a universal spa
e in the 
lassof σ-
ompletely metrizable spa
es (1) with weight ≤ τ . Note that this 
lassis a proper sub
lass of a2(τ). Although a1(ℵ0) is the 
lass of σ-
ompa
tmetrizable spa
es, a1(τ) is in general the 
lass of σ-lo
ally 
ompa
t metriz-able (2) spa
es with weight ≤ τ (
f. [15℄). Moreover, Λ1(τ) ≈ ℓf
2(τ) × Q and

Ω2(τ) ≈ Ω1(τ)N ≈ Λ1(τ)N (see [8℄).On the other hand, in [3℄, Curtis and Nguyen To Nhu proved thatthe hyperspa
e Fin(X) of non-empty �nite subsets of X with theVietoris topology is homeomorphi
 to ℓf
2 if and only if X is non-degenerate, 
onne
ted, lo
ally path-
onne
ted σ-
ompa
t and strongly
ountable-dimensional.Moreover, Curtis [2℄ showed that

Fin(Q) ≈ Fin(ℓf
2 × Q) ≈ ℓf

2 × Q.Re
ently, the last author [19℄ proved that
Fin(ℓ2(τ)) ≈ ℓ2(τ) × ℓf

2 (≈ Ω1(τ)).For ea
h k ∈ N, let Fink(X) be the subspa
e of Fin(X) 
onsisting of subsetswith 
ardinality ≤ k. For this hyperspa
e, the following are known:(1) Fink(Q) ≈ Q (Fedor
huk [6℄),(2) Fink(ℓ2) ≈ ℓ2 and Fink(ℓf
2 × Q) ≈ ℓf

2 × Q (Nguyen To Nhu [10℄),(3) Fink(ℓ2×ℓf
2) ≈ ℓ2×ℓf

2 and Fink((ℓf
2)

N) ≈ (ℓf
2)

N (Nguyen To Nhu andthe se
ond author [11℄),where ℓf
2 ×Q ≈ Λ1(ℵ0), ℓ2 × ℓf

2 ≈ Ω1(ℵ0) and (ℓf
2)

N ≈ Ω2(ℵ0). In this paper,we show the following theorem:Main Theorem. Let E be one of the spa
es ℓf
2(τ), Λα(τ), Ωα(τ), where

α > 0. Then Fin(E) ≈ E and Fink(E) ≈ E for ea
h k ∈ N. More generally ,if X is a 
onne
ted E-manifold then Fin(X) ≈ E and ea
h Fink(X) is a
onne
ted E-manifold.2. Preliminaries. For a metrizable spa
e X, let a0(X) and M0(X) bethe 
olle
tions of all open sets and of all 
losed sets in X, respe
tively. Fora 
ountable ordinal α > 0, by trans�nite indu
tion, we de�ne aα(X) (resp.
Mα(X)) as the 
olle
tion of all 
ountable unions (resp. interse
tions) of setsin ⋃

β<α aβ(X) ∪ Mβ(X). Then M1(X) and a1(X) are the 
olle
tions of all
(1) A metrizable spa
e is σ-
ompletely metrizable if it is a 
ountable union of 
om-pletely metrizable 
losed subsets.
(2) A metrizable spa
e is σ-lo
ally 
ompa
t metrizable if it is a 
ountable union oflo
ally 
ompa
t (
losed) subsets. See footnote 1 in [8℄.
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Gδ sets and of all Fσ sets in X, respe
tively. Sets in a2(X), M2(X), . . . aresaid to be Gδσ, Fσδ, . . . in X, respe
tively. For ea
h subset A ⊂ X, we have
Fin(A) ⊂ Fin(X). It is easy to see that Fin(A) is open (resp. 
losed) in
Fin(X) if A is open (resp. 
losed) in X. Then, by trans�nite indu
tion on α,we have

A ∈ aα(X) ⇒ Fin(A) ∈ aα(Fin(X)),

A ∈ Mα(X) ⇒ Fin(A) ∈ Mα(Fin(X)).For an in�nite 
ardinal τ , we denote by aα(τ) (resp. Mα(τ)) the 
lassof all metrizable spa
es X with w(X) ≤ τ su
h that X ∈ aα(Y ) (resp.
X ∈ Mα(Y )) whenever X is embedded in a metrizable spa
e Y . Then M1(τ),
a1(τ), M2(τ), a2(τ), . . . are the 
lasses of absolutely Gδ, absolutely Fσ, abso-lutely Gδσ, absolutely Fσδ, . . . spa
es with weight ≤ τ . Note that a0(τ) = ∅and M0(τ) = M0(ℵ0) is the 
lass of 
ompa
t metrizable spa
es. As is wellknown, absolutely Gδ spa
es are nothing else than 
ompletely metrizablespa
es. A separable metrizable spa
e is absolutely Fσ if and only if it is
σ-
ompa
t. In the general 
ase, a metrizable spa
e is absolutely Fσ if andonly if it is σ-lo
ally 
ompa
t (
f. [15℄). We denote by aω

1 (τ) the 
lass ofall spa
es with weight ≤ τ whi
h are 
ountable unions of lo
ally 
ompa
t,lo
ally �nite-dimensional 
losed sets.Let C be a 
lass of spa
es. Then
• C is topologi
al if (X ∈ C, X ≈ Y ) ⇒ Y ∈ C,
• C is 
losed (resp. open) hereditary if (X ∈ C, A ⊂ X is 
losed (resp.open) in X) ⇒ A ∈ C,
• C is additive if (X = X1 ∪ X2 and X1, X2 ∈ C are 
losed in X) ⇒

X ∈ C.
• C is produ
tive if X1, X2 ∈ C ⇒ X1 × X2 ∈ C.By Cσ, we denote the 
lass 
onsisting of all metrizable spa
es whi
h 
anbe expressed as 
ountable unions of 
losed subspa
es 
ontained in C. Then

M1(τ)σ is the 
lass of σ-
ompletely metirzable spa
es with weight ≤ τ .Clearly, if C is 
losed hereditary then Cσ is 
losed and open hereditary.Now, suppose that C is the topologi
al 
lass aα(τ) (α ≥ 1), Mα(τ) (α ≥ 2)or aω
1 (τ). Then C = Cσ is open and 
losed hereditary, additive, produ
tiveand 
ontains I

n × D(τ) for all n ∈ N, where D(τ) is the dis
rete spa
e with
cardD(τ) = τ .For ea
h spa
e X, we denote by E(X) the 
lass of all spa
es whi
h arehomeomorphi
 to a 
losed subset of X. Note that

E(Λα(τ)) = aα(τ) (α ≥ 1), E(Ωα(τ)) = Mα(τ) (α ≥ 2),

E(Ω1(τ)) = M1(τ)σ and E(ℓf
2(τ)) = a

ω
1 (τ).
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For ea
h open 
over U of Y , two maps f, g : X → Y are U-
lose (or f is

U-
lose to g) if ea
h {f(x), g(x)} is 
ontained in some U ∈ U . A 
losed set
A ⊂ X is 
alled a Z-set (resp. a strong Z-set) in X provided, for ea
h open
over U of X, there is a map f : X → X su
h that f is U -
lose to idX and
f(X)∩A = ∅ (resp. cl f(X)∩A = ∅). A subset X ⊂ Y is homotopy dense in
Y if there is a homotopy h : Y × I → Y su
h that h0 = idY and ht(Y ) ⊂ Xfor every t > 0. When X is an ANR, a 
losed set A is a Z-set in X if andonly if X \A is homotopy dense in X (
f. Corollary 3.3 of [16℄). A 
ountableunion of (strong) Z-sets in X is 
alled a (strong) Zσ-set in X. A (strong)
Zσ-spa
e is a (strong) Zσ-set in itself. A Z-embedding is an embedding whoseimage is a Z-set.A spa
e X is said to be universal for a 
lass C (simply, C-universal) ifevery map f : C → X of C ∈ C 
an be approximated by Z-embeddings. Wesay that X is strongly universal for C (simply, strongly C-universal) whenthe following 
ondition is satis�ed:(suC) for ea
h C ∈ C and ea
h 
losed set D ⊂ C, if f : C → X is a mapsu
h that f |D is a Z-embedding, then, for ea
h open 
over U of X,there is a Z-embedding h : C → X su
h that h|D = f |D and h is

U -
lose to f .A C-absorbing set in Y is a homotopy dense subset X ⊂ Y su
h that
X ∈ Cσ and X is a strongly C-universal strong Zσ-spa
e. In [13, Theo-rem 3.8℄, Sakai and Yagu
hi generalized a 
hara
terization of C-absorbingsets by Bestvina and Mogilski [1, Theorem 5.3℄ to the following non-separable
ase:Theorem 2.1. Let C be a 
losed hereditary additive topologi
al 
lass ofspa
es su
h that I

n × D(τ) ∈ C for ea
h n ∈ N. Suppose that there exists a
C-absorbing set E in ℓ2(τ). Then an AR X with w(X) ≤ τ is homeomorphi
to E if and only if X ∈ Cσ, X is strongly C-universal and X is a strong
Zσ-spa
e.The open embedding theorem of E-manifolds [1, Corollary 5.7℄ 
an alsobe generalized to the non-separable 
ase [13, Theorem 3.9℄ as follows:Theorem 2.2. Under the assumption of Theorem 2.1, every 
onne
ted
E-manifold 
an be embedded in E as an open set.In this paper, XN

f
denotes the weak produ
t of X with a base point

∗ ∈ X, that is,
XN

f = {(xi)i∈N ∈ XN | xi = ∗ ex
ept for �nitely many n ∈ N}.In order to make the base point 
lear, we write XN

f
(∗). As is easily observed,Proposition 2.5 of [1℄ is valid for a non-separable AR X. Then we have thefollowing proposition:
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Proposition 2.3. Under the assumptions of Theorem 2.1, if C is pro-du
tive then E ≈ EN

f
.Proof. Sin
e C ⊂ E(E) ⊂ E(EN

f
), it follows from Proposition 2.5 of [1℄that EN

f
is strongly E(E)-universal. Moreover, EN

f
⊂ ℓ2(τ)N ≈ ℓ2(τ) and

E is homotopy dense in ℓ2(τ). Then EN

f

an be embedded into ℓ2(τ)N asa homotopy dense subset. By Lemma 2.2 of [8℄, EN

f
is a strong Zσ-spa
e.Sin
e E ∈ Cσ and C is produ
tive, we have EN

f
∈ Cσ. Hen
e, E ≈ EN

f
byTheorem 2.1.The following is due to Nguyen To Nhu [9, Theorem 2.1, Corollary 2.3℄:Theorem 2.4. For every ANR (resp. AR) X and k ∈ N, the hyperspa
es

Fin(X) and Fink(X) are also ANR's (resp. AR's).Note that every map f : X → Y indu
es a map f̃ : Fin(X) → Fin(Y )de�ned by f̃(A) = f(A) = {f(x) | x ∈ A}. Moreover, for a homotopy
h : X × I → Y , we de�ne h̃ : Fin(X) × I → Fin(Y ) and h̃k : Fink(X) × I →

Fink(Y ) for ea
h k ∈ N by h̃t(A) = h̃k
t (A) = ht(A) = {ht(x) | x ∈ A}. Thenit is easy to see that h̃ and h̃k are 
ontinuous, so they are also homotopies.

3. Universality. Given an admissible metri
 d for X, we use the admis-sible metri
 for XN de�ned as follows:
̺
(
(xi)i∈N, (yi)i∈N

)
= sup

i∈N

min{d(xi, yi), 2
−i}.Then ̺H is the Hausdor� metri
 indu
ed by the metri
 ̺.Proposition 3.1. Let X be a non-degenerate AR and W an open setin Fin(XN

f
) or Fink(XN

f
) for some k ∈ N. Then W is universal for E(X).Proof. Be
ause of similarity, we shall prove only the 
ase of Fin(XN

f
).Let Y = XN

f
⊂ XN. Sin
e the weak produ
t Y N

f
(∗) of Y with a base point

∗ ∈ Y is homeomorphi
 to XN

f
, we may show the universality of every openset W in Fin(Y N

f
(∗)). Let f : A → W be a map of A ∈ E(X). For ea
hopen 
over U of W , take a 
olle
tion Ũ of open sets of Fin((XN)N) su
hthat U = {U ∩ Fin(Y N

f
(∗)) | U ∈ Ũ}. Then W̃ =

⋃
Ũ is an open subsetof Fin((XN)N). Suppose that α : W̃ → (0, 1) is a map su
h that if a map

g : Y → Fin((XN)N) is α-
lose to f then g(Y ) ⊂ W̃ and g is Ũ -
loseto f . Sin
e Y is an AR, we have a map λ : Y × Y × I → Y su
h that
λ(x, x, t) = x for every t ∈ I, λ(x, y, 0) = x and λ(x, y, 1) = y (su
h a map is
alled an equi-
onne
ting map). Using this map, we 
an de�ne a homotopy
ϕ : Y N × Y × I → Y N as follows:
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ϕ(x, z, 1) = (x1, z, z, z, ∗, ∗, . . . ),

ϕ(x, z, 2−1) = (x1, x2, z, z, z, ∗, ∗, . . . ),

· · ·

ϕ(x, z, 2−n) = (x1, . . . , xn, z, z, z, ∗, ∗, . . . ),

· · ·

ϕ(x, z, 0) = (x1, x2, x3, . . . ) = xand for 2−n < t < 2−n+1,
ϕ(x, z, t) = (x1, . . . , xn, λ(xn+1, z, 2nt − 1), z, z, λ(z, ∗, 2nt − 1), ∗, ∗, . . . ).Observe that ̺(x, ϕ(x, z, t)) < t for any t > 0.Sin
e A ∈ E(X), we 
an take a 
losed embedding h : A →֒ Y = XN

f
su
hthat ∗ /∈ h(A) and h(A) is 
losed in XN. De�ne g : A → Fin(Y N) by

g(y) = {ϕ(x, h(y), α(f(y))) | x ∈ f(y)}.It is 
lear that g is 
ontinuous. Sin
e ̺(x, ϕ(x, h(y), α(f(y))) < α(f(y)), itfollows that ̺H(f(y), g(y)) < α(f(y)), that is, g is α-
lose to f . Note that
ϕ(Y N × Y × (0, 1]) ⊂ Y N

f
(∗), whi
h means g(A) ⊂ W . Thus, it remains toprove that g : A → W is a Z-embedding.To see that g is inje
tive, let g(y) = g(y′) and �x a point

x = (x1, . . . , xn, ∗, ∗, ∗, . . . ) ∈ g(y) = g(y′)with xn 6= ∗. Then xn−1 = h(y) = h(y′) by the de�nition of ϕ. Sin
e h is anembedding, we have y = y′.To see that g is 
losed, let ai ∈ A (i ∈ N) and G ∈ W̃ with g(ai) → G. Weshow that (ai)i∈N has a 
onvergent subsequen
e. By taking a subsequen
e,we may assume that α(f(ai)) → t ∈ I. Then t > 0. Otherwise, f(ai) → Gbe
ause ̺H(f(ai), g(ai)) < α(f(ai)) → 0. Hen
e, α(f(ai)) → α(G) > 0,whi
h is a 
ontradi
tion. Thus, we 
an 
hoose n ∈ N so that 2−n < t < 2−n+2.Take z = (zn)n∈N ∈ G ⊂ (XN)N. Note that ̺(z, g(ai)) → 0. For ea
h i ∈ N,we 
an 
hoose xi ∈ f(ai) so that ϕ(xi, h(ai), α(f(ai))) → z. For su�
ientlylarge i ∈ N, 2−n < α(f(yi)) < 2−n+2, in whi
h 
ase
prn+2 ◦ϕ(xi, h(ai), α(f(ai))) = h(ai),where prn : Y N → Y is the proje
tion onto the nth fa
tor. Therefore, h(ai) →

zn+2 ∈ XN. Sin
e h is a 
losed embedding of A not only into Y but also into
XN , it follows that (ai)i∈N is 
onvergent in A. Thus, g : A → W is 
losed.Moreover, g(A) is a 
losed subset of W̃ .Now, we shall show that g(A) is a Z-set in W . Let Y N

f
(∗′) be the weakprodu
t of Y with a base point ∗′ di�erent from ∗. Suppose V is an open
over of W . Choose a 
olle
tion Ṽ1 of open sets of Fin((XN)N) so that V =

{U ∩ Fin(Y N

f
(∗)) | U ∈ Ṽ1} and Ṽ =

⋃
Ṽ1 ⊂ W̃ . Let Ṽ2 be an open 
over
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of V whi
h is a star-re�nement of Ṽ1. Sin
e Fin(Y N

f
(∗′)) is homotopy densein Fin((XN)N), there exists a map i1 : Ṽ → Ṽ ∩ Fin(Y N

f
(∗′)) su
h that i1 is

Ṽ2-
lose to id
Ṽ
. Re
all that g(A) is 
losed in Ṽ . Hen
e, Ṽ \ g(A) is open in

Fin((XN)N). Thus, we 
an �nd a map
i2 : Ṽ \ g(A) → (Ṽ \ g(A)) ∩ Fin(Y N

f (∗))su
h that i2 is Ṽ2-
lose to id
Ṽ
. Observe that

g(A) ⊂ Fin(Y N

f (∗)) and Fin(Y N

f (∗)) ∩ Fin(Y N

f (∗′)) = ∅.Then we have i1(Ṽ ) ⊂ Ṽ \ g(A). The map i = i2 ◦ i1 : W → W is V-
lose to
idW and i(W ) ∩ g(A) = ∅. Therefore, g(A) is a Z-set in W .By repla
ing Y = XN

f
with Y = XN in the proof above, we 
an also showthe following proposition:Proposition 3.2. Let X be a non-degenerate AR and W an open set in

Fin(XN) or Fink(XN) for some k ∈ N. Then W is universal for E(X).By the same proof as for Proposition 2.2 of [1℄, we 
an obtain the followingnon-separable version:Proposition 3.3. Let C be an open and 
losed hereditary topologi
al
lass. If ea
h open subset of an ANR X is C-universal and every Z-set in Xis a strong Z-set , then X is strongly C-universal.Due to Proposition 2.4 in [14℄, when C = M1(τ) in the above, it is notne
essary to assume that every Z-set in X is a strong Z-set. Thus, we havethe following generalization of Proposition 7.3 of [19℄:Corollary 3.4. Let X be a non-degenerate AR su
h that M1(τ) ⊂
E(X) and let k ∈ N. Then Fin(XN), Fin(XN

f
), Fink(XN) and Fink(XN

f
) arestrongly M1(τ)-universal.By Toru«
zyk's 
hara
terization of Hilbert spa
es [17℄ (
f. [18℄), The-orem 2.4 and Corollary 3.4 imply the following non-separable version ofCorollary 2.4 of [9℄:Theorem 3.5. For ea
h k ∈ N, the hyperspa
e Fink(ℓ2(τ)) of the Hilbertspa
e ℓ2(τ) with weight τ is homeomorphi
 to ℓ2(τ).Remark 1. Due to Proposition 6.1 of [19℄, Fin(X) is a strong Z-spa
efor every normed linear spa
e X with dimX ≥ 1. As a 
ombination ofTheorems 2.1, 2.4 and Corollary 3.4, we have the main result of [19℄, that is,Theorem 3.6. The hyperspa
e Fin(ℓ2(τ)) of the Hilbert spa
e ℓ2(τ) withweight τ is homeomorphi
 to ℓ2(τ) × ℓf

2.
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4. Z-sets in Fin(X)Lemma 4.1. Let X be an ANR and A a Z-set in X. Then Fin(A) is a

Z-set in Fin(X), and Fink(A) is a Z-set in Fink(X) for any k ∈ N. Thus,if X is a Zσ-spa
e then Fin(A) and Fink(A) are also Zσ-spa
es.Proof. We deal with the 
ase of Fin(A). Sin
e X is an ANR, X \ A ishomotopy dense in X, hen
e Fin(X \A) is homotopy dense in Fin(X). Sin
e
Fin(A) ⊂ Fin(X)\Fin(X \A), it follows that Fin(A) is a Z-set in Fin(X). It
an be similarly shown that Fink(A) is a Z-set in Fink(X) for any k ∈ N.Note that every Z-set in ℓ2(τ) is a strong Z-set [7℄. Sin
e ℓ2(τ) × ℓf

2 ishomotopy dense in ℓ2(τ) × ℓ2 ≈ ℓ2(τ), every Z-set in ℓ2(τ) × ℓf
2 is a strong

Z-set by Lemma 2.2 of [8℄.Proposition 4.2. Let X be a non-degenerate AR. In the spa
es Fin(XN

f
)and Fink(XN

f
), k ∈ N, every Z-set is a strong Z-set. Thus, Fin(XN

f
) and

Fink(XN

f
) are strong Zσ-spa
es.Proof. We may assume that XN

f

an be embedded into Hilbert spa
e asa homotopy dense subset. Indeed, X 
an be embedded into a 
ompletelymetrizable AR X̃ as a homotopy dense subset [12℄. Hen
e, XN

f
is homo-topy dense in X̃N whi
h is homeomorphi
 to ℓ2(τ) [17℄. Thus, Fin(XN

f
) and

Fink(XN

f
) are homotopy dense subsets of Fin(ℓ2(τ)) and Fink(ℓ2(τ)), respe
-tively. Sin
e Fin(ℓ2(τ)) ≈ ℓ2(τ) × ℓf

2 and Fink(ℓ2(τ)) ≈ ℓ2(τ) (Theorems 3.6and 3.5), it follows from Lemma 2.2 of [8℄ that every Z-set in Fin(X) is astrong Z-set. Sin
e XN

f
is a Zσ-spa
e, Fin(XN

f
) and Fink(XN

f
) are Zσ-spa
es.Thus, they are strong Zσ-spa
es.Remark 2. It 
an also be shown that Fin(XN) is a strong Zσ-spa
eif X is a non-degenerate AR. Indeed, Fin(XN) 
an also be embedded intothe strong Zσ-spa
e Fin(ℓ2(τ)) ≈ ℓ2(τ) × ℓf

2 (Theorem 3.6). Sin
e every ARwhi
h is a homotopy dense subset of a Zσ-spa
e is also a Zσ-spa
e, we seethat Fin(XN) is a Zσ-spa
e.5. Absolute Borel 
lasses. Let d be an admissible metri
 for X. Thenthe Vietoris topology on Fin(X) is indu
ed by the Hausdor� metri

dH(A, B) = max

{
sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}
,where d(a, A) = infy∈A d(x, y). For ea
h k ∈ N, let ̺ be the metri
 for Xkde�ned as follows:

̺(x, y) = max
i≤k

d(xi, yi).Let qk : Xk → Fink(X) be the natural surje
tion de�ned by
qk((x1, . . . , xk)) = {x1, . . . , xk}.
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Then it is 
lear that

dH(qk(x), qk(y)) ≤ ̺(x, y) for any x, y ∈ Xk.This means that qk is uniformly 
ontinuous. Note that
card q−1

k (A) ≤ k! for ea
h A ∈ Fink(X).Lemma 5.1. The map qk is perfe
t.Proof. It su�
es to show that a sequen
e (xn)n∈N in Xk has a 
onver-gent subsequen
e if (qk(xn))n∈N is 
onvergent in Fink(X). Let qk(xn) be
onvergent to A ∈ Fink(X). For ea
h j ≤ k,
d(prj(xn), A) ≤ dH(qk(xn), A) → 0 (n → ∞),where prj : Xk → X is the proje
tion onto the jth fa
tor. Sin
e A is �nite,any subsequen
e of (prj(xn))n∈N has a 
onvergent subsequen
e. Then it iseasy to �nd a subsequen
e (xni

)i∈N su
h that (prj(xni
))i∈N is 
onvergent in

X for every j ≤ k, whi
h means that (xni
)i∈N is 
onvergent in Xk.Proposition 5.2. For a σ-lo
ally 
ompa
t metri
 spa
e X, Fin(X) isalso σ-lo
ally 
ompa
t , i.e., X ∈ a1(τ) ⇒ Fin(X) ∈ a1(τ).Proof. Let X =

⋃
n∈N

Xn, where Xn is a lo
ally 
ompa
t subset of Xwith Xn ⊂ Xn+1. Sin
e the perfe
t image of a lo
ally 
ompa
t spa
e isalso lo
ally 
ompa
t ([4, Theorem 3.7.12℄), it follows from Lemma 5.1 that
Fink(Xk) is lo
ally 
ompa
t. Then Fin(X) =

⋃
k∈N

Fink(Xk) is σ-lo
ally
ompa
t.Note that if f : X → Y is a 
losed map and 0 < card f−1(y) ≤ k (< ∞)for every y ∈ Y then dimY ≤ dimX + k − 1 [5, Theorem 3.3.7℄. Then, bythe same proof as for Proposition 5.2 above, we have the following:Proposition 5.3. X ∈ aω
1 (τ) ⇒ Fin(X) ∈ aω

1 (τ).By Proposition 5.1 of [19℄, if X is 
ompletely metrizable then Fin(X) is
σ-
ompletely metrizable, that is,

X ∈ M1(τ) ⇒ Fin(X) ∈ M1(τ)σ ⊂ a2(τ).We also have the following:
X ∈ M1(τ)σ ⇒ Fin(X) ∈ M1(τ)σ.Proposition 5.4. For ea
h 
ountable ordinal α ≥ 2,

X ∈ aα(τ) ⇒ Fin(X) ∈ aα(τ),

X ∈ Mα(τ) ⇒ Fin(X) ∈ Mα(τ).Proof. We handle the 
ases of X ∈ a2(τ) and X ∈ M2(τ). Then theresult 
an be obtained by trans�nite indu
tion.
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If X ∈ a2(τ), let X =

⋃
i∈N

Xi, where ea
h Xi is 
ompletely metrizable.Without loss of generality, we may assume Xi ⊂ Xi+1 for ea
h i ∈ N;then Fin(X) =
⋃

i∈N
Fin(Xi). Sin
e ea
h Fin(Xi) is σ-
ompletely metrizable,

Fin(X) is also σ-
ompletely metrizable. This means Fin(X) ∈ a2(τ).If X ∈ M2(τ), let X̃ be the 
ompletion of X. Sin
e X is Fσδ in X̃,
Fin(X) is also Fσδ in Fin(X̃). By Proposition 5.1 of [19℄, Fin(X̃) is Fσin the 
ompletely metrizable spa
e CldH(X̃). This means Fin(X) is Fσδ in
CldH(X̃). Thus, Fin(X) ∈ M2(τ).Remark 3. For ea
h k ∈ N, Fink(X) is 
losed in Fin(X). For the spa
es
Fink(X), k ∈ N, we have the same results as for Fin(X) above.6. Proof of the Main Theorem. First, we prove the following:Theorem 6.1. Let C be an open and 
losed hereditary , additive, produ
-tive and topologi
al 
lass of spa
es su
h that I

n × D(τ) ∈ C for ea
h n ∈ N.Suppose that there exists a C-absorbing set E in ℓ2(τ). Then Fin(E) and
Fink(E), k ∈ N, are strongly C-universal.Proof. By the C-universality of E, we have C ⊂ E(E). Sin
e Fin(EN

f
) and

Fink(EN

f
) are AR's by Theorem 2.4 and every Z-set is a strong Z-set in thesespa
es, it follows from Propositions 3.1 and 3.3 that Fin(EN

f
) and Fink(EN

f
)are strongly C-universal. On the other hand, EN

f
≈ E by Proposition 2.3,hen
e Fin(E) ≈ Fin(EN

f
). Thus, we have the result.Now, we shall prove the main theorem.Theorem 6.2. Suppose that E is homeomorphi
 to ℓf

2(τ), Λα(τ) or
Ωα(τ), where α ≥ 1 is a 
ountable ordinal. Then the hyperspa
es Fin(E)and Fink(E), k ∈ N, are homeomorphi
 to E.Proof. First, note that E is strongly universal for the 
lass C = E(E)and E ∈ Cσ = C. In �5, we have shown that Fin(E), Fink(E) ∈ C. Thesespa
es are strong Zσ-spa
es by Proposition 4.2 and are strongly C-universalby Theorem 6.1. Thus, Fin(E) ≈ Fink(E) ≈ E by Theorem 2.1.Sin
e every 
onne
ted E-manifold X 
an be embedded into E as an openset by Theorem 2.2, Fin(X) and Fink(X) 
an also be embedded into Fin(E)and Fink(E) as open sets, respe
tively. Sin
e X is 
onne
ted, Fin(X) is anAR (
f. Proposition 3.1 of [19℄) and ea
h Fink(X) is 
onne
ted. Hen
e, wehave the following theorem.Theorem 6.3. Suppose that E is homeomorphi
 to ℓf

2(τ), Λα(τ) or
Ωα(τ), where α ≥ 1 is a 
ountable ordinal. Let X be a 
onne
ted E-manifold.Then Fin(X) is homeomorphi
 to E and ea
h Fink(X) is a 
onne
ted E-manifold.
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