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Summary. We show that if T is an uncountable Polish space, X is a metrizable space
and f : T — X is a weakly Baire measurable function, then we can find a meagre set
M C T such that f[T\ M] is a separable space. We also give an example showing that
“metrizable” cannot be replaced by “normal”.

1. Introduction. It is known that for a partition A of the real line
consisting of sets of Lebesgue measure zero, the union of some of these sets
is Lebesgue nonmeasurable. An analogous result is known for sets of the
first category (Lebesgue measurability is then replaced by having the Baire
property). Actually, this result remains true if in the above statement, the
real line is replaced by any Polish space, the o-ideals of sets of Lebesgue
measure zero or of sets of the first category are replaced by any o-ideal I
with a Borel base, and instead of assuming that the family A of sets of an
ideal is a partition of the space, we assume that A is point-finite and its
union is not in I. The conclusion says now that there exists a subfamily
A" of A whose union is not in the o-algebra generated by the o-algebra of
Borel sets and I (see [1]). This result is called the Four Poles Theorem in
the literature.

It is known that within ZFC one cannot replace the assumption that A
is point-finite by .4 being point-countable (see [5, p. 64]).

In various cases it is possible to obtain more than nonmeasurability of the
union of a subfamily of A. Namely, the intersection of this union with any
measurable set that is not in I is nonmeasurable (recall that measurability is
understood here in the sense of belonging to the o-algebra generated by the
family of Borel sets and I). Such a strong conclusion can be obtained for the

2000 Mathematics Subject Classification: 03E35, 03ET75.
Key words and phrases: Baire property, meagre set, measurable function.

[421]



422 S. Zeberski

ideal of first Baire category sets under the assumption that A is a partition,
but without assuming anything about the regularity of the elements of A
(see [3]).

The Four Poles Theorem has a variety of applications. Many of them can
be found in [2]. Recall that a function f : R — X is called Baire measurable
if for every open set U C X the set f~![U] has the Baire property. In a
similar way we can define B[I]-measurable functions (for I as in the Four
Poles Theorem). One of the results from [2] says that if X is a metrizable
space and f : R — X is a B[I]-measurable function, then we can find a set
A € I such that f[R\ A] is separable.

In this paper we show a similar result for a wider class of functions. The
proof uses the result from [3]. We also show that in our result the assumption
that X is metrizable cannot be replaced by X being normal.

2. Definitions and notations. The cardinality of a set A is denoted
by |A|. Cardinal numbers will usually be denoted by x and A. The family of
all subsets of cardinality not greater than » of a set A is denoted by [A]=F.
The set of real numbers is denoted by R. An ideal I of subsets of a set X is a
family of subsets of X which is closed under finite unions and taking subsets
and such that [X]<¥ C I. A family of sets is a o-ideal if it is an ideal and
is closed under countable unions. For an ideal I, the symbol I* denotes its
dual filter.

For a topological space T, we denote by O the family of all open subsets
of T', and by Bt the family of Borel subsets of 7. If I is an ideal of subsets of
aset X and S is a field of subsets of X, then S[I] denotes the field generated
by SUI. If I is also a o-ideal and S is a o-field then S[I] is also a o-field.

Let T be an uncountable Polish topological space. The o-ideal of all
meagre subsets of 7" is denoted by K7 . The o-ideal of Lebesgue measure
zero subsets of R will be denoted by IL and the o-ideal of sets of the first
Baire category in R will be denoted by K. Then Bg[L] is the o-field of
Lebesgue measurable subsets of R and Bg[K] is the o-field of subsets of R
with the Baire property.

If I is an ideal of subsets of a topological space T then we say that the
ideal I has a Borel base if for each set X € I there exists a set Y € By such
that X C Y. The two classical ideals K and L have Borel bases.

Let B be a complete Boolean algebra. We say that B satisfies c.c.c. (count-
able chain condition) if every antichain of elements of B is countable.

For any infinite cardinal k consider the topological sum of the family of
spaces {[0,1] x {&} : & < k}. Identify in this sum all points (0,¢), where
¢ < K, and denote the space obtained by J.. It is well known that any
metrizable space can be embedded into a countable product of spaces J,,,
(see [4]).
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If X' is a metrizable space and A is an open cover of X then, by Stone’s
theorem, we can find a family {A, }neo such that (J,c, A, is a point-finite
open cover of X and each A, is a family of pairwise disjoint open sets and
each element of A,, is contained in some element of A. This result can be
found in [4].

3. Weakly measurable functions. In this section 7' denotes an un-
countable Polish space. Recall the following definition.

DEFINITION 3.1. Let N C X C T. We say that the set NV is completely
Baire nonmeasurable in X if

VAeBr)(ANX €Ky — (ANN ¢ Kp) A(AN(X\N) ¢ Kr)).
In [3] we can find the following theorem.

THEOREM 3.2. Let P be a pairwise disjoint family of meagre sets such
that P ¢ Kp. Then there exists a subfamily P' C P such that |JP’ is
completely Baire nonmeasurable in | JP.

DEFINITION 3.3. Let I C P(T) be a o-ideal with a Borel base such that
the Boolean algebra By /I satisfies c.c.c. Let A be any subset of 7. We denote
by [A]; the Borel envelope of A, i.e. the minimal (in the sense of the algebra
Br/I) Borel set containing A.

The set [A]; is well defined since the algebra Br/I satisfies c.c.c. To find
[A]7, take the maximal antichain A of I-positive Borel sets which are disjoint
from A. The family A is countable. So, its union | J.4 is a Borel set. The
complement (| J.A)¢ is the required envelope.

DEFINITION 3.4. Let X be a topological space and f : T — X be a
function. We say that f is weakly Baire measurable if

YU,V eOx)UNV =0A U €Kp A fHV] € Ky
— [ UNke # [ VRS-

First, notice that every Baire measurable function f : T — X is weakly
Baire measurable. Indeed, if we have two disjoint open sets U,V C X such
that f~1[U] € Ky and f~1[V] ¢ Kr then since the latter sets are disjoint
and have the Baire property, [f~[U]lk, N [f ![V]]k, € Kr. This implies
that the condition of weak Baire measurability is satisfied.

On the other hand, we can easily find a function f : R — R which is
Lebesgue measurable but not weakly Baire measurable. Namely, consider
a partition R = K U L such that L € L and K € K. Fix any partition
L = Ly U Ly such that [L1]x = [L2]k = [R]g. The characteristic function of
L; is Lebesgue measurable but not weakly Baire measurable.

Recall the following well known result due to Banach (see [6]).
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THEOREM 3.5 (Banach). Let X be any topological space. Consider the
family
A={U € Oy : U is meagre in X}.

Then |J A is also meagre in X.
The next theorem is similar:

THEOREM 3.6. Let X be any metrizable space. Let f : T — X be a weakly
Baire measurable function. Consider the family

A={fU] €Ky :U € Ox}.
Then |J A is also meagre in T.
Proof. Let A={U € Ox : f~}[U] € Kr}. Then JA = f!]

X is metrizable, U/T is also metrizable. So, we can find families
satisfying the following conditions:

b QAV = UnEw UA/’I’L)
o A, is a family of pairwise disjoint open sets,
o (YU € A,)(3V € A)(U C V).
From the above conditions it follows that .Zn C A for each n € w. Define
Ay ={fU]: U € A,}.

We claim that (J.A, € Kp. Suppose otherwise. Then each A, satisfies
the assumption in Theorem 3.2. Hence we can find two disjoint open sets
Uo, U1 C X such that f~1[Up] and f~1[U;] are completely Baire nonmea-
surable in |J A, In particular, [f~[Uo]lk, = [f'[U1]]k,, which contradicts
the weak Baire measurability of f.

Notice that (JA = ,c, UAn. So, JA € Kr. u

THEOREM 3.7. Let I C P(T) be a o-ideal with a Borel base such that
Br/I satisfies c.c.c. Let {A¢ : & € wi} C P(T) be any family. Then we
can find two disjoint countable subsets B,C of wi such that [Jecp Aelr =

[Ugec AS]I-
Proof. For a < 3 < wy let
A= {Ac:a<g<p)

Proceeding by transfinite induction, we construct a sequence {ag : £ < wi}
of ordinals less than w; such that

(V& ¢ € wi)(€ < ¢ <n— [Aaglr = [AaZ]r)-

In step (3 consider the sequence {[A7 ]; : 0 < & <wi}, which is increas-

. Since

U
A, (n € w)

ing. Since Bp/I satisfies c.c.c., this sequence is constant from some ~y on.
Put agy =17.
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Now, consider the sequence {[Ag?”l][ : & < wy}, which is decreasing.
Since By /I satisfies c.c.c., this sequence is constant from some 7y < w; on.
Put

B = (O"Y’ O"}”ﬂ)a C= (a’erl’ a7+2)'
These sets satisfy the required condition. m

THEOREM 3.8. Let X be a metrizable space. Let f : T — X be a weakly
Baire measurable function. Then there is a meagre set M C T such that

fIT \ M] is separable.

Proof. Consider the family A = {f~}[U] € Ky : U € Ox}. By Theorem
3.6 we know that | J A € Kp. Define M = J A.

As f[T'\ M] is metrizable, we can treat it as a subspace of [], ., Jx,-
Assume that each k,, is the least possible cardinal.

We will show that x,, < w for each n € w. Suppose otherwise. Without
loss of generality we can assume that xg = w;. This means that there exists
a family {U, : @ < w;} of nonempty pairwise disjoint open sets in f[T"\ M].
The family {f~'[Us] : @ < w;} satisfies the condition f~![U,] ¢ Kr for
all . Applying Theorem 3.7 to this family, we get a contradiction to weak
measurability of f. So, k, < w for each n € w. This means that f[T"\ M] C
[1,.c. Jo, which implies that f[T"\ M] is separable. =

4. Nonmetrizable spaces. Now, let us show that Theorems 3.6 and
3.8 do not hold if we replace “metrizable” by “normal”. In fact, we will work
with the space wy equipped with the order topology.

Note that we cannot hope to find a counterexample in ZFC, because
in some models the Four Poles Theorem or even its stronger version about
completely nonmeasurable unions holds without any assumptions on the
given family of small sets. In such models Theorems 3.6 and 3.8 hold for any
topological space X.

Therefore our considerations will take place in a particular model of ZFC.
Namely, let us start with a model V' which satisfies GCH. We can extend it
to a model V' by adding ws random reals. The universe V' is good enough
for what we need. Notice that in V'’ we have 2% = 291 = w,.

Let us start with an easy observation.

Cram 4.1. In V' there exists a family {K“}acw, € K such that for
every uncountable set A C wy we have | J ey K =R.

Proof. Let {rq}acw, be the family of generic random reals. Fix a partition
of R into a Gy set of Lebesgue measure zero and an F, set of first Baire
category, R = K U L, where K € K and L € L. Put

K*=K+rqo={k+rq:keK}.
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Let A C wy be uncountable. Assume that there is a real number z € R
satisfying = ¢ (J,cq K. So,if a € Athenz ¢ ro + K. Thus ro ¢ 2 — K =
{zr —k : k € K}. The set x — K is meager. The real number x belongs to
V[ra : a € I], where I is a countable subset of wy. Since A is uncountable,
there exists { € A\ I. So, 7¢ is a random real over V[r, : o € I]. But the
set (z — K)¢ is in L and is coded in the model V[r, : a € I]. Moreover,
re € (x — K)°, which gives a contradiction. =

The next claim is a generalization of the result presented in [5, p. 64].

CrLaM 4.2. In V' the following statement holds. Fix any o-ideal I C
P(w1). There exists a point-countable family { K }qocw, of meagre subsets of
the real line such that for every set A C wy we have

Ael— K€K,
acA

A¢T— | JK*eK"
acA

Proof. Fix a family {K%},cw., as in Claim 4.1 and fix a bijection ¢ :
P(w1) — wa. The required family {K*},ec., will have the following proper-
ties:

(1) (Va <wi)(K* C K®),

(2) (VA€ T)({K®: ac A} C K¢W),

(3) (VA ¢ I)(H{K*:ac A} UK?A =R).

To construct a family satisfying the above conditions, we write them in the
following form:

(1) (Vz e R)VA € T)(z ¢ KW — z ¢ |J{K*: a € A}),
(2) (Vo e R)(VA ¢ T)(z ¢ K¢ — 2 € J{K*: o € A}).

Using Claim 4.1 we deduce that for each x € R there are only countably
many A C w; such that = ¢ KA Let

I(x)={Ael:x¢ K¥N},
It(2)={A¢T:z¢ KM}

Let B(z) = JZ(z). Then B(z) € Z and for each A € It (z), we have
A\ B(z) ¢ Z. In particular A\ B(z) # 0. So, it is possible to ensure that

(Vz)(VA € IT(2))(Ba € A\ B(z))(x € I?a)
This finishes the construction of the required family. =

The next result is of independent interest.
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Cra 4.3 (Cichoni). In V' the following statement holds. Fiz any o-ideal
Z C P(wy). Then there exists a function g : R — wy such that

(VA Cwi)(A €T < g A] € K).
Proof. Let {K®}ac, be as in Claim 4.2. Define
K= U{I?O‘ x{a}:a€w}.

Fix an enumeration { A, : @ < wa} of the Z-positive subsets of w. Fix also an
enumeration {M, : @ < wa} of the meagre subsets of R and an enumeration
{Zq : @ < wa} of all real numbers. We will construct an increasing sequence
{9a}a <w, of functions by transfinite induction. In step o we will construct
a function g, satisfying the following conditions:

(1) ga g K7

(2) zq € dom(ga),

(3) Ugca 9¢ € as

(4) [9al < wi,

(5) (V§, ¢ < a)(Fr e R)(x & M¢ A g(x) € Ag).
So, at step «, we have to add to U£<a ge¢ at most wi new points of our
function g. Since |R| = wy, this is possible. Put g = | This is the
required function. =

acw? Yo

Now, we are able to formulate the result which shows that Theorem 3.6
cannot be generalized too much.

THEOREM 4.4. In V' the following statement holds. Let Torqer be the
order topology on wy. There is a function f : R — (w1, Torder) Satisfying the
following conditions:

(1) f is Baire measurable,

Proof. Applying Claim 4.3 to the ideal V'S, of all nonstationary subsets
of wy, we obtain a function f : R — wy. This function is Baire measurable.
Indeed, take any open subset U of wi. There are two possibilities.

If U¢ is unbounded, then since it is closed, U € N'S,,, and f~![U] € K
If U is bounded, then U € N'S,, and f~[U¢] € K. So f~1[U] € K*. In
both cases we get a set with the Baire property.

Since every point in w; can be covered by an open set which is nonsta-
tionary, we have | J{f'[U] € K: U € Torder} = R. m

It can be easily seen that the function obtained in Theorem 4.4 is also a
counterexample to a generalization of Theorem 3.8 to functions with images
in normal topological spaces.
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