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Summary. It is known that, for a regular riemannian foliation on a compact manifold,
the properties of its basic cohomology (non-vanishing of the top-dimensional group and
Poincaré duality) and the tautness of the foliation are closely related. If we consider
singular riemannian foliations, there is little or no relation between these properties.

We present an example of a singular isometric flow for which the top-dimensional basic
cohomology group is non-trivial, but the basic cohomology does not satisfy the Poincaré
Duality. However, we recover the Poincaré Duality in the basic intersection cohomology.

It is not accidental that the top-dimensional basic intersection cohomology groups of
the example are isomorphic to either 0 or R. We prove that this holds for any singular
riemannian foliation of a compact connected manifold. As a corollary, we show that the
tautness of the regular stratum of the singular riemannian foliation can be detected by
the basic intersection cohomology.

For regular riemannian foliations on compact connected manifolds there
is a very close relation between tautness (the existence of a bundle-like metric
for which all leaves are minimal submanifolds) and the properties of the basic
cohomology. In fact, for a regular riemannian foliation F of codimension n on
a compact connected manifold M, under some assumptions of orientability
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the following conditions are equivalent (cf. [3, 4, 9, 10, 24]):

(i) F is taut.
(ii) H"(M/F) # 0.

(iii) H*(M/F) =R.

(iv) H*(M/F) satisfies the Poincaré Duality (PD).

Although the basic cohomology of a singular riemannian foliation (SRF for
short) on a compact manifold is finite-dimensional (cf. [25]), the relation
between the above conditions is not straightforwardly exportable to the sin-
gular framework. As pointed out in [11], the singular nature of a SRF on
a compact manifold prevents any global metric on it from making all the
leaves minimal (see also [17]).

The example presented in this paper shows that if, for flows, we replace
“taut” by “isometric’—these two properties are equivalent for regular rie-
mannian flows (see [15])—we cannot recover PD. To recover it we have to
adapt the basic cohomology to the stratification defined by the SRF. For
that purpose, we have defined the “basic intersection cohomology” (BIC for
short) for SRFs (see [18, 19]). The calculations for the example show that its
BIC satisfies the Poincaré Duality. It has been proven in [16] that so does
the BIC of any singular riemannian flow (isometric or not).

The main part of this note is dedicated to the proof of the equivalence
of conditions (i)-(iii) for SRFs on compact connected manifolds for the BIC.
We also prove that the top-dimensional BIC groups are isomorphic to 0 or R.

The authors would like to thank the referee for many useful comments
which helped improve the paper.

In what follows, M is a connected, second countable, Hausdorff, smooth
(C*°) manifold of dimension m without boundary. All the maps considered
are smooth unless otherwise indicated. If F is a foliation on M and V is a
saturated submanifold of M we shall write (V,F) for the induced foliated
manifold and Fy for the induced foliation.

1. Singular riemannian foliations (!). We are going to work in the
framework of the singular riemannian foliations introduced by Molino.

1.1. The SRF. A singular riemannian foliation (SRF for short) on a
manifold M is a partition F of M into connected immersed submanifolds,
called leaves, with the following properties:

I. The module of smooth vector fields tangent to the leaves is transitive
on each leaf.

(*) For notions relating to riemannian foliations we refer the reader to [13, 24| and for
singular riemannian foliations to [13, 12, 14, 1].
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II. There exists a riemannian metric g on M, called an adapted metric,
such that each geodesic that is perpendicular to a leaf at one point
remains perpendicular to every leaf it meets.

The first condition implies that (M, F) is a singular foliation in the sense
of [23] and [22]. Notice that the restriction of F to a saturated open subset
produces a SRF.

In the next two subsections we recall some basic properties of SRFs which
can be found in [13, 1] or are easy corollaries of the properties proved there.

1.2. Stratifications. Classifying the points of M according to the dimen-
sion of leaves yields a stratification Sz of M into smooth embedded sub-
manifolds. The restriction of F to a stratum S is a regular foliation Fg. The
strata are ordered by: S; < Sy < S C Ss.

There are several types of strata. The minimal (resp. maximal) strata
are the closed strata (resp. open strata). The open strata are called regular
and the others singular. We denote by S% the family of singular strata. In
the case of SRFs, the singular strata are of codimension greater than 1, so
there is just one regular stratum R if the manifold is connected (cf. [13]).
The dimension of the foliation F is the dimension of the biggest leaves of
F, that is, dim F = dim Fg. The union of the singular strata is the singular
part ¥ = M \ R.

A stratum S is a boundary stratum if there exists a stratum S’ with
S =< 8" and codimy; F = codimgs Fg — 1. This terminology can be explained
by the following example. Take M = S* and F given by the orbits of the
T2-action (u,v)- (21, z2,t) = (u-21,v-20,t), where S* = {(21, 20,t) € C* xR |
|21]? + |22|2 +t2 = 1}. Here, the north pole (0,0, 1), the south pole (0,0, —1)
and the cylinders {z; # 0}, {z2 # 0} are boundary strata and we have
M/F =D = {(z,y) € R? | 2 + y* < 1} . The boundary (M /F) is given
by S!, the union of the quotient set of the boundary strata. In fact, the link
of the maximal boundary strata is a sphere with the one leaf foliation (see
for example [18] for the notion of a link).

The depth of S, written depth S, is defined to be the largest ¢ for which
there exists a chain of strata Sp < S; < --- < S;. So, depth Sz = 0 if and
only if the foliation F is regular.

1.3. Tubular neighborhood. Any stratum S € Sr is a proper submani-
fold of the riemannian manifold (M, F, i), so it has a tubular neighborhood
(Ts, 7s,S). Recall that associated with this neighborhood are the following
smooth maps:

e The radius map os: Ts — [0, 1] defined fiberwise: z — |z|. Each t # 0
is a regular value of gg. The pre-image ggl(O) is S.
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e The contraction Hg: Ts x [0,1] — Ts defined fiberwise: (z,7) + 7 - 2.
The restriction (Hg);: Ts — Ts is an embedding for each ¢ # 0 and
(Hs)o =T5.

These two maps satisfy og(r - u) = rog(u). The tubular neighborhood

can be chosen to have the following two important properties:

(a) Each (og'(t),F) is a SRF.
(b) Each (Hg):: (Ts, F) — (Ts,F) is a foliated map.

We shall say that (Ts, 7g,5) is a foliated tubular neighborhood of S. The ex-
istence of foliated tubular neighborhoods follows from the homothetic trans-
formation lemma of [13].

The hypersurface Dg = pg'(1/2) is the core of the tubular neighborhood.
We have the inequality depth S Fpg < depth S Frg-

2. Basic intersection cohomology (?). Goresky and MacPherson in-
troduced the intersection cohomology for the study of singular manifolds.
This cohomology generalizes the usual de Rham cohomology for manifolds
and has similar properties. Following the same principle, the basic intersec-
tion cohomology has been introduced for the study of SRFs, generalizing the
basic cohomology.

We fix a manifold M endowed with a SRF F. We write m = dim M and
n = codimps F.

2.1. The BIC. A perversity is a map p: S — Z = Z U {—00,00}. There
are several particular perversities:

e the constant perversity ¢, defined by &(S) = ¢, where ¢ € Z,

e the (basic) top perversity t, defined by #(S) = n — codimg Fg — 2,
(cf. 1.2),

e the boundary perversity 0, defined by 0 = min(0, 7).

The basic intersection cohomology (BIC for short) IH;(M/F) is the co-
homology of the complex (25(M/F) of p-intersection basic forms. A p-inter-
section basic form is a basic form defined on R and having a vertical degree
lwl||s, relative to a foliated tubular neighborhood (7, 75, S), lower than p(.S)
for each singular stratum S (see [18, 19] for the exact definition). Recall that
lwlls < ¢ when w(vp,...,v;,—) = 0 for each family {vo,...,v;} of vectors
tangent to the fibers of 7g.

If depth Sz = 0 then H;(M/F) = H*(M/F) for any perversity p.

2.2. Mayer-Vietoris. A covering {U,V'} of M by saturated open subsets
has a subordinate partition of unity made up of basic functions (see the

(?) For notions relating to basic cohomology we refer the reader to [5, 25|, for basic
intersection cohomology to [18, 19] and for intersection cohomology to [6, 2].
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lemma below). For such a covering we have the Mayer—Vietoris sequence
(1) 0— Q%(M/]—") — Q%(U/}") & Q};(V/}") — Q%((Uﬂ V)/F)—0,

where the maps are defined by restriction. The third map is onto since the ele-
ments of the partition of unity are 0-basic functions and (25(e/F)(25(e/F) C
§25(e/F). Thus, the sequence is exact. This result is no longer true for more
general coverings.

For the existence of the above Mayer—Vietoris sequence we need the fol-
lowing folklore result, well known for compact Lie group actions and regular
riemannian foliations.

2.2.1. LEMMA. A covering {U,V'} of M by saturated open subsets has a
subordinate partition of unity made up of basic functions.

2.3. Compact supports. In this note we need to work with the BIC with
compact supports. The support of a differential form w € Q%(M/]:), written
suppw, is the closure in M of {x € M | w(x) # 0}. We denote by 25 .(M/F)
the complex of p-intersection basic forms with compact support. Its cohomol-
ogy is Hy .(M/F). When M is compact, we have IH, .(M/F) = H5(M/F),
and if depth Sz = 0 then HJ (M /F) = H;(M/F) for any perversity p.

Associated to a saturated open covering {U, V'} of M we have the Mayer—
Vietoris sequence (see Lemma 2.2.1)

(2) 0= ((UNV)/F)— 25 (U/F) & (25 (V/F)
— 25 (M/F) — 0,

where the maps are defined by inclusion. The third map is onto since the
elements of the partition of unity are 0-basic functions. Thus, the sequence
is exact.

2.4. ExaMPLE. Consider the isometric action @: R x S§2dt2 _, §2d+2
given by the formula

D(t, (20, .-, 24,2)) = (e“omtzo, e e“dmtzd,:c),

with (ag,...,aq) # (0,...,0). Here, S?*¥*2 = {(2g,...,24,2) € C? x R |
|z0|2 + - -+ + |2q|> + 22 = 1}. There are two singular strata: the north pole
S1=1(0,...,0,1) and the south pole Sy = (0,...,—1). The regular stratum
is R = S%*! x]-1,1[. Let 7: R — R a smooth map, depending just on
the |1, 1[ variable, with 7 = 0 on |0,1/4[ U |3/4,1] and S[l)r = 1. The basic
cohomology H*(S?¥+2/ F) of the foliation defined by this flow is the following:

10 1 2 3 4 5 e 2d 2d+1
1 0 0 [drAe 0 [drAe?] -+ 0 [drAed]
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where e € Q%(82d+2/,7:) is an Fuler form (cf. [8]). These calculations come
directly from the equalities

(3) 1715 - 0, [drls, = _007' HGjHS‘k = HrejHSk = 2j7
|dr ANellls, = —o0, drANel =d(re),

for k=1,2and j € {1,...,d}.

We notice that the top-dimensional basic cohomology group is isomorphic
to R, but this cohomology does not satisfy the Poincaré Duality in spite of
the fact that the flow is isometric! The classical basic cohomology does not
take into account the stratification Sr. However, even for the SRF, the basic
cohomology is finite-dimensional (cf. [25]).

If we consider the BIC of our example the picture changes. The following
table presents the BIC ]H%(Sk:zd”/}") for the constant perversities:

1| 0 1 2 3 4 5 6 7 k—2 k-1

P

<0 0 [dr] 0 J[eAdr] 0 [e2Adr] 0 [e*Adr] 0 [e*Adr]
0,1 1 0 0 J[eAdr] 0 [2Adr] 0 [e2Adr] 0 [etAdr]
2,3 0 0 [ 0 0 [e2Adr] 0 [ Adr] 0 [e*Adr]
4,5 1 0 e 0 [€?] 0 0 [e*Adr] 0 [e*Adr]
k—4,k-3| 1 €] [€?] 0 (%] 0 e 0 [e*Adr]
>k—2 1 [e] [€?] [€%] 0 [e?] 0

These calculations come directly from the equalities (3).

We notice that the top-dimensional basic cohomology group is isomorphic
either to 0 or R. These cohomology groups are finite-dimensional. We recover
the Poincaré Duality in the perverse sense:

Hy(8"/F) = Hy (8 F)

for two complementary perversities: p+q =1 = k — 3.

This is more general. We have proved that the basic intersection coho-
mology is finite-dimensional and satisfies this perverse Poincaré Duality for
the linear foliations (cf. [19, 20]) and for riemannian flows (cf. [16]).

3. Top class. The top group H™(M/F) of the basic cohomology of a
regular riemannian foliation F defined on a connected compact manifold M
is R or 0. Here n = codim;; F. We prove the same result for the top group
HZ(M/F) when F is a SRF defined on a connected compact manifold M.
To do so, we need three lemmas.
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3.1. LEMMA. Consider a foliated tubular neighborhood (Ts,Ts,S) of a
singular stratum S € Sx. Fiz a smooth function f:]0,1[— [0, 1] with f=0 on
10,1/4] and f =0 on [3/4,1]. The map [w] — [df Aw] defines an isomorphism
I[:T;’_Cl(DS/}") = H3 . (Ds x 0,1[ /F x I), where T is the point foliation of
the interval.

Proof. Consider the following differential complexes:
A" ={w € 25(Ds x ]0,3/4[/F x I) | suppw C K X [c,3/4]
for a compact K C Dg and 0 < ¢ < 3/4}
B* = {w € 25(Ds x |1/4,1[/F x I) | suppw C K x ]1/4,c]
for a compact K C Dg and 1/4 < ¢ < 1}
C" ={we 25(Ds x]1/4,3/4[/F x I) | suppw C K x |1/4,3/4]
for a compact K C Dg}.
Proceeding as in (2) we get the short exact sequence
0— £ (Dsx]0,1[/F xI) - A" ©B" — C* — 0.
The associated long exact sequence is
- H7HCY) S L (Ds % 10,1[/F x T) — H(A*) & H'(B")
— H(CY) = -,
where the connecting morphism is J(jw]) = [df A w].

Before performing the calculation let us introduce some notation. Let [
be a differential form in 2°(Dgx]a, b[) which does not include the dt factor.
Denote by {© 3(s)Ads and | 3(s) Ads the forms in £2/(Dg x ]a, b[) obtained

C
from ( by integration with respect to s, that is,

(§86s) A ds) (@, )@, ., 5) = § (Bl 5)(@, .. 7)) ds

(Sﬁ(s) Ads) (2, ) (1, ..., T) =\ (B, s)(T1, ..., 7)) ds,

Q e & ok e

where ¢ € Ja, b, (z,t) € Dg x ]a,b[ and (1, ..., ;) € T(5(Ds x ]a,b]).
Each differential form w € A*, B*, C* can be written as w = a + dt A 8
where a and 3 do not contain dt. Consider a cycle w = o+ dt A 3 € A’
with suppw C K X [¢,3/4] for a compact K C Dg and 0 < ¢ < 3/4. We
have w = —d(Si/Q B(s) Ads). Since supp Si/Q B(s)ANds C K x [c,3/4], we get
H*(A*) = 0. In the same way, we get H*(B*) = 0. We conclude that
§: H(C*) — H} (Dg x 10,1[/F x I)

is an isomorphism.
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The foliated homotopy L: Dg x |1/4,3/4] x [0,1] — Dg x ]1/4,3/4],
defined by L((u,t),s) = (u, (1—s)t+s/2), satisfies L(K x]1/4,3/4[x[0,1]) C
K x]1/4,3/4] for each compact K C Dg. So, the map [a] — [a] induces an
isomorphism
(4) I: H3 .(Ds/F) — H*(C").

The isomorphism dol gives the result. m

3.2. LEMMA. Consider a foliated tubular neighborhood Ts of a singular
stratum S € Sg. The inclusion Ts \ S — Tg induces an onto map

v Hy ((Ts\ S)/F) — Hy (Ts/F).
Moreover, if p(S) < t(S) then ¢ is an isomorphism.
Proof. We proceed in several steps.

(a) Rewriting IHy .(Ts/F). We have seen in [19] that we can identify
2 (Ts/F) with the complex
€ 23.(Ds x 0,1/F x ) | [lpgsfoylivs < B(S) and
ldw| pgxgoyllrs < D(S)}-
Here || — ||y denotes the wertical degree relative to the fibration 7g: Dg =

Dg x {0} — S. Recall that ||0||r¢ = —oo. Under this identification, the
complex (2 ((Ts\ S)/F) becomes (2 (Dg x ]0,1[, F x I).

(b) Chasing Hy .(Ts/F). Consider the complex

lw|pgx{oyllzs < P(S),
ldw|pgx oy llrs < P(S) and
suppw C K x [0,3/4]

for a compact K C Dg

D* = { w e Q2%(Ds x [0,3/4]/F x 1)

and the complexes B*, C* as in the proof of Lemma 3.1. The short exact
sequence

0— 2 (Ts/F)—=D"®B*—-C" -0
produces the long exact sequence
— 7" (DY) @ BN (BY) — H™H(CY) & H2 (Ts/F)
— H"(D*)® H"(B*) — H"(C*) - 0
where the connecting morphism is ¢’([w]) = [df A w] for a smooth map
f:0,1] — [0,1] with f =0 on [0,1/4] and f =0 on [3/4,1].

(c) Relating H*(C*) and H*(D*). We have already seen that H*(B*) = 0.
Consider a cycle w = a+dt A 3 € D". For degree reasons, we have «(0) =0
and then w = d({, B(s) A ds). Since supp {, 8(s) Ads C K x [0,3/4] we
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get H"(D*) = 0. From the above long exact sequence, we obtain the exact
sequence
B (DY) — HY(C) S R (Ts/F) — 0.

(d) Conclusion. Since the map I is an isomorphism (cf. (4)) the compo-
sition &0l : Hg;l(DS/}') — IH3 (Ts/F) is an onto map. Lemma 3.1 shows
that ¢ is an onto map. It remains to prove that ¢ is an isomorphism when
p(S) < #(S). We prove H" }(D*) = 0. Proceeding as in (c) it suffices to
consider a cycle w = a +dt A 3 € D""1([0,3/4]) and show that a(0) = 0.

Suppose that a(0) # 0. The foliation F induces a foliation F-, tangent to
the fibers of 7g: Dg — S such that dim F = dim F 4+ dim Fg (cf. [13, 18]).

. -1 .
By degree reasons, since a(0) € 27" (Dg/F), we can write
t(S) = p(S) = [a(0)]|r
= (dim M — dim S) — 1 — (dim F — dim Fg) = £(S) + 1.

dimension of the fiber of 7g dim Frg

This contradiction gives a(0) =0. m

3.3. LEMMA. Let N be a compact manifold endowed with a RF N. If O
is a connected saturated open subset of N, then H'(O/N) =10 or R.

Proof. We proceed in two steps.

The foliation N is transversally orientable. The result comes essentially
from the basic Poincaré duality theorem for non-compact manifolds (cf. [21]).
The foliation Ny is a transversally orientable complete foliation since O is
a saturated open subset of the compact manifold N. Then we have the iso-
morphism H*(O/N) = H°(O/N,P) where P is the homological orientation
sheaf of Np. Since the manifold O is connected, and the sheaf P is locally
trivial and the stalk is R, it follows that H?(O/N) =0 or R.

General case. Consider the transverse orientation covering 7: (N*, N*)
— (N, N) (see [7]). The covering is given by a foliated action of Zy. The foli-
ation N'* is a transversally orientable RF. We have the equality H'(O/F) =
(H?(7=Y(0)/F*))%2. The subset 7~1(O) is a saturated open subset of N*.
If 771(O) is connected then the result comes from the previous case. Other-
wise 771(O) has two connected components foliated diffeomorphic to O and
the Zg-action interchanges them. The result now comes from the previous
case. m

The first result of this note is the following.

3.4. THEOREM. Let M be a connected compact manifold endowed with
a SRF F. If n = codimy; F and p is a perversity on M, then

HZ(M/F) =0 or R.
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Proof. For each i € Z we write:

e Y; C M for the union of the strata of dimension less than or equal
to 1,
e T; for the tubular neighborhood of X; in M \ X;_;.
We have M\ X¥_; = M and M\ ¥,,_1 = R, where m = dim M. Lemma 3.3
gives H'(R/F) = 0 or R. We get the result if we prove that the inclusion
M\ X; — M\ Y;_; induces an onto map

H (M X3)/F) — H!(M\ Xi1) [ F)

for i € {0,...,m — 1}.
From the open covering {M \ X, Ui, g—; Ts} of M \ X;_1, we obtain
the Mayer—Vietoris sequence

P HX(Ts\S)/F)— HN(M\%)/F)e @ H!Ts/F)
dim S=i dim S=1i
— HI((M\ Zi-1)/F) — 0.

Now, Lemma 3.2 gives the result. =

Combining Theorem 3.4 with the tautness characterization of [17], we
get

3.5. COROLLARY. Let M be a connected compact manifold endowed with
a SRF F. Suppose that F is transversally orientable. Consider a perversity
p on M withp < t. If n = codimy; F, then the following two statements are
equivalent:

(a) The foliation Fr is taut, where R is the reqular stratum of (M, F).
(b) The cohomology group HZ(M/F) is R.

Proof. We know from [17] that (a) is equivalent to H'(R/F) = R. So, it
suffices to prove that H'(R/F) = H;(M/F) (cf. Lemma 3.3). We proceed
as in the proof of the previous theorem changing “onto map” to “isomor-
phism”. =

3.6. REMARKS. (a) The perversity p = —oo satisfies p < ¢. In this
case the group IH3(M/F) becomes H"(M/F, X /F). Here, the relative basic
cohomology IH3(M/F, X /F) is computed from the relative basic complex

O (M/F,2)F) = {we 2*(M/F) |w=0on X}.

(b) The boundary perversity O satisfies 0 < 7. In this case the group
H%(M/F) becomes H"(M/F,0(M/F)). Here, the relative basic cohomol-
ogy H*(M/F,0(M/F)) is computed from the relative basic complex
(M/F,0(M/F)) = {w € 2°(M/F) | w = 0 on the boundary strata}.
In particular, when the boundary strata do not appear then H%5(M/F) =
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(c) If p £ t then the group IH;(M/F) does not establish the tautness of

(R, F). For example, we always have IH? —(M/F)=H"(M\ X)/F)=0if
X #0.

+1

(d) In Theorem 3.4 and Corollary 3.5 we can suppose that the manifold

M is not compact and replace Hy;(M/F) by Hg (M/F).
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