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Summary. It is known that, for a regular riemannian foliation on a 
ompa
t manifold,the properties of its basi
 
ohomology (non-vanishing of the top-dimensional group andPoin
aré duality) and the tautness of the foliation are 
losely related. If we 
onsidersingular riemannian foliations, there is little or no relation between these properties.We present an example of a singular isometri
 �ow for whi
h the top-dimensional basi

ohomology group is non-trivial, but the basi
 
ohomology does not satisfy the Poin
aréDuality. However, we re
over the Poin
aré Duality in the basi
 interse
tion 
ohomology.It is not a

idental that the top-dimensional basi
 interse
tion 
ohomology groups ofthe example are isomorphi
 to either 0 or R. We prove that this holds for any singularriemannian foliation of a 
ompa
t 
onne
ted manifold. As a 
orollary, we show that thetautness of the regular stratum of the singular riemannian foliation 
an be dete
ted bythe basi
 interse
tion 
ohomology.For regular riemannian foliations on 
ompa
t 
onne
ted manifolds thereis a very 
lose relation between tautness (the existen
e of a bundle-like metri
for whi
h all leaves are minimal submanifolds) and the properties of the basi

ohomology. In fa
t, for a regular riemannian foliation F of 
odimension n ona 
ompa
t 
onne
ted manifold M , under some assumptions of orientability2000 Mathemati
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the following 
onditions are equivalent (
f. [3, 4, 9, 10, 24℄):(i) F is taut.(ii) Hn(M/F) 6= 0.(iii) Hn(M/F) = R.(iv) H∗(M/F) satis�es the Poin
aré Duality (PD).Although the basi
 
ohomology of a singular riemannian foliation (SRF forshort) on a 
ompa
t manifold is �nite-dimensional (
f. [25℄), the relationbetween the above 
onditions is not straightforwardly exportable to the sin-gular framework. As pointed out in [11℄, the singular nature of a SRF ona 
ompa
t manifold prevents any global metri
 on it from making all theleaves minimal (see also [17℄).The example presented in this paper shows that if, for �ows, we repla
e�taut� by �isometri
��these two properties are equivalent for regular rie-mannian �ows (see [15℄)�we 
annot re
over PD. To re
over it we have toadapt the basi
 
ohomology to the strati�
ation de�ned by the SRF. Forthat purpose, we have de�ned the �basi
 interse
tion 
ohomology� (BIC forshort) for SRFs (see [18, 19℄). The 
al
ulations for the example show that itsBIC satis�es the Poin
aré Duality. It has been proven in [16℄ that so doesthe BIC of any singular riemannian �ow (isometri
 or not).The main part of this note is dedi
ated to the proof of the equivalen
eof 
onditions (i)�(iii) for SRFs on 
ompa
t 
onne
ted manifolds for the BIC.We also prove that the top-dimensional BIC groups are isomorphi
 to 0 or R.The authors would like to thank the referee for many useful 
ommentswhi
h helped improve the paper.In what follows, M is a 
onne
ted, se
ond 
ountable, Hausdor�, smooth(C∞) manifold of dimension m without boundary. All the maps 
onsideredare smooth unless otherwise indi
ated. If F is a foliation on M and V is asaturated submanifold of M we shall write (V,F) for the indu
ed foliatedmanifold and FV for the indu
ed foliation.1. Singular riemannian foliations (1). We are going to work in theframework of the singular riemannian foliations introdu
ed by Molino.1.1. The SRF. A singular riemannian foliation (SRF for short) on amanifold M is a partition F of M into 
onne
ted immersed submanifolds,
alled leaves, with the following properties:I. The module of smooth ve
tor �elds tangent to the leaves is transitiveon ea
h leaf.

(1) For notions relating to riemannian foliations we refer the reader to [13, 24℄ and forsingular riemannian foliations to [13, 12, 14, 1℄.
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II. There exists a riemannian metri
 µ on M , 
alled an adapted metri
,su
h that ea
h geodesi
 that is perpendi
ular to a leaf at one pointremains perpendi
ular to every leaf it meets.The �rst 
ondition implies that (M,F) is a singular foliation in the senseof [23℄ and [22℄. Noti
e that the restri
tion of F to a saturated open subsetprodu
es a SRF.In the next two subse
tions we re
all some basi
 properties of SRFs whi
h
an be found in [13, 1℄ or are easy 
orollaries of the properties proved there.1.2. Strati�
ations. Classifying the points of M a

ording to the dimen-sion of leaves yields a strati�
ation SF of M into smooth embedded sub-manifolds. The restri
tion of F to a stratum S is a regular foliation FS . Thestrata are ordered by: S1 � S2 ⇔ S1 ⊂ S2.There are several types of strata. The minimal (resp. maximal) strataare the 
losed strata (resp. open strata). The open strata are 
alled regularand the others singular. We denote by Sσ

F the family of singular strata. Inthe 
ase of SRFs, the singular strata are of 
odimension greater than 1, sothere is just one regular stratum R if the manifold is 
onne
ted (
f. [13℄).The dimension of the foliation F is the dimension of the biggest leaves of
F , that is, dimF = dimFR. The union of the singular strata is the singularpart Σ = M \ R.A stratum S is a boundary stratum if there exists a stratum S′ with
S � S′ and codimM F = codimS′ FS′−1. This terminology 
an be explainedby the following example. Take M = S

4 and F given by the orbits of the
T

2-a
tion (u, v) ·(z1, z2, t) = (u ·z1, v ·z2, t), where S
4 = {(z1, z2, t) ∈ C

2×R |
|z1|2 + |z2|2 + t2 = 1}. Here, the north pole (0, 0, 1), the south pole (0, 0,−1)and the 
ylinders {z1 6= 0}, {z2 6= 0} are boundary strata and we have
M/F = D = {(x, y) ∈ R

2
∣
∣ x2 + y2 ≤ 1} . The boundary ∂(M/F) is givenby S

1, the union of the quotient set of the boundary strata. In fa
t, the linkof the maximal boundary strata is a sphere with the one leaf foliation (seefor example [18℄ for the notion of a link).The depth of SF , written depthSF , is de�ned to be the largest i for whi
hthere exists a 
hain of strata S0 ≺ S1 ≺ · · · ≺ Si. So, depthSF = 0 if andonly if the foliation F is regular.1.3. Tubular neighborhood. Any stratum S ∈ SF is a proper submani-fold of the riemannian manifold (M,F , µ), so it has a tubular neighborhood
(TS , τS , S). Re
all that asso
iated with this neighborhood are the followingsmooth maps:

• The radius map ̺S : TS → [0, 1[ de�ned �berwise: z 7→ |z|. Ea
h t 6= 0is a regular value of ̺S . The pre-image ̺−1
S (0) is S.
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• The 
ontra
tion HS : TS × [0, 1] → TS de�ned �berwise: (z, r) 7→ r · z.The restri
tion (HS)t : TS → TS is an embedding for ea
h t 6= 0 and

(HS)0 ≡ τS .These two maps satisfy ̺S(r · u) = r̺S(u). The tubular neighborhood
an be 
hosen to have the following two important properties:(a) Ea
h (̺−1
S (t),F) is a SRF.(b) Ea
h (HS)t : (TS ,F) → (TS ,F) is a foliated map.We shall say that (TS , τS , S) is a foliated tubular neighborhood of S. The ex-isten
e of foliated tubular neighborhoods follows from the homotheti
 trans-formation lemma of [13℄.The hypersurfa
e DS = ̺−1

S (1/2) is the 
ore of the tubular neighborhood.We have the inequality depthSFDS
< depthSFTS

.2. Basi
 interse
tion 
ohomology (2). Goresky and Ma
Pherson in-trodu
ed the interse
tion 
ohomology for the study of singular manifolds.This 
ohomology generalizes the usual de Rham 
ohomology for manifoldsand has similar properties. Following the same prin
iple, the basi
 interse
-tion 
ohomology has been introdu
ed for the study of SRFs, generalizing thebasi
 
ohomology.We �x a manifold M endowed with a SRF F . We write m = dimM and
n = codimM F .2.1. The BIC. A perversity is a map p : Sσ

F → Z = Z∪{−∞,∞}. Thereare several parti
ular perversities:
• the 
onstant perversity c, de�ned by c(S) = c, where c ∈ Z,
• the (basi
) top perversity t, de�ned by t(S) = n − codimS FS − 2,(
f. 1.2),
• the boundary perversity ∂, de�ned by ∂ = min(0, t).The basi
 interse
tion 
ohomology (BIC for short) IH∗

p(M/F) is the 
o-homology of the 
omplex Ω∗
p(M/F) of p-interse
tion basi
 forms. A p-inter-se
tion basi
 form is a basi
 form de�ned on R and having a verti
al degree

‖ω‖S , relative to a foliated tubular neighborhood (TS , τS , S), lower than p(S)for ea
h singular stratum S (see [18, 19℄ for the exa
t de�nition). Re
all that
‖ω‖S ≤ i when ω(v0, . . . , vi,−) = 0 for ea
h family {v0, . . . , vi} of ve
torstangent to the �bers of τS .If depthSF = 0 then IH∗

p(M/F) = H∗(M/F) for any perversity p.2.2. Mayer�Vietoris. A 
overing {U, V } of M by saturated open subsetshas a subordinate partition of unity made up of basi
 fun
tions (see the
(2) For notions relating to basi
 
ohomology we refer the reader to [5, 25℄, for basi
interse
tion 
ohomology to [18, 19℄ and for interse
tion 
ohomology to [6, 2℄.
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lemma below). For su
h a 
overing we have the Mayer�Vietoris sequen
e(1) 0 → Ω∗

p(M/F) → Ω∗
p(U/F) ⊕ Ω∗

p(V/F) → Ω∗
p((U ∩ V )/F) → 0,where the maps are de�ned by restri
tion. The third map is onto sin
e the ele-ments of the partition of unity are 0-basi
 fun
tions and Ω∗

0
(•/F)·Ω∗

p(•/F) ⊂
Ω∗

p(•/F). Thus, the sequen
e is exa
t. This result is no longer true for moregeneral 
overings.For the existen
e of the above Mayer�Vietoris sequen
e we need the fol-lowing folklore result, well known for 
ompa
t Lie group a
tions and regularriemannian foliations.2.2.1. Lemma. A 
overing {U, V } of M by saturated open subsets has asubordinate partition of unity made up of basi
 fun
tions.2.3. Compa
t supports. In this note we need to work with the BIC with
ompa
t supports. The support of a di�erential form ω ∈ Ω∗
p(M/F), written

suppω, is the 
losure in M of {x ∈ M | ω(x) 6= 0}. We denote by Ω∗
p,c(M/F)the 
omplex of p-interse
tion basi
 forms with 
ompa
t support. Its 
ohomol-ogy is IH∗

p,c(M/F). When M is 
ompa
t, we have IH∗
p,c(M/F) = IH∗

p(M/F),and if depthSF = 0 then H∗
p,c(M/F) = H∗

c (M/F) for any perversity p.Asso
iated to a saturated open 
overing {U, V } of M we have the Mayer�Vietoris sequen
e (see Lemma 2.2.1)
(2) 0 → Ω∗

p,c((U ∩ V )/F) → Ω∗
p,c(U/F) ⊕ Ω∗

p,c(V/F)

→ Ω∗
p,c(M/F) → 0,where the maps are de�ned by in
lusion. The third map is onto sin
e theelements of the partition of unity are 0-basi
 fun
tions. Thus, the sequen
eis exa
t.2.4. Example. Consider the isometri
 a
tion Φ : R × S

2d+2 → S
2d+2given by the formula

Φ(t, (z0, . . . , zd, x)) = (ea0πitz0, . . . , e
adπitzd, x),with (a0, . . . , ad) 6= (0, . . . , 0). Here, S

2d+2 = {(z0, . . . , zd, x) ∈ C
d × R |

|z0|2 + · · · + |zd|
2 + x2 = 1}. There are two singular strata: the north pole

S1 = (0, . . . , 0, 1) and the south pole S2 = (0, . . . ,−1). The regular stratumis R = S
2d+1 × ]−1, 1[. Let r : R → R a smooth map, depending just onthe ]1, 1[ variable, with r ≡ 0 on ]0, 1/4[ ∪ ]3/4, 1[ and T10 r = 1. The basi

ohomology H∗(S2d+2/F) of the foliation de�ned by this �ow is the following:

i 0 1 2 3 4 5 · · · 2d 2d + 1

1 0 0 [dr ∧ e] 0 [dr ∧ e2] · · · 0 [dr ∧ ed]
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where e ∈ Ω2

2
(S2d+2/F) is an Euler form (
f. [8℄). These 
al
ulations 
omedire
tly from the equalities

‖r‖Sk
= 0, ‖dr‖Sk

= −∞, ‖ej‖Sk
= ‖rej‖Sk

= 2j ,(3)
‖dr ∧ ej‖Sk

= −∞, dr ∧ ej = d(rej),for k = 1, 2 and j ∈ {1, . . . , d}.We noti
e that the top-dimensional basi
 
ohomology group is isomorphi
to R, but this 
ohomology does not satisfy the Poin
aré Duality in spite ofthe fa
t that the �ow is isometri
! The 
lassi
al basi
 
ohomology does nottake into a

ount the strati�
ation SF . However, even for the SRF, the basi

ohomology is �nite-dimensional (
f. [25℄).If we 
onsider the BIC of our example the pi
ture 
hanges. The followingtable presents the BIC IH∗
p(S

k=2d+2/F) for the 
onstant perversities:
i 0 1 2 3 4 5 6 7 · · · k − 2 k − 1

p

< 0 0 [dr] 0 [e ∧ dr] 0 [e2
∧ dr] 0 [e3

∧ dr] · · · 0 [ed
∧ dr]

0, 1 1 0 0 [e ∧ dr] 0 [e2
∧ dr] 0 [e2

∧ dr] · · · 0 [ed
∧ dr]

2, 3 0 0 [e] 0 0 [e2
∧ dr] 0 [e3

∧ dr] · · · 0 [ed
∧ dr]

4, 5 1 0 [e] 0 [e2] 0 0 [e3
∧ dr] · · · 0 [ed

∧ dr]

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

k−4, k−3 1 0 [e] 0 [e2] 0 [e3] 0 · · · 0 [ed
∧ dr]

≥ k − 2 1 0 [e] 0 [e2] 0 [e3] 0 · · · [ed] 0These 
al
ulations 
ome dire
tly from the equalities (3).We noti
e that the top-dimensional basi
 
ohomology group is isomorphi
either to 0 or R. These 
ohomology groups are �nite-dimensional. We re
overthe Poin
aré Duality in the perverse sense:
IH∗

p(S
k/F) ∼= IHn−∗

q (Sk/F)for two 
omplementary perversities: p + q = t = k − 3.This is more general. We have proved that the basi
 interse
tion 
oho-mology is �nite-dimensional and satis�es this perverse Poin
aré Duality forthe linear foliations (
f. [19, 20℄) and for riemannian �ows (
f. [16℄).3. Top 
lass. The top group Hn(M/F) of the basi
 
ohomology of aregular riemannian foliation F de�ned on a 
onne
ted 
ompa
t manifold Mis R or 0. Here n = codimM F . We prove the same result for the top group
IHn

p (M/F) when F is a SRF de�ned on a 
onne
ted 
ompa
t manifold M .To do so, we need three lemmas.
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3.1. Lemma. Consider a foliated tubular neighborhood (TS , τS , S) of asingular stratum S ∈ SF . Fix a smooth fun
tion f : ]0, 1[→ [0, 1] with f ≡0 on

]0, 1/4] and f ≡ 0 on [3/4, 1[. The map [ω] 7→ [df∧ω] de�nes an isomorphism
IH∗−1

p,c (DS/F) ∼= IH∗
p,c(DS × ]0, 1[ /F × I), where I is the point foliation ofthe interval.Proof. Consider the following di�erential 
omplexes:

A
∗ = {ω ∈ Ω∗

p(DS × ]0, 3/4[/F × I) | suppω ⊂ K × [c, 3/4[for a 
ompa
t K ⊂ DS and 0 < c < 3/4}

B
∗ = {ω ∈ Ω∗

p(DS × ]1/4, 1[/F × I) | suppω ⊂ K × ]1/4, c]for a 
ompa
t K ⊂ DS and 1/4 < c < 1}

C
∗ = {ω ∈ Ω∗

p(DS × ]1/4, 3/4[/F × I) | suppω ⊂ K × ]1/4, 3/4[for a 
ompa
t K ⊂ DS}.Pro
eeding as in (2) we get the short exa
t sequen
e
0 → Ω∗

p,c(DS × ]0, 1[/F × I) → A
∗ ⊕ B

∗ → C
∗ → 0.The asso
iated long exa
t sequen
e is

· · · → H i−1(C∗)
δ
→ IH i

p,c(DS × ]0, 1[/F × I) → H i(A∗) ⊕ H i(B∗)

→ H i(C∗) → · · · ,where the 
onne
ting morphism is δ([ω]) = [df ∧ ω].Before performing the 
al
ulation let us introdu
e some notation. Let βbe a di�erential form in Ωi(DS×]a, b[) whi
h does not in
lude the dt fa
tor.Denote by Tc− β(s)∧ds and T−c β(s)∧ds the forms in Ωi(DS × ]a, b[) obtainedfrom β by integration with respe
t to s, that is,
( c\

−

β(s) ∧ ds
)

(x, t)(~v1, . . . , ~vi) =

c\
t

(β(x, s)(~v1, . . . , ~vi)) ds

(−\
c

β(s) ∧ ds
)

(x, t)(~v1, . . . , ~vi) =

t\
c

(β(x, s)(~v1, . . . , ~vi)) ds,where c ∈ ]a, b[, (x, t) ∈ DS × ]a, b[ and (~v1, . . . , ~vi) ∈ T(x,t)(DS × ]a, b[).Ea
h di�erential form ω ∈ A
∗, B

∗, C
∗ 
an be written as ω = α + dt ∧ βwhere α and β do not 
ontain dt. Consider a 
y
le ω = α + dt ∧ β ∈ A

iwith suppω ⊂ K × [c, 3/4[ for a 
ompa
t K ⊂ DS and 0 < c < 3/4. Wehave ω = −d(
Tc/2
− β(s) ∧ ds). Sin
e supp

Tc/2
− β(s)∧ ds ⊂ K × [c, 3/4[, we get

H∗(A∗) = 0. In the same way, we get H∗(B∗) = 0. We 
on
lude that
δ : H∗−1(C∗) → IH∗

p,c(DS × ]0, 1[/F × I)is an isomorphism.
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The foliated homotopy L : DS × ]1/4, 3/4[ × [0, 1] → DS × ]1/4, 3/4[,de�ned by L((u, t), s) = (u, (1−s)t+s/2), satis�es L(K×]1/4, 3/4[×[0, 1]) ⊂

K × ]1/4, 3/4[ for ea
h 
ompa
t K ⊂ DS . So, the map [α] 7→ [α] indu
es anisomorphism(4) I : IH∗
p,c(DS/F) → H∗(C∗).The isomorphism δ◦I gives the result.3.2. Lemma. Consider a foliated tubular neighborhood TS of a singularstratum S ∈ SF . The in
lusion TS \ S →֒ TS indu
es an onto map

ι : IHn
p,c((TS \ S)/F) → IHn

p,c(TS/F).Moreover, if p(S) ≤ t(S) then ι is an isomorphism.Proof. We pro
eed in several steps.(a) Rewriting IH∗
p,c(TS/F). We have seen in [19℄ that we 
an identify

Ω∗
p,c(TS/F) with the 
omplex
{ω ∈ Ω∗

p,c(DS × [0, 1[/F × I) | ‖ω|DS×{0}‖τS
≤ p(S) and
‖dω|DS×{0}‖τS

≤ p(S)}.Here ‖ − ‖τS
denotes the verti
al degree relative to the �bration τS : DS ≡

DS × {0} → S. Re
all that ‖0‖τS
= −∞. Under this identi�
ation, the
omplex Ω∗

p,c((TS \ S)/F) be
omes Ω∗
p,c(DS × ]0, 1[,F × I).(b) Chasing IHn

p,c(TS/F). Consider the 
omplex
D
∗ =







ω ∈ Ω∗
p(DS × [0, 3/4[/F × I)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

‖ω|DS×{0}‖τS
≤ p(S),

‖dω|DS×{0}‖τS
≤ p(S) and

suppω ⊂ K × [0, 3/4[for a 
ompa
t K ⊂ DS





and the 
omplexes B
∗, C

∗ as in the proof of Lemma 3.1. The short exa
tsequen
e
0 → Ω∗

p,c(TS/F) → D
∗ ⊕ B

∗ → C
∗ → 0produ
es the long exa
t sequen
e

→ Hn−1(D∗) ⊕ Hn−1(B∗) → Hn−1(C∗)
δ′
→ IHn

p,c(TS/F)

→ Hn(D∗) ⊕ Hn(B∗) → Hn(C∗) → 0where the 
onne
ting morphism is δ′([ω]) = [df ∧ ω] for a smooth map
f : [0, 1[ → [0, 1] with f ≡ 0 on [0, 1/4] and f ≡ 0 on [3/4, 1[.(
) Relating H∗(C∗) and H∗(D∗). We have already seen that H∗(B∗) = 0.Consider a 
y
le ω = α + dt∧ β ∈ D

n. For degree reasons, we have α(0) = 0and then ω = d(
T−
0 β(s) ∧ ds). Sin
e supp

T−
0 β(s) ∧ ds ⊂ K × [0, 3/4[ we



Cohomology for Singular Riemannian Foliations 437
get Hn(D∗) = 0. From the above long exa
t sequen
e, we obtain the exa
tsequen
e

Hn−1(D∗) → Hn−1(C∗)
δ′
→ IHn

p,c(TS/F) → 0.(d) Con
lusion. Sin
e the map I is an isomorphism (
f. (4)) the 
ompo-sition δ′◦I : IH∗−1
p,c (DS/F) → IHn

p,c(TS/F) is an onto map. Lemma 3.1 showsthat ι is an onto map. It remains to prove that ι is an isomorphism when
p(S) ≤ t(S). We prove Hn−1(D∗) = 0. Pro
eeding as in (
) it su�
es to
onsider a 
y
le ω = α + dt ∧ β ∈ D

n−1([0, 3/4[) and show that α(0) = 0.Suppose that α(0) 6= 0. The foliation F indu
es a foliation FτS
tangent tothe �bers of τS : DS → S su
h that dimF = dimFτS

+dimFS (
f. [13, 18℄).By degree reasons, sin
e α(0) ∈ Ωn−1
p,c (DS/F), we 
an write

t(S) ≥ p(S) ≥ ‖α(0)‖τS

= (dimM − dimS) − 1
︸ ︷︷ ︸

dimension of the fiber of τS

− (dimF − dimFS)
︸ ︷︷ ︸

dimFτS

= t(S) + 1.

This 
ontradi
tion gives α(0) = 0.3.3. Lemma. Let N be a 
ompa
t manifold endowed with a RF N . If Ois a 
onne
ted saturated open subset of N, then Hn
c (O/N ) = 0 or R.Proof. We pro
eed in two steps.The foliation N is transversally orientable. The result 
omes essentiallyfrom the basi
 Poin
aré duality theorem for non-
ompa
t manifolds (
f. [21℄).The foliation NO is a transversally orientable 
omplete foliation sin
e O isa saturated open subset of the 
ompa
t manifold N . Then we have the iso-morphism Hn

c (O/N ) ∼= H0(O/N ,P) where P is the homologi
al orientationsheaf of NO. Sin
e the manifold O is 
onne
ted, and the sheaf P is lo
allytrivial and the stalk is R, it follows that Hn
c (O/N ) = 0 or R.General 
ase. Consider the transverse orientation 
overing π : (N∗,N ∗)

→ (N,N ) (see [7℄). The 
overing is given by a foliated a
tion of Z2. The foli-ation N ∗ is a transversally orientable RF. We have the equality Hn
c (O/F) =

(Hn
c (π−1(O)/F∗))Z2 . The subset π−1(O) is a saturated open subset of N∗.If π−1(O) is 
onne
ted then the result 
omes from the previous 
ase. Other-wise π−1(O) has two 
onne
ted 
omponents foliated di�eomorphi
 to O andthe Z2-a
tion inter
hanges them. The result now 
omes from the previous
ase.The �rst result of this note is the following.3.4. Theorem. Let M be a 
onne
ted 
ompa
t manifold endowed witha SRF F . If n = codimM F and p is a perversity on M, then

IHn
p (M/F) = 0 or R.
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Proof. For ea
h i ∈ Z we write:
• Σi ⊂ M for the union of the strata of dimension less than or equalto i,
• Ti for the tubular neighborhood of Σi in M \ Σi−1.We have M \Σ−1 = M and M \Σm−1 = R, where m = dim M . Lemma 3.3gives Hn

c (R/F) = 0 or R. We get the result if we prove that the in
lusion
M \ Σi →֒ M \ Σi−1 indu
es an onto map

Hn
c ((M \ Σi)/F) → Hn

c ((M \ Σi−1)/F)for i ∈ {0, . . . , m − 1}.From the open 
overing {M \ Σi,
⋃

dim S=i TS} of M \ Σi−1, we obtainthe Mayer�Vietoris sequen
e
⊕

dim S=i

Hn
c ((TS \ S)/F) → Hn

c ((M \ Σi)/F) ⊕
⊕

dim S=i

Hn
c (TS/F)

→ Hn
c ((M \ Σi−1)/F) → 0.Now, Lemma 3.2 gives the result.Combining Theorem 3.4 with the tautness 
hara
terization of [17℄, weget 3.5. Corollary. Let M be a 
onne
ted 
ompa
t manifold endowed witha SRF F . Suppose that F is transversally orientable. Consider a perversity

p on M with p ≤ t. If n = codimM F , then the following two statements areequivalent :(a) The foliation FR is taut , where R is the regular stratum of (M,F).(b) The 
ohomology group IHn
p (M/F) is R.Proof. We know from [17℄ that (a) is equivalent to Hn

c (R/F) = R. So, itsu�
es to prove that Hn
c (R/F) ∼= IHn

p (M/F) (
f. Lemma 3.3). We pro
eedas in the proof of the previous theorem 
hanging �onto map� to �isomor-phism�.3.6. Remarks. (a) The perversity p = −∞ satis�es p ≤ t. In this
ase the group IHn
p (M/F) be
omes Hn(M/F , Σ/F). Here, the relative basi

ohomology IH∗

p(M/F , Σ/F) is 
omputed from the relative basi
 
omplex
Ω∗(M/F , Σ/F) = {ω ∈ Ω∗(M/F) | ω ≡ 0 on Σ}.(b) The boundary perversity ∂ satis�es ∂ ≤ t. In this 
ase the group

IHn
∂
(M/F) be
omes Hn(M/F , ∂(M/F)). Here, the relative basi
 
ohomol-ogy H∗(M/F , ∂(M/F)) is 
omputed from the relative basi
 
omplex

Ω∗(M/F , ∂(M/F)) = {ω ∈ Ω∗(M/F) | ω ≡ 0 on the boundary strata}.In parti
ular, when the boundary strata do not appear then IHn
∂
(M/F) =

Hn(M/F).
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(
) If p 6≤ t then the group IHn

p (M/F) does not establish the tautness of
(R,F). For example, we always have IHn

t+1
(M/F) = Hn((M \ Σ)/F) = 0 if

Σ 6= ∅.(d) In Theorem 3.4 and Corollary 3.5 we 
an suppose that the manifold
M is not 
ompa
t and repla
e IHn

p (M/F) by IHn
p,c(M/F).
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