
BULLETIN OF THE POLISH

ACADEMY OF SCIENCES

MATHEMATICS

Vol. 53, No. 4, 2005

PROBABILITY THEORY AND STOCHASTIC PROCESSES

Two Inequalities for the First Moments of aMartingale, its Square Fun
tionand its Maximal Fun
tionbyAdam OS�KOWSKIPresented by Stanisªaw KWAPIE�
Summary. Given a Hilbert spa
e valued martingale (Mn), let (M∗

n
) and (Sn(M)) denoteits maximal fun
tion and square fun
tion, respe
tively. We prove that

E|Mn| ≤ 2ESn(M), n = 0, 1, 2, . . . ,

EM∗

n
≤ E|Mn| + 2ESn(M), n = 0, 1, 2, . . . .The �rst inequality is sharp, and it is stri
t in all nontrivial 
ases.1. Introdu
tion. In [1℄ Burkholder proposed a method for showing mar-tingale maximal inequalities and in [2℄ he introdu
ed a new approa
h to studythe behaviour of the maximal fun
tion and square fun
tion simultaneously.In the present paper we use this method to obtain a sharp inequality betweenthe �rst moments of a martingale and its square fun
tion, as well as someother inequalities involving the maximal fun
tion.Let us �x the notation. In the following, (Ω,F , (Fn), P) will be a proba-bility spa
e equipped with some dis
rete �ltration. Let H be a Hilbert spa
ewith norm | · | and s
alar produ
t (· , ·). Let (Mn) be an (Fn)-martingaletaking values in some separable subspa
e of H. The di�eren
e sequen
e (dn)of the martingale (Mn) is de�ned by d0 = M0 a.s., dn = Mn − Mn−1 a.s.,

n = 1, 2, . . . . Let (Sn(M)) be the square fun
tion and (M∗
n) the maximal
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fun
tion of the martingale (Mn), whi
h are pro
esses de�ned by

Sn(M) =
[ n∑

k=0

|dk|2
]1/2

, M∗
n = sup

0≤k≤n
|Mk|, n = 0, 1, 2, . . . .Inequalities between moments of a martingale, its square fun
tion andmaximal fun
tion have been deeply studied in the literature. Su
h inequali-ties are of fundamental importan
e to martingale theory and harmoni
 anal-ysis. We just mention two basi
 results:(Doob's inequality) For 1 < p < ∞,

E|M∗
n|p ≤

(
p

p − 1

)p

E|Mn|p, n = 0, 1, 2, . . . ,and the 
onstant (p/(p − 1))p is best possible.(Burkholder�Davis�Gundy inequalities) For 1 < p < ∞,
cpE(Sn(M))p ≤ E|Mn|p ≤ CpE(Sn(M))p, n = 0, 1, 2, . . . ,where Cp = c−1

p = (p∗ − 1)p, p∗ = max{p, p/(p − 1)}. The 
onstant Cp isbest possible for p ≥ 2 and the 
onstant cp is best possible for p ≤ 2. In theremaining 
ases the best 
onstants are not known.In this paper we 
ontinue the study on the 
omparison of moments of amartingale, its square fun
tion and its maximal fun
tion. We will be parti
-ularly interested in �rst moments. The inequality
cEM∗

n ≤ ESn(M) ≤ CEM∗
nfor general martingales was �rst proved by Davis [3℄. Later, Garsia [4℄, [5℄proved that the left inequality holds with c =

√
10 and the right one with

C = 2+
√

5. Both these 
onstants are not optimal. Quite re
ently, Burkholder[2℄ proved that the best 
onstant in the right inequality is √3. We will exploithis methods to investigate some other inequalities of this type.Pre
isely, we will prove the following two results.Theorem 1. The following inequality holds:(1.1) E|Mn| ≤ 2ESn(M), n = 0, 1, 2, . . .and the 
onstant 2 is best possible. Moreover , the inequality is stri
t in allnontrivial 
ases.Theorem 2. We have(1.2) EM∗
n ≤ E|Mn| + 2ESn(M), n = 0, 1, 2, . . . .As an immediate 
onsequen
e of the theorems above we obtain an in-equality between the �rst moments of the maximal fun
tion and the squarefun
tion of a martingale, however, with a worse 
onstant.
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Corollary 1. We have

EM∗
n ≤ 4ESn(M), n = 0, 1, 2, . . . .The paper is organized as follows. In the next se
tion we present the maintools for proving martingale inequalities, whi
h enable us to redu
e the proofof a 
ertain inequality to �nding a spe
ial fun
tion with some 
onvex-typeproperties. Se
tion 3 is devoted to the proof of Theorem 1 and in the lastse
tion we deal with the proof of Theorem 2.2. Burkholder's method. In this se
tion we state two theorems ofBurkholder. They hold for any Bana
h spa
e valued martingales (Mn).The �rst of them (a slight modi�
ation of Theorem 2.1 of [2℄) providesthe key tool to prove maximal inequalities.Theorem 3. Let B be a Bana
h spa
e and suppose U , V are fun
tionsfrom B × [0,∞)2 to R satisfying
U(x, y, z) ≤ V (x, y, z),(2.1)
U(x, t, z) = U(x, t, |x| ∨ z),(2.2)and the further 
ondition that if |x| ≤ z and d is any mean-zero F-measurablerandom variable, then(2.3) EU(x + d,
√

y2 + |d|2, |x + d| ∨ z) ≥ U(x, y, z).Then for any nonnegative integer n and any martingale (Mn), we have(2.4) EV (Mn, Sn(M), M∗
n) ≥ U(M0, S0(M), |M0|).Proof. We have, by (2.1),

EV (Mn, Sn(M), M∗
n) ≥ EU(Mn, Sn(M), M∗

n)

= E[EU(Mn, Sn(M), M∗
n) | Fn−1].Therefore, it su�
es to prove that the pro
ess (U(Mn, Sn(M), M∗

n)) is asubmartingale. Applying (2.3) 
onditionally with respe
t to Fn−1, we obtainthe inequality
E[U(Mn, Sn(M), M∗

n) | Fn−1]

= E[U(Mn−1 + dn,
√

S2
n−1

(M) + d2
n, |Mn−1 + dn| ∨ M∗

n−1) | Fn−1]

≥ U(Mn−1, Sn−1(M), M∗
n−1)and the inequality (2.4) follows immediately.The se
ond theorem (Lemma 4.1 in [2℄) enables us to obtain lower boundsfor the 
onstants in martingale inequalities.
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Theorem 4. Let B be a Bana
h spa
e. For a fun
tion V :B×[0,∞)2→Rde�ne U : B × [0,∞)2 → [−∞,∞) by(2.5) U(x, y, z) = inf{EV (Mn,

√
y2 − |x|2 + S2

n(M), M∗
n ∨ z)},where the in�mum is taken over all martingales (Mn) starting from x andover all nonnegative integers n. Then the pair (U, V ) satis�es (2.1)�(2.3).We refer the reader to [2℄ for the proof of this result. Let us note that theabove theorems may as well be used to prove inequalities whi
h only involvea martingale and its square fun
tion, by omitting the variable z (and the
ondition (2.2)).3. The proof of Theorem 1. First we prove some auxiliary inequali-ties, whi
h we will need later.Lemma 1. Let x, d ∈ H and y ∈ R+, y < |x|. Then(3.1) √

y2 + |d|2 − y ≥
√
|x|2 + |d|2 − |x|.If , moreover , √

y2 + |d|2 ≥ |x + d|, then(3.2) √
2y2 + 2|d|2 − |x + d|2 − 2y ≥

√
2|x|2 + 2|d|2 − |x + d|2 − 2|x|.Proof. The inequality (3.1) is equivalent to

|x| − y ≥
√

|x|2 + |d|2 −
√

y2 + |d|2 =
|x|2 − y2

√
|x|2 + |d|2 +

√
y2 + |d|2

,or √
|x|2 + |d|2 +

√
y2 + |d|2 ≥ |x| + y,whi
h is obvious.Now we turn to (3.2). We may write it as follows:

2|x| − 2y ≥
√

2|x|2 + 2|d|2 − |x + d|2 −
√

2y2 + 2|d|2 − |x + d|2

=
2|x|2 − 2y2

√
2|x|2 + 2|d|2 − |x + d|2 +

√
2y2 + 2|d|2 − |x + d|2

,whi
h 
an be written as
√

2|x|2 + 2|d|2 − |x + d|2 +
√

2y2 + 2|d|2 − |x + d|2 ≥ |x| + y.The left hand side above is equal to
|x − d| +

√
|x + d|2 + 2(y2 + |d|2 − |x + d|2)and, due to the assumption √

y2 + |d|2 ≥ |x+d|, it 
an be bound from belowby
|x − d| + |x + d| ≥ 2|x| > |x| + y.
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We are now ready to use Theorem 3 of Burkholder. Let us introdu
efun
tions Û , V̂ : H× [0,∞)2 → R de�ned by

Û(x, y, z) = u(x, y) =

{ √
2y2 − |x|2 if y ≥ |x|,

2y − |x| if y < |x|,(3.3)
V̂ (x, y, z) = v(x, y) = 2y − |x|.(3.4)Then we haveLemma 2. The fun
tions Û , V̂ satisfy (2.1)�(2.3).Proof. The 
ondition (2.2) holds trivially. Let us deal with the majorizing
ondition (2.1). Note that for any x ∈ H and y ∈ [0,∞) satisfying |x| ≤ √

2 y,we have(3.5) √
2y2 − |x|2 ≤ 2y − |x|.Indeed, squaring both sides, we obtain 2(y−|x|)2 ≥ 0. Therefore (2.1) holdsif y ≥ |x|. In the opposite 
ase both sides of (2.1) are equal.Now we turn to (2.3). Suppose �rst that y ≥ |x|. If y = 0, then x = 0and the inequality is trivial: it redu
es to the inequality E|d| ≥ 0. Supposethen that y > 0. We shall show that for any d ∈ H,(3.6) u(x + d,

√
y2 + d2) ≥ u(x, y) +

(x, d)√
2y2 − |x|2

.This will immediately yield (2.3) (by taking expe
tations of both sides). Wehave
2(

√
y2 + |d|2)2 − |x+ d|2 ≥ 2|x|2 + 2|d|2 − |x|2 − 2(x, d)− |d|2 = |x− d|2 ≥ 0and, due to (3.3) and (3.5),

u(x + d,
√

y2 + |d|2) ≥
√

2(y2 + |d|2) − |x + d|2.Hen
e it su�
es to 
he
k the inequality(3.7) √
2(y2 + |d|2) − |x + d|2 ≥

√
2y2 − |x|2 − (x, d)√

2y2 − |x|2
,or √

2y2 − |x|2
√

2y2 − |x|2 − 2(x, d) + |d|2 ≥ 2y2 − |x|2 − (x, d).But we have
(2y2 − |x|2)(2y2 − |x|2 − 2(x, d) + |d|2)

≥ (2y2 − |x|2)2 − 2(2y2 − |x|2)(x, d) + |x|2|d|2 ≥ (2y2 − |x|2 − (x, d))2and the inequality follows.Now suppose that y < |x| and let d ∈ H. Again, the inequality (2.3) willfollow immediately by taking expe
tations, if we show that
u(x + d,

√
y2 + |d|2) ≥ u(x, y) + (x/|x|, d).
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If √

y2 + d2 < |x + d|, then we must show that
2
√

y2 + d2 − |x + d| ≥ 2y − |x| − (x/|x|, d),or, equivalently,(3.8) 2
√

y2 + |d|2 − 2y ≥ |x + d| − |x| − (x/|x|, d).By inequality (3.1), we may bound from below the left hand side of the aboveinequality by
2
√

|x|2 + |d|2 − 2|x|and, therefore, it su�
es to prove that(3.9) 2
√

|x|2 + |d|2 − |x + d| ≥ |x| − (x/|x|, d).Now we will use the inequalities we have just proven. Setting y = |x| in (3.7),we get(3.10) √
2(|x|2 + |d|2) − |x + d|2 ≥ |x| − (x/|x|, d)and using (3.5) with x := x + d, y :=

√
|x|2 + |d|2, we obtain

2
√

|x|2 + |d|2 − |x + d| ≥
√

2(|x|2 + |d|2) − |x + d|2,whi
h establishes (3.9).Finally, let us 
onsider the 
ase √
y2 + |d|2 ≥ |x+d|. We must prove that

√
2(y2 + |d|2) − |x + d|2 ≥ 2y − |x| − (x/|x|, d),or √

2(y2 + |d|2) − |x + d|2 − 2y ≥ −|x| − (x/|x|, d).By inequality (3.2), the left hand side is not smaller than
√

2(|x|2 + |d|2) − |x + d|2 − 2|x|,whi
h, with the aid of (3.10), yields the desired inequality. The proof is
omplete.Proof of Theorem 1. It su�
es to 
ombine Lemma 2 with Theorem 3;indeed, for any �xed martingale (Mn) and any nonnegative integer n,
2ESn(M)−E|Mn| = EV̂ (Mn, Sn(M), 0)(3.11)

≥ Û(M0, S0(M), |M0|) = Û(M0, |M0|, |M0|) ≥ 0,whi
h 
ompletes the proof of the inequality (1.1).Now we will show that the inequality in Theorem 1 is sharp, even if
H = R. Suppose that the inequality holds with a 
onstant C ∈ [1,∞) andlet V (x, y, z) = v(x, y) = Cy−|x|. Let us now apply Theorem 4. The fun
tion
U de�ned by (2.5) does not depend on z (be
ause V does not), therefore thepair (u, v), where u(x, y) = U(x, y, z), satis�es (2.1), (2.3) and u(0, 0) > −∞.Let n be a �xed nonnegative integer and set x = n, y =

√
n. Applying the
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ondition (2.3) to a mean-zero random variable taking values s < 0 and 1,we obtain

s

s − 1
u(n + 1,

√
n + 1) +

1

1 − s
u(n + s,

√
n + s2) ≥ u(n,

√
n),whi
h, by (2.1), implies

s

s − 1
u(n + 1,

√
n + 1) +

1

1 − s
v(n + s,

√
n + s2) ≥ u(n,

√
n).Now we let s → −∞ to get

u(n + 1,
√

n + 1) + C − 1 ≥ u(n,
√

n),whi
h, by indu
tion, implies that for any nonnegative integer n,
u(n,

√
n) ≥ u(0, 0) − n(C − 1).Therefore

u(0, 0) − n(C − 1) ≤ v(n,
√

n) = C
√

n − n,or, equivalently,
C ≥ 2n + u(0, 0)

n +
√

n
.Now letting n → ∞ yields the result.Finally, we will prove that the inequality is stri
t in all nontrivial 
ases.Let n be a �xed nonnegative integer and (Mn) be a martingale su
h that

P(Mn 6= 0) > 0. Let us introdu
e the stopping time
τ = inf{k : Mk 6= 0}.If P(τ = 0) > 0, then the last inequality in (3.11) is stri
t and we aredone. If P(τ > 0) = 1, then applying the optional sampling theorem to thesubmartingale Û(Mk, Sk(M), M∗

k ), k = 0, 1, 2, . . . , we have
EU(Mn, Sn(M), M∗

n) ≥ EU(Mτ∧n, Sτ∧n(M), M∗
τ∧n).Sin
e

U(Mτ∧n, Sτ∧n(M), M∗
τ∧n) = U(Mτ∧n, |Mτ∧n|, M∗

τ∧n) > 0on the set {τ ≤ n} (whi
h has positive probability), the stri
tness follows.The proof of Theorem 1 is 
omplete.4. The proof of Theorem 2. We start from a simpleLemma 3. For x, d ∈ H and z ∈ R+ we have(4.1) |x + d| ∨ z − |x + d| ≤
∣∣∣∣−

x

|x| (|x| ∨ z − |x|) + d

∣∣∣∣.
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Proof. We may and will assume that z ≥ |x|. For |x + d| ≥ z there isnothing to prove. If |x+d| < z, then the left hand side is equal to z−|x+d|and, squaring both sides, we obtain the equivalent inequality to prove:

z2 − 2z|x + d| + |x + d|2 ≤ |x + d|2 − 2

(
x + d, x · z

|x|

)
+ z2,or the obvious inequality

(
x + d,

x

|x|

)
≤ |x + d|.As in the proof of Theorem 1, we will use Theorem 3 of Burkholder; letus introdu
e fun
tions U1, V1 : H× [0,∞)2 → R de�ned by

U1(x, y, z) =

{√
2y2 − (|x| ∨ z − |x|)2 if y > |x| ∨ z − |x|,

2y − (|x| ∨ z − |x|) if y ≤ |x| ∨ z − |x|,
V1(x, y, z) = 2y − (|x| ∨ z − |x|).Note that

U1(x, y, z) = u

(
± x

|x| (|x| ∨ z − |x|), y
)

,(4.2)
V1(x, y, z) = v

(
± x

|x| (|x| ∨ z − |x|), y
)

,(4.3)where u, v are de�ned by (3.3), (3.4).We must 
he
k the assumptions of Theorem 3.Lemma 4. The fun
tions U1, V1 satisfy (2.1)�(2.3).Proof. The formulae (4.2), (4.3) will enable us to redu
e the 
laim toLemma 2. The 
ondition (2.2) obviously holds; the inequality (2.1) followsimmediately from (4.2), (4.3) and the 
ondition u ≤ v proved in Lemma 2.Hen
e it su�
es to show (2.3).With �xed y, the fun
tion x 7→ u(x, y) de
reases as |x| in
reases; thereforethe formula (4.2) and the inequality (4.1) imply
U1(x + d,

√
y2 + d2, |x + d| ∨ z) − U1(x, y, |x| ∨ z)

= u

(
x

|x|(|x + d| ∨ z − |x + d|),
√

y2 + |d|2
)
− u

(
− x

|x|(|x| ∨ z − |x|), y
)

≥ u

(
− x

|x|(|x| ∨ z − |x|) + d,
√

y2 + d2)

)
− u

(
− x

|x|(|x| ∨ z − |x|), y
)

.Now if d is a 
entered H-valued random variable, then the inequality (2.3)for Û (de�ned by (3.3)) and for the point
(
− x

|x| (|x| ∨ z − |x|), y, |x| ∨ z

)
∈ H × [0,∞)2
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states that the expe
tation of the right hand side of the inequality aboveis nonnegative. Therefore the left hand side also has nonnegative expe
tedvalue, whi
h is the 
laim.Proof of Theorem 2. We repeat the arguments from the proof of The-orem 1. Fix an H-valued martingale M and a nonnegative integer n. ByLemma 4 and Theorem 3, the inequality (1.2) is established:

2ESn(M) + E|Mn| − EM∗
n = EV1(Mn, Sn(M), M∗

n)

≥ U1(M0, S0(M), |M0|) = U1(M0, |M0|, |M0|) ≥ 0.A
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