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Summary. Let K be a field, a,b € K and ab # 0. Consider the polynomials ¢;(z) =
" +ax + b, go(2) = 2™ + ax® + bz, where n is a fixed positive integer. We show that for
each k > 2 the hypersurface given by the equation

k
Sio vl =]lailz), i=12,
j=1

contains a rational curve. Using the above and van de Woestijne’s recent results we show
how to construct a rational point different from the point at infinity on the curves C; :
y? = gi(x), (i = 1,2) defined over a finite field, in polynomial time.

1. Introduction. R. Schoof showed in [4] how to count the rational
points on the elliptic curve E : y?> = 22 4+ ax + b defined over the finite
field IF,, where p > 3 is a prime, in polynomial time. Surprisingly, this
algorithm yields the order of the group E(F,) without providing any point
(different from the point at infinity) on the curve E explicitly. In [4] the
problem was posed to construct an algorithm determining a rational point
P € E(Fy) \ {O} in polynomial time.

To the author’s best knowledge, the first work concerning this problem
appeared in 2004. A. Schinzel and M. Skalba showed in [3] how to deter-
mine efficiently a rational point on the curve of the form y? = z™ + a, where
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n = 3,4, a € F;, and ¢ = p™. In case n = 3, they gave explicit elements
Y1,Y2,Y3,ya € Fy such that for at least one 7 < 4 the equation yf =z3+a
has a solution in F,. In case n = 4, they constructed y1, y2,y3 € Fy such that
for at least one 7 < 3, the equation yf = 2% + a has a solution in Fy,.

A solution of the subproblem of finding the z-coordinate of a rational
point on the elliptic curve

E: y*=2*4ax+b=: f(z)

in case a,b € Fy, a # 0, ¢ = p™ and p > 3, was provided in [7] (for many
applications the y-coordinate is not needed). The key element of the proof
was a construction of non-constant rational functions xi,z9,z3,u € K(t)
which satisfy the equation

(1.1) u? = fx1)f(w2) f(23).

We know that the multiplicative group Fy is cyclic. This fact plus the para-
metric solution obtained prove that for at least one i < 3, the element f(z;)
is a square in F,. If now ¢ = p or ¢ = p™ and an element v € F, \ Fg
is given, then using Schoof’s and Tonnelli-Shanks’ algorithm (given in [6])
respectively, we can calculate a square root of f(z;) in polynomial time.

In his PhD dissertation [8], Ch. van de Woestijne showed how in poly-
nomial time, for given bg,b1,...,b, € Fy, we can find integers ¢, j with
0 <i<j<n and an element b € FZ such that bi/bj = b™. Note that to
calculate this nth root, it is not necessary to have the element v € Fy \ Fys
and the algorithm which computes this root is deterministic. It is easy to
see that having x1, 9, x3 satisfying the identities (1.1) for some u € F, and
using van de Woestijne’s result we can find a rational point on the curve
y?> = f(x) in polynomial time. This idea was used in [5]. The authors con-
structed a rational curve (different from the one in [7]) on the hypersurface
u? = f(x1)f(z2) f(x3), where f is a given polynomial of degree three. How-
ever, in order to obtain an explicit form of the curve, it is necessary to solve
the equation az? + By? =~ in [F, for some a, 3,7 (this can be done in de-
terministic polynomial time, but of course it lengthens the time needed to
compute a rational point on F). The authors also showed how to construct
rational points on elliptic curves defined over finite fields of characteristic 2
and 3.

A natural question arising here concerns the existence of rational curves
on a hypersurface of the form

k
(1.2) Sp: = Hg(a:i),
i=1
where ¢g € Z[z] has no multiple roots. Note that in this case Sy is smooth. It
appears that this problem has not been considered so far. Papers 7] and [5]
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show that for k£ odd, finding rational curves on the hypersurface Sy can be
useful in finding rational points on hyperelliptic curves (defined over a finite
field) of the form

C: y*=g()

Note moreover that if degg = 2,3,4 and k is even number, then it is
easy to find rational curves on Si. Indeed, if k& = 2, then on S5 we have
the rational curve (x1,x9,u) = (¢,t,9(t)). If now degg = 2, then using a
standard procedure we can parametrize the rational solutions of the equation
u? = g(t)g(z). For degg = 3 or degg = 4 we act similarly, except that this
time we use an algorithm of adding points on a curve of genus one with
known rational points. In this way we obtain infinitely many rational curves
on So. As an immediate consequence of the above reasoning, we obtain curves
on S for any even integer k > 2.

However, if degg > 4 or k is an odd integer, then the task seems to
be much more difficult and the crucial question arises whether for a given
g € Z|z] there is an odd k such that Sy contains a rational curve.

Let now a,b € K, ab # 0, and consider the polynomials

gi(z) =a2"+ax+b,  goz) = 2" + az® + b,

where n is a fixed positive integer. In this paper we prove that if g = ¢ or
g = go, then for each k > 2 there is a rational curve on the surface Si.

Together with Woestijne’s results this shows that rational points on the
curve C; : y?> = gi(x) can be found in polynomial time. Let us also note that if
n is even, then g;(—b/a) = (b/a)™ and the finite point P = (—=b/a, (b/a)"/?)
lies on the curve y> = g;(), so in this case the problem of existence of
rational points on C; is easy. However, this of course does not provide a
rational curve on Sy when n is even.

2. Rational curves on S,i. In this section we consider the hypersurface
k
Si: ut= Hgi(:cj),
j=1

where i € {1,2} is fixed. As direct examination of the existence of rational
curves on S}, is difficult, we reduce the problem to examining simpler objects.
Let a,b,c,d € K satisfy the condition

(%) (a#0o0rc#0) and (b#0ord#0).
Let m,n be fixed positive integers and consider the surfaces
Sty gi(x)2™ =y + ey + d,
S%: go(x)2™ = y" + ey + dy.
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We will prove that a rational curve lies on each of these surfaces. Using
these curves we will construct curves on S and S%. Since each positive
integer > 2 is of the form 2k + 3l, as an immediate consequence we obtain
the existence of rational curves on S,i for each k > 2.

We start with the following

LEMMA 2.1. Let n,m € Ny and let a,b,c,d € K satisfy (x). Then on
each of the surfaces S, S? there is a rational curve.

Proof. Let Fi(x,y,z) = gi(x)z"™ — (y" + cy + d) and Fi(z,y,2) =
go(x)2™ — (Y + cy? +dy). Set x = T, y = t™T, z = t". It is easy to
see that the equation Fy(T,t™T,t") = 0 has the root

bt™" —d
atmm — ctm’
which gives us a parametric curve L; on S' given by
bt™" — d bt — d

atmn — cpm’ y(t) = Cgtmn=1) — ¢

The same method can be applied to find a rational curve on S2. In this case
the equation F»(T,t"™T,t") = 0 has two roots, T = 0 and

ptm(n=1 — ¢
_atm(n—l) —ctm’

T=-—

Ly: z(t) = z(t) =t".

T:

A rational curve Lo on S? is given by the equations

btm(n—l) —d btm(n—l) —d
 qtmln=1) — ggm’ y(t) = atm(n=2) — ¢’

Note that the condition (x) is crucial in both cases. m

Ly: z(t) = z(t) =t".

REMARK 2.2. The surface S' appeared in [2] with the additional as-
sumption ¢ = ¢,b = d,m = 2,n = 3. In this case the curve L; was used
to show that for a given j # 0,1728 there are infinitely many elliptic curves
with j-invariant equal to j and Mordell-Weil rank > 2.

A special case of the surface S, when m = 2, n = 3, was also considered
in [1]. In this case the curve L; was used to show that on S! the set of
rational points is dense in the topology of R3.

Using the above lemma we can prove the following

THEOREM 2.3. Let K be a field and set gi(x) = 2™ 4+ ax + b, g2(x) =
" 4 ax® + bx, where a,b € K,ab # 0. Let t,u be variables.

(1) If n > 3 is a positive integer, set

bt —1

) =0

Xo(t) = 12X, (1), U(t) =t"g1(X1(2)).
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Then
U(t)* = g1(X1(t)g1(Xa(t)).
If now
b tQ(n—l) -1 )
Xi(t) =~ oy gz X0 =7Xa(), UQ) =t"g(Xi(1)),
then

U(t)? = g2(X1(t))g2(X2(t)).
(2) If n is an odd integer, set
Xi(t,u) = u,
b 2" gy (u)™ — 1
a g1(w)(2"gr (u)"—T —12)’
X3(t,u) = t2g1 (u) Xa(t, u),
U(t,u) = t"g1(u) "V 291 (Xa(t, w)).

Xg(t,u) = —

Then
U(t,u)® = g1(X1(t,u))g1(Xa(t, u))g1(Xa(t, u)).
If now
X1(t,u) = u,
B b t2(n—1)92(u)n—1 -1
X2<tau) - _a 92(u)(t2(n_1)g2(u)n_2 _ tQ)v
X3(t,u) = t2go(u) Xo(t, u),
U(t,u) = t"ga(u) "/ 2gy(Xo(t, w),
then

U(t,u)® = ga(X1(t, w))ga(Xa(t, u))g2(Xz(t, w)).

Proof. We consider the surfaces S' and S? from Lemma 2.1 with m = 2.
To prove (1), note that the change of variables z = z1 /g1 () shows that S!
is birational to the surface
(2.1) S 2= (2" +az+b)(y" 4 cy +d).

Putting now a = ¢, b = d and using the equations of the curve L; from the
proof of Lemma 2.1, we obtain the statement of our theorem.

Now we take the equations defining the curve Lo from the proof of
Lemma 2.1 and repeat the above reasoning for the surface S?. This ends
the proof of (1).

To prove (2), consider again the surface S’ given by (2.1). If we now put
c=a/g1(u)" !, d =0b/g1(u)" and perform a change of variables

X
(2:2) u=X1, z=Xs y=-—7~, oz =Ugu) "2
g1(u)

then after elementary calculations the equation of S’ is of the form
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Ut = g1(X1)g1(X2)g1(X3).
If now z,, z are rational functions defining the curve Li on the surface S*
for ¢ = a/g1(u)"" ', d = b/g1(u)", then calculating X1, X2, X3 from (2.2),
we obtain a two-parameter solution of the above equation as given in the
statement of our theorem.
The proof of (2) for ga(z) = 2™ + az? + bz is similar, with one difference:
we substitute a/ge(u)""2 and b/go(u)" ! for c,d respectively. m

REMARK 2.4. If K is a finite field with char K > 3, a,b € K, ab # 0 and

we look for a rational point on the elliptic curve
E: y=2+4ar+b= f(z),

then our rational curve lying on the hypersurface S: u? = f(x1)f(z2)f(3)
is much simpler than that obtained by Skatba. If x; = X;(t), i = 1,2, 3, are
the equations defining the curve on S, then if X;X2X3 = N/D for some
relatively prime polynomials N, D € K|[t], then deg N < 26, deg D < 25 for
the parametrization obtained by Skatba, while deg N < 8, deg D < 6 for our
parametrization (with uw € K such that f(u) # 0) from Theorem 2.3. The
multiplicative structure of the functions X; is also very simple in our case,
which influences the speed of calculations.

Moreover, our parametrization has the advantage over the one obtained
by Shallue and van de Woestijne that it does not require solving an equation
of the form az? + By? = in K.

Since for n even we have g;(—a/b) = ((b/a)"/?)2, from the above theorem
we obtain

COROLLARY 2.5. Let K be a field, a,b € K, ab # 0. Then for each
positive integer k > 2 there is a rational curve on the hypersurface

k
Sk = Hgi(:vj), i=1,2.
j=1

Because the case k = 3 and K =1F,, ¢ = p™, is especially interesting for
us, we have to decide about the assumptions that would permit calculating
the values of X;(u,t) for i = 1,2,3 from the second part of Theorem 2.3.
We limit our considerations to the case of g; of odd degree n. For gs the
reasoning is similar.

First, the functions X;(t,u) for ¢ = 1,2,3 are non-constant. Moreover,
X5 and X3 have the same denominator which equals

> (Pgi(u)" ' -1

t2g1(u) — 1

We know that vP"~! = 1 for each v € F,. There are p™ — n elements
u € Fy for which g;(u) # 0. If we fix such a u, then because deg; D(t,u) =

D(t,u) = gi(u)t
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2(n —1) and t2 | D(t, u), there are at least p™ —2(n — 1) + 1 elements t € F,
for which D(t,u) # 0. Thus there are at least (p"™* —n)(p™ —2(n —1) + 1)
elements (t,u) in Fy, x F, for which D(t,u) # 0. Hence if p > 2(n — 1) — 1
then we can find ¢,u € F, such that g;(X;(¢,u)) is a square for at least one
je{1,2,3}).

3. Some remarks and questions. Define T" to be the set of pairs
(t,u) € Fy x F, for which we can compute X;(¢,u), i = 1,2,3, from the
preceding section. Then we can define a map @ from 7 to the curve C : % =
g1(z) by

D(t,u) = (X;(t,u), \/01(X;(t, ),

where the square root is taken in F, and j = min{i : g1 (X;(¢,u)) is a square}.
Note that there are at most 2¢ rational points on C' over I, while T', as we
have proved, contains at least (¢—n)(¢—2(n—1)+1) elements. This suggests
the following

QUESTION 3.1. Is the map @ : T > (t,u) — &(t,u) € C surjective?
Another question which comes to mind is the following.

QUESTION 3.2. Fiz g € Z[x] without multiple roots. Is there an integer
k > 2 such that on the hypersurface

k
Sp: u’= Hg(xj)
j=1

there are infinitely many rational points with u # 09 Here we are interested
in non-trivial points on Sk, i.e. (x1,...,xk,u) such that g(z;) # g(x;) for
1% .

It would also be interesting to know whether there are rational curves on
Sy if we consider this hypersurface over C (instead of Q).

It seems that the following question is much more difficult.

QUESTION 3.3. Fiz g € Z[z] without multiple roots and a positive integer
k > 2. Is there a non-trivial rational point with u # 0 on the hypersurface Sy ¢

If the k£ in Question 3.3 is odd we should also assume that for each
p € PU {oo} the curve y* = g(z) has a point over Q, (as usual Q5 = R).
It is clear that the assumption concerning local solubility is necessary. For
example, consider the polynomial g(x) = 3 — x2. There are no Qs-rational
points on the curve y?> = g(z), which immediately implies that there are
none on S.

If g satisfies 2"¢g(1/x) = g(z) (such polynomials are called reciprocal),
then we have a rational curve z; = t?, 29 = 1/t?, u = t"g(1/t?) on the
surface S5. As an immediate consequence we conclude that if &k is even, then
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there is a rational curve on Si. Additionally, if the degree of g is odd, then
on S3 we have a rational curve given by

1 1
v =t wo=g(t), z3=—x, u=g(t)"H/? < >7
1 2 =g(t) 3= 00 g9(t) I\ 5@

and hence for each k£ > 2 there is a rational curve on Sj.

If g(x) = 2* + 1, then on S3 we have a rational curve with x; = ;(t),
1=1,2,3, given by

2t +1 3t + 2t 32+ 4t + 1

=—— 23==——, X3=—5——.

3t2+ 3t + 1 324+ 3t +1 3t2+ 3t + 1

It would be very interesting to construct other families of polynomials
with the property that for each k > 2 there are rational curves (or infinitely
many non-trivial rational points) on Sk.

I
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