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Summary. Let K be a �eld, a, b ∈ K and ab 6= 0. Consider the polynomials g1(x) =
xn + ax + b, g2(x) = xn + ax2 + bx, where n is a �xed positive integer. We show that forea
h k ≥ 2 the hypersurfa
e given by the equation

S
i
k : u

2 =
k

∏

j=1

gi(xj), i = 1, 2,
ontains a rational 
urve. Using the above and van de Woestijne's re
ent results we showhow to 
onstru
t a rational point di�erent from the point at in�nity on the 
urves Ci :
y2 = gi(x), (i = 1, 2) de�ned over a �nite �eld, in polynomial time.1. Introdu
tion. R. S
hoof showed in [4℄ how to 
ount the rationalpoints on the ellipti
 
urve E : y2 = x3 + ax + b de�ned over the �nite�eld Fp, where p > 3 is a prime, in polynomial time. Surprisingly, thisalgorithm yields the order of the group E(Fp) without providing any point(di�erent from the point at in�nity) on the 
urve E expli
itly. In [4℄ theproblem was posed to 
onstru
t an algorithm determining a rational point
P ∈ E(Fp) \ {O} in polynomial time.To the author's best knowledge, the �rst work 
on
erning this problemappeared in 2004. A. S
hinzel and M. Skaªba showed in [3℄ how to deter-mine e�
iently a rational point on the 
urve of the form y2 = xn + a, where2000 Mathemati
s Subje
t Classi�
ation: Primary 11D25, 11D41; Se
ondary 14G15.Key words and phrases: hyperellipti
 
urves, rational points, diophantine equations,�nite �elds.The author is a s
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n = 3, 4, a ∈ Fq and q = pm. In 
ase n = 3, they gave expli
it elements
y1, y2, y3, y4 ∈ Fq su
h that for at least one i ≤ 4 the equation y2

i = x3 + ahas a solution in Fq. In 
ase n = 4, they 
onstru
ted y1, y2, y3 ∈ Fq su
h thatfor at least one i ≤ 3, the equation y2
i = x4 + a has a solution in Fq.A solution of the subproblem of �nding the x-
oordinate of a rationalpoint on the ellipti
 
urve

E : y2 = x3 + ax + b =: f(x)in 
ase a, b ∈ Fq, a 6= 0, q = pm and p > 3, was provided in [7℄ (for manyappli
ations the y-
oordinate is not needed). The key element of the proofwas a 
onstru
tion of non-
onstant rational fun
tions x1, x2, x3, u ∈ K(t)whi
h satisfy the equation(1.1) u2 = f(x1)f(x2)f(x3).We know that the multipli
ative group F∗

q is 
y
li
. This fa
t plus the para-metri
 solution obtained prove that for at least one i ≤ 3, the element f(xi)is a square in Fq. If now q = p or q = pm and an element v ∈ Fq \ F2
qis given, then using S
hoof's and Tonnelli�Shanks' algorithm (given in [6℄)respe
tively, we 
an 
al
ulate a square root of f(xi) in polynomial time.In his PhD dissertation [8℄, Ch. van de Woestijne showed how in poly-nomial time, for given b0, b1, . . . , bn ∈ F∗

q , we 
an �nd integers i, j with
0 ≤ i < j ≤ n and an element b ∈ F∗

q su
h that bi/bj = bn. Note that to
al
ulate this nth root, it is not ne
essary to have the element v ∈ Fq \ Fn
q ,and the algorithm whi
h 
omputes this root is deterministi
. It is easy tosee that having x1, x2, x3 satisfying the identities (1.1) for some u ∈ Fq andusing van de Woestijne's result we 
an �nd a rational point on the 
urve

y2 = f(x) in polynomial time. This idea was used in [5℄. The authors 
on-stru
ted a rational 
urve (di�erent from the one in [7℄) on the hypersurfa
e
u2 = f(x1)f(x2)f(x3), where f is a given polynomial of degree three. How-ever, in order to obtain an expli
it form of the 
urve, it is ne
essary to solvethe equation αx2 + βy2 = γ in Fq for some α, β, γ (this 
an be done in de-terministi
 polynomial time, but of 
ourse it lengthens the time needed to
ompute a rational point on E). The authors also showed how to 
onstru
trational points on ellipti
 
urves de�ned over �nite �elds of 
hara
teristi
 2and 3.A natural question arising here 
on
erns the existen
e of rational 
urveson a hypersurfa
e of the form(1.2) Sk : u2 =

k
∏

i=1

g(xi),where g ∈ Z[x] has no multiple roots. Note that in this 
ase Sk is smooth. Itappears that this problem has not been 
onsidered so far. Papers [7℄ and [5℄
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show that for k odd, �nding rational 
urves on the hypersurfa
e Sk 
an beuseful in �nding rational points on hyperellipti
 
urves (de�ned over a �nite�eld) of the form

C : y2 = g(x).Note moreover that if deg g = 2, 3, 4 and k is even number, then it iseasy to �nd rational 
urves on Sk. Indeed, if k = 2, then on S2 we havethe rational 
urve (x1, x2, u) = (t, t, g(t)). If now deg g = 2, then using astandard pro
edure we 
an parametrize the rational solutions of the equation
u2 = g(t)g(x). For deg g = 3 or deg g = 4 we a
t similarly, ex
ept that thistime we use an algorithm of adding points on a 
urve of genus one withknown rational points. In this way we obtain in�nitely many rational 
urveson S2. As an immediate 
onsequen
e of the above reasoning, we obtain 
urveson Sk for any even integer k > 2.However, if deg g > 4 or k is an odd integer, then the task seems tobe mu
h more di�
ult and the 
ru
ial question arises whether for a given
g ∈ Z[x] there is an odd k su
h that Sk 
ontains a rational 
urve.Let now a, b ∈ K, ab 6= 0, and 
onsider the polynomials

g1(x) = xn + ax + b, g2(x) = xn + ax2 + bx,where n is a �xed positive integer. In this paper we prove that if g = g1 or
g = g2, then for ea
h k ≥ 2 there is a rational 
urve on the surfa
e Sk.Together with Woestijne's results this shows that rational points on the
urve Ci : y2 = gi(x) 
an be found in polynomial time. Let us also note that if
n is even, then gi(−b/a) = (b/a)n and the �nite point P = (−b/a, (b/a)n/2)lies on the 
urve y2 = gi(x), so in this 
ase the problem of existen
e ofrational points on Ci is easy. However, this of 
ourse does not provide arational 
urve on Sk when n is even.2. Rational 
urves on Si

k. In this se
tion we 
onsider the hypersurfa
e
Si

k : u2 =

k
∏

j=1

gi(xj),where i ∈ {1, 2} is �xed. As dire
t examination of the existen
e of rational
urves on Si
k is di�
ult, we redu
e the problem to examining simpler obje
ts.Let a, b, c, d ∈ K satisfy the 
ondition

(∗) (a 6= 0 or c 6= 0) and (b 6= 0 or d 6= 0).Let m, n be �xed positive integers and 
onsider the surfa
es
S1 : g1(x)zm = yn + cy + d,

S2 : g2(x)zm = yn + cy2 + dy.
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We will prove that a rational 
urve lies on ea
h of these surfa
es. Usingthese 
urves we will 
onstru
t 
urves on Si

2 and Si
3. Sin
e ea
h positiveinteger ≥ 2 is of the form 2k + 3l, as an immediate 
onsequen
e we obtainthe existen
e of rational 
urves on Si

k for ea
h k ≥ 2.We start with the followingLemma 2.1. Let n, m ∈ N+ and let a, b, c, d ∈ K satisfy (∗). Then onea
h of the surfa
es S1, S2 there is a rational 
urve.Proof. Let F1(x, y, z) := g1(x)zm − (yn + cy + d) and F2(x, y, z) :=
g2(x)zm − (yn + cy2 + dy). Set x = T , y = tmT , z = tn. It is easy tosee that the equation F1(T, tmT, tn) = 0 has the root

T = −
btmn − d

atmn − ctm
,whi
h gives us a parametri
 
urve L1 on S1 given by

L1 : x(t) = −
btmn − d

atmn − ctm
, y(t) = −

btmn − d

atm(n−1) − c
, z(t) = tn.The same method 
an be applied to �nd a rational 
urve on S2. In this 
asethe equation F2(T, tmT, tn) = 0 has two roots, T = 0 and

T = −
btm(n−1) − d

atm(n−1) − ctm
.A rational 
urve L2 on S2 is given by the equations

L2 : x(t) = −
btm(n−1) − d

atm(n−1) − ctm
, y(t) = −

btm(n−1) − d

atm(n−2) − c
, z(t) = tn.Note that the 
ondition (∗) is 
ru
ial in both 
ases.Remark 2.2. The surfa
e S1 appeared in [2℄ with the additional as-sumption a = c, b = d, m = 2, n = 3. In this 
ase the 
urve L1 was usedto show that for a given j 6= 0,1728 there are in�nitely many ellipti
 
urveswith j-invariant equal to j and Mordell�Weil rank ≥ 2.A spe
ial 
ase of the surfa
e S1, when m = 2, n = 3, was also 
onsideredin [1℄. In this 
ase the 
urve L1 was used to show that on S1 the set ofrational points is dense in the topology of R3.Using the above lemma we 
an prove the followingTheorem 2.3. Let K be a �eld and set g1(x) = xn + ax + b, g2(x) =

xn + ax2 + bx, where a, b ∈ K, ab 6= 0. Let t, u be variables.(1) If n ≥ 3 is a positive integer , set
X1(t) = −

b

a

t2n − 1

t2n − t2
, X2(t) = t2X1(t), U(t) = tng1(X1(t)).
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Then

U(t)2 = g1(X1(t))g1(X2(t)).If now
X1(t) = −

b

a

t2(n−1) − 1

t2(n−1) − t2
, X2(t) = t2X1(t), U(t) = tng1(X1(t)),then

U(t)2 = g2(X1(t))g2(X2(t)).(2) If n is an odd integer , set
X1(t, u) = u,

X2(t, u) = −
b

a

t2ng1(u)n − 1

g1(u)(t2ng1(u)n−1 − t2)
,

X3(t, u) = t2g1(u)X2(t, u),

U(t, u) = tng1(u)(n+1)/2g1(X2(t, u)).Then
U(t, u)2 = g1(X1(t, u))g1(X2(t, u))g1(X3(t, u)).If now

X1(t, u) = u,

X2(t, u) = −
b

a

t2(n−1)g2(u)n−1 − 1

g2(u)(t2(n−1)g2(u)n−2 − t2)
,

X3(t, u) = t2g2(u)X2(t, u),

U(t, u) = tng2(u)(n+1)/2g2(X2(t, u)),then
U(t, u)2 = g2(X1(t, u))g2(X2(t, u))g2(X3(t, u)).Proof. We 
onsider the surfa
es S1 and S2 from Lemma 2.1 with m = 2.To prove (1), note that the 
hange of variables z = z1/g1(x) shows that S1is birational to the surfa
e(2.1) S′ : z2

1 = (xn + ax + b)(yn + cy + d).Putting now a = c, b = d and using the equations of the 
urve L1 from theproof of Lemma 2.1, we obtain the statement of our theorem.Now we take the equations de�ning the 
urve L2 from the proof ofLemma 2.1 and repeat the above reasoning for the surfa
e S2. This endsthe proof of (1).To prove (2), 
onsider again the surfa
e S′ given by (2.1). If we now put
c = a/g1(u)n−1, d = b/g1(u)n and perform a 
hange of variables(2.2) u = X1, x = X2, y =

X3

g1(u)
, z1 = U1g1(u)−(n+1)/2,then after elementary 
al
ulations the equation of S′ is of the form



102 M. Ulas
U2

1 = g1(X1)g1(X2)g1(X3).If now x, y, z are rational fun
tions de�ning the 
urve L1 on the surfa
e S1for c = a/g1(u)n−1, d = b/g1(u)n, then 
al
ulating X1, X2, X3 from (2.2),we obtain a two-parameter solution of the above equation as given in thestatement of our theorem.The proof of (2) for g2(x) = xn +ax2 + bx is similar, with one di�eren
e:we substitute a/g2(u)n−2 and b/g2(u)n−1 for c, d respe
tively.Remark 2.4. If K is a �nite �eld with charK > 3, a, b ∈ K, ab 6= 0 andwe look for a rational point on the ellipti
 
urve
E : y2 = x3 + ax + b =: f(x),then our rational 
urve lying on the hypersurfa
e S: u2 = f(x1)f(x2)f(x3)is mu
h simpler than that obtained by Skaªba. If xi = Xi(t), i = 1, 2, 3, arethe equations de�ning the 
urve on S, then if X1X2X3 = N/D for somerelatively prime polynomials N, D ∈ K[t], then deg N ≤ 26, deg D ≤ 25 forthe parametrization obtained by Skaªba, while deg N ≤ 8, deg D ≤ 6 for ourparametrization (with u ∈ K su
h that f(u) 6= 0) from Theorem 2.3. Themultipli
ative stru
ture of the fun
tions Xi is also very simple in our 
ase,whi
h in�uen
es the speed of 
al
ulations.Moreover, our parametrization has the advantage over the one obtainedby Shallue and van de Woestijne that it does not require solving an equationof the form αx2 + βy2 = γ in K.Sin
e for n even we have gi(−a/b) = ((b/a)n/2)2, from the above theoremwe obtainCorollary 2.5. Let K be a �eld , a, b ∈ K, ab 6= 0. Then for ea
hpositive integer k ≥ 2 there is a rational 
urve on the hypersurfa
e

Si
k : u2 =

k
∏

j=1

gi(xj), i = 1, 2.Be
ause the 
ase k = 3 and K = Fq, q = pm, is espe
ially interesting forus, we have to de
ide about the assumptions that would permit 
al
ulatingthe values of Xi(u, t) for i = 1, 2, 3 from the se
ond part of Theorem 2.3.We limit our 
onsiderations to the 
ase of g1 of odd degree n. For g2 thereasoning is similar.First, the fun
tions Xi(t, u) for i = 1, 2, 3 are non-
onstant. Moreover,
X2 and X3 have the same denominator whi
h equals

D(t, u) = g1(u)t2
(t2g1(u))n−1 − 1

t2g1(u) − 1
.We know that vpm

−1 = 1 for ea
h v ∈ Fq. There are pm − n elements
u ∈ Fq for whi
h g1(u) 6= 0. If we �x su
h a u, then be
ause degt D(t, u) =
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2(n− 1) and t2 |D(t, u), there are at least pm − 2(n− 1) + 1 elements t ∈ Fqfor whi
h D(t, u) 6= 0. Thus there are at least (pm − n)(pm − 2(n − 1) + 1)elements (t, u) in Fq × Fq for whi
h D(t, u) 6= 0. Hen
e if p > 2(n − 1) − 1then we 
an �nd t, u ∈ Fq su
h that g1(Xj(t, u)) is a square for at least one
j ∈ {1, 2, 3}.3. Some remarks and questions. De�ne T to be the set of pairs
(t, u) ∈ Fq × Fq for whi
h we 
an 
ompute Xi(t, u), i = 1, 2, 3, from thepre
eding se
tion. Then we 
an de�ne a map Φ from T to the 
urve C : y2 =
g1(x) by

Φ(t, u) =
(

Xj(t, u),
√

g1(Xj(t, u))
)

,where the square root is taken in Fq and j = min{i : g1(Xi(t, u)) is a square}.Note that there are at most 2q rational points on C over Fq, while T , as wehave proved, 
ontains at least (q−n)(q−2(n−1)+1) elements. This suggeststhe followingQuestion 3.1. Is the map Φ : T ∋ (t, u) 7→ Φ(t, u) ∈ C surje
tive?Another question whi
h 
omes to mind is the following.Question 3.2. Fix g ∈ Z[x] without multiple roots. Is there an integer
k ≥ 2 su
h that on the hypersurfa
e

Sk : u2 =
k

∏

j=1

g(xj)there are in�nitely many rational points with u 6= 0? Here we are interestedin non-trivial points on Sk, i.e. (x1, . . . , xk, u) su
h that g(xi) 6= g(xj) for
i 6= j.It would also be interesting to know whether there are rational 
urves on
Sk if we 
onsider this hypersurfa
e over C (instead of Q).It seems that the following question is mu
h more di�
ult.Question 3.3. Fix g ∈ Z[x] without multiple roots and a positive integer
k ≥ 2. Is there a non-trivial rational point with u 6= 0 on the hypersurfa
e Sk?If the k in Question 3.3 is odd we should also assume that for ea
h
p ∈ P ∪ {∞} the 
urve y2 = g(x) has a point over Qp (as usual Q∞ = R).It is 
lear that the assumption 
on
erning lo
al solubility is ne
essary. Forexample, 
onsider the polynomial g(x) = 3 − x2. There are no Q3-rationalpoints on the 
urve y2 = g(x), whi
h immediately implies that there arenone on Sk.If g satis�es xng(1/x) = g(x) (su
h polynomials are 
alled re
ipro
al),then we have a rational 
urve x1 = t2, x2 = 1/t2, u = tng(1/t2) on thesurfa
e S2. As an immediate 
onsequen
e we 
on
lude that if k is even, then
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there is a rational 
urve on Sk. Additionally, if the degree of g is odd, thenon S3 we have a rational 
urve given by

x1 = t, x2 = g(t), x3 =
1

g(t)
, u = g(t)(n+1)/2g

(

1

g(t)

)

,and hen
e for ea
h k ≥ 2 there is a rational 
urve on Sk.If g(x) = x4 + 1, then on S3 we have a rational 
urve with xi = xi(t),
i = 1, 2, 3, given by

x1 =
2t + 1

3t2 + 3t + 1
, x2 =

3t2 + 2t

3t2 + 3t + 1
, x3 =

3t2 + 4t + 1

3t2 + 3t + 1
.It would be very interesting to 
onstru
t other families of polynomialswith the property that for ea
h k ≥ 2 there are rational 
urves (or in�nitelymany non-trivial rational points) on Sk.A
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