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Summary. This paper is motivated by the problem of dependen
e of the Hausdor� di-mension of the Julia�Lavaurs sets J0,σ for the map f0(z) = z2 + 1/4 on the parameter σ.Using homographies, we imitate the 
onstru
tion of the iterated fun
tion system (IFS)whose limit set is a subset of J0,σ, given by Urba«ski and Zinsmeister. The 
losure of thelimit set of our IFS {φn,k

σ,α} is the 
losure of some family of 
ir
les, and if the parameter
σ varies, then the behavior of the limit set is similar to the behavior of J0,σ. The param-eter α determines the diameter of the largest 
ir
le, and therefore the diameters of other
ir
les.We prove that for all parameters α ex
ept possibly for a set without a

umulationpoints, for all appropriate t > 1 the sum of the tth powers of the diameters of the imagesof the largest 
ir
le under the maps of the IFS depends on the parameter σ. This is the�rst step to verifying the 
onje
tured dependen
e of the pressure and Hausdor� dimensionon σ for our model and for J0,σ.1. Introdu
tion. This paper is devoted to 
onstru
tion of some in�nite
onformal iterated fun
tion system (IFS, see [4℄ and Se
tion 3) whi
h 
onsistsof restri
tions, to a domain X, of homographies depending on two parameters(σ and α). The motivation for writing this paper has been an open problemof dependen
e of the Hausdor� dimension of the Julia�Lavaurs sets on theparameter for f0(z) = z2 + 1/4 (see Se
tion 2, with no te
hni
al 
onne
tionwith the rest of the paper).
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The domain X of our IFS is a subset of the 
losed disk B(1/2, 1/2). Wewill use the homographies

f(z) =
z

iz + 1
=

1

i + 1/z
,(1.1)

s(z) = 1 − z,(1.2)whi
h are automorphisms of B(1/2, 1/2) and do not depend on parameters,and(1.3) gσ,α(z) =
z(

1−α
α + iσ

)
z + 1

, σ ∈ R, α ∈ (0, 1).We have gσ,α(B(1/2, 1/2)) ⊂ B(1/2, 1/2), but the IFS will be de�ned onlyfor α ∈ (0, 1/2] and in this 
ase gσ,α(B(1/2, 1/2)) ⊂ B(1/4, 1/4).Noti
e that in the 
oordinates 1/z the map f is translation by i, while
gσ,α is translation by (1 − α)/α + iσ.The family of maps φn,k

σ,α : X → X, whi
h will form the IFS, is de�ned asfollows:(1.4) φn,k
σ,α = gn

σ,α ◦ fk ◦ sif n ≥ 1, k ∈ Z or n = 0, k ≤ −3, and(1.5) φn,k
σ,α = gn

σ,α ◦ fk ◦ s ◦ fif n = 0, k ≥ 2. The set of pairs (n, k) for whi
h φn,k
σ,α is de�ned is denotedby I.The 
losure of the limit set of the IFS (we add only 
ountably manypoints) is the 
losure of a 
ertain family of 
ir
les. The parameter α is thediameter of the largest 
ir
le 
ontained in the 
losure of the limit set, namely

S(α/2, α/2), and therefore 
ontrols the diameters of other 
ir
les. The pa-rameter σ in�uen
es the position of some families of 
ir
les (analogy withthe Julia�Lavaurs sets).Choosing an arbitrary point x ∈ X and t > 0 we 
an 
onsider thepressure P (t) with the use of the derivative of φn,k
σ,α (see (3.2)). Then therelevant Hausdor� dimension is t0 su
h that P (t0) = 0.If the homograpies φn,k

σ,α are repla
ed by 
onformal a�ne fun
tions map-ping S(α/2, α/2) onto the image of S(α/2, α/2) under φn,k
σ,α, then the deriva-tives of the a�ne fun
tions are quotients of the diameters of suitable 
ir
les.If the IFS obtained in this way satis�es 
onditions from Se
tion 3, then theHausdor� dimension of its limit set depends on the value of the sum of the

tth powers of these quotients, as a fun
tion of t (the dimension t0 is then azero of the logarithm of this sum). We will prove that this sum really de-pends on σ, for all parameters α ex
ept possibly for α's from a set withouta

umulation points, whi
h gives us in this ideal situation the dependen
eof the Hausdor� dimension on σ.
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Fig. 1. Cir
lesWe have not been able to verify the OSC 
ondition. Without OSC, t0 is
alled the similarity dimension, so we prove that the similarity dimension inthe a�ne 
ase is not 
onstant.This is a part of the author's PhD thesis written under the supervisionof Professor Feliks Przyty
ki.
2. Analogy with the Julia�Lavaurs sets. For a polynomial f wede�ne the �lled-in Julia set K(f) as the set of points that do not es
ape toin�nity under iteration of f . The boundary of K(f) is 
alled the Julia setof f . Let us 
onsider the set of polynomials of the form fε(z) = z2 +1/4+ ε.We obtain the fun
tion ε 7→ J(fε) with values in the set K(C) of 
ompa
tsubsets of C, equipped with the Hausdor� metri
. We will also 
onsider thefun
tion ε 7→ d(1/4 + ε), where d(1/4 + ε) denotes the Hausdor� dimen-sion of J(fε). It follows from [1℄ and [5℄ that the fun
tions ε 7→ J(fε) and

ε 7→ d(1/4 + ε) are 
ontinuous and real-analyti
 respe
tively on the set ofparameters ε for whi
h fε is hyperboli
.Now let ε ∈ R
+ ∪ {0}. If ε ∈ R

+ then fε is hyperboli
, and J(fε) ishomeomorphi
 to the Cantor set. The fun
tion f0 is not hyperboli
 sin
e
f0(1/2) = 1/2, and f ′

0(1/2) = 1. It is interesting to study the behaviour of
J(fε) when ε ց 0 (see [1℄). We know that the fun
tion ε 7→ J(fε) is not right-
ontinuous at zero. The possible limits of J(fε) in K(C) whi
h o

ur afterpassing to a subsequen
e are 
alled Julia�Lavaurs sets . These sets depend
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on the parameter σ ∈ R and are denoted by J0,σ, with J0,σ = J0,σ′ if andonly if σ − σ′ ∈ Z.The Julia�Lavaurs sets 
an also be de�ned as the 
losures of J(f0) andthe union of all preimages of J(f0) under g−n

σ , for some spe
ial map gσ :
IntK(f0) → C (Lavaurs map, see [1℄). For all σ ∈ R we have J(f0) ⊂ J0,σ ⊂
K(f0) (be
ause g−1

σ (IntK(f0)) ⊂ IntK(f0)). The map gσ has in�nite degreeon IntK(f0), and σ (mod1) is relevant to the Lavaurs map between E
alle
ylinders. Furthermore, using f0, gσ and symmetry with respe
t to zero (thesets J0,σ, just like J0, are symmetri
al with respe
t to zero), we 
an obtaina subset of J0,σ as the 
losure of the limit set of some in�nite 
onformal IFS(see [6℄ and [2℄). The images of this subset under the a
tion of the iteratesof f0 
over the set J0,σ (beginning with the se
ond iteration).The fun
tion ε 7→ d(1/4 + ε) is not 
ontinuous at zero either (see [2℄).If we 
hoose a sequen
e of parameters εn so as to obtain 
onvergen
e of
J(fεn) in the Hausdor� metri
 to J0,σ for some σ (pre
isely −π√

εn
(mod 1)

→ σ), then we also obtain 
onvergen
e of the Hausdor� dimension of J(fεn)to the Hausdor� dimension of J0,σ. It is a famous problem whether theHausdor� dimension of J0,σ depends on the parameter σ, and whether thelimit limεց0 d(1/4 + ε) exists.This problem has been a motivation for this paper; we will study simplersets, though obtained in a similar way. Be
ause we are interested in theHausdor� dimension, we will imitate the 
onstru
tion of the IFS generating asubset of J0,σ, and the fun
tions used there will be repla
ed by homographies(1.1)�(1.3). The 
losure of the limit set (whi
h will be denoted by Cσ,α) isa subset of B(1/2, 1/2). Then the symmetry with respe
t to 0 is repla
edby the symmetry s with respe
t to 1/2, f0 is repla
ed by f , and instead of
g−1
σ we take gσ,α. Noti
e that similarly to the 
ase of f0 and gσ in [1℄, wehave

gσ,α ◦ f = f ◦ gσ,α = gσ+1,α.The parameter σ plays a similar role to that in the 
ase of Julia�Lavaurs sets,while α is an additonal parameter whi
h 
ontrols the diameters of 
ir
les.In the 
ase of Julia�Lavaurs sets the 
losure of the limit set is a sub-set of J0,σ, and the whole set may be obtained by taking its images underiterates of f0. In our 
ase, if we take the union of the images of Cσ,α un-der fk (it is enough to take k = 0, . . . , 5), we may obtain the sets C̃σ,α.The set J0,σ is the 
losure of the union of the preimages of J(f0) under
g−n
σ . The sets C̃σ,α 
an be de�ned in a similar way: C̃σ,α is the 
losure ofthe union of the images of S(1/2, 1/2) under all 
ompositions of the maps

fk, gn
σ,α and s, where k ∈ Z, n ∈ N (in the 
ase of Julia�Lavaurs sets,
onsidering f0 and symmetry with respe
t to zero does not add anythingnew).
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3. Conformal IFS. In this se
tion, following [4℄, we de�ne an IFS andstate some important 
onditions.Let I be a 
ountable set with at least two elements, and let X ⊂ R

d forsome d ≥ 1. Let S = {φi : X → X}i∈I be a set of inje
tive 
ontra
tions forwhi
h there exists 0 < s < 1 su
h that(3.1) |φi(x) − φi(y)| ≤ s|x − y|for all x, y ∈ X and i ∈ I. Any su
h family S is 
alled an Iterated Fun
tionSystem (IFS).If ω ∈ In then ω = (ω1, ldots, ωn) and φω will be de�ned as follows:
φω = φω1

◦ · · · ◦ φωn .The limit set of the system S is the only set JS whi
h satis�es
JS =

⋃

i∈I

φi(JS).

We say that the system S satis�es the Open Set Condition (OSC) ifthere exists a non-empty open set U ⊂ X (in the topology of X) su
h that
φi(U) ⊂ U for all i ∈ I and φi(U) ∩ φj(U) = ∅ for i, j distin
t.Later on we will limit our 
onsiderations to the 
ase d = 2 (X ⊂ R

2).An IFS 
onsisting of 
onformal maps will be 
alled 
onformal . The fol-lowing 
onditions are also important (see [4℄):(1) X is a 
ompa
t, 
onne
ted subset of R
2, and OSC is satis�ed for

U = IntRd(X).(2) There exist α, l > 0 su
h that for every x ∈ ∂X there exists an open
one in
luded in Int(X) with vertex x, altitude l, and 
entral angle α.(3) There exists an open 
onne
ted set V with X ⊂ V ⊂ R
2 su
h thatea
h φi 
onformally extends onto V . Then Dφj(x) and also Dφω(x)are similarities; their s
aling 
oe�
ients are denoted by |φ′

j(x)| and
|φ′

ω(x)|.(4) Bounded Distortion Property (BDP): There exists a 
onstant K ≥ 1su
h that |φ′
ω(x)| ≤ K|φ′

ω(y)| for all n ∈ N, ω ∈ In and x, y ∈ V .For t > 0 we may de�ne a number P (t) 
alled the topologi
al pressure ofthe parameter t by(3.2) P (t) = lim
n→∞

1

n
log

∑

ω∈In

|φ′
ω(x)|t,and the limit does not depend on x ∈ X. On the set where it is �nite, thefun
tion P (t) is 
ontinuous, stri
tly de
reasing to −∞ and 
onvex.Let hS denotes the Hausdor� dimension of JS .



110 L. Jaksztas
Theorem 3.1 ([4℄). For a system S whi
h satis�es the above 
onditions,we have

hS = inf{t ≥ 0 : P (t) < 0}.Corollary 3.2 ([4℄). Under the above assumptions , if the system S
onsists of a�ne 
onformal maps, then P (t) = log
∑

i∈I |φ′
ω(x)|t, and

hS = inf
{
t ≥ 0 :

∑

i∈I

|φ′
i(x)| < 1

}
.If there exists t for whi
h 0 < P (t) < ∞ then the system is 
alled stronglyregular.4. Constru
tion. In this se
tion we 
onstru
t a set X ⊂ B(1/2, 1/2),and maps φn,k

σ,α : X → X. In the next se
tion we will prove that these mapsform an IFS.The map I(z) = 1/z (
alled inversion) maps B(1/2, 1/2) onto the half-plane {z : Re(z) ≥ 1} together with the point at in�nity. In many 
ases itwill be useful to 
onsider the half-plane rather than the disk.In order to de�ne X we �rst des
ribe a set Y ⊂ {z : Re(z) ≥ 1} (thesame for all α ∈ (0, 1/2] and σ ∈ R), and take X = I(Y ). We will also
onsider maps 
onjugated to f , gσ,α, s by I, whi
h help us to prove someproperties of the IFS.The map f is 
onjugate to translation by i, while gσ,α is 
onjugate totranslation by (1 − α)/α + iσ. Set(4.1) Fn,k
σ,α := gn

σ,α ◦ fk,where n ∈ N (we assume that 0 ∈ N), k ∈ Z. Then Fn,k
σ,α is 
onjugate to(4.2) Tn,k

σ,α (z) := z +
1 − α

α
n + ik + iσn = (I ◦ Fn,k

σ,α ◦ I)(z).Next, the map s is 
onjugated by I to(4.3) Ĩ(z) := I ◦ s ◦ I(z) = 1 +
1

z − 1
= 1 + I(z − 1).Hen
e Ĩ is I 
onjugated by translation by one.Now we give a 
onstru
tion whi
h will be used for the de�nition of Y .The half-plane {z : Re(z) ≥ 1} with the point at in�nity will be denotedby H.Let 
losed disks B1, B2, B3 ⊂ H have pairwise empty interiors, be pair-wise tangent, and tangent to ∂H (as disks we take sets {z : Re(z) ≥ C}

∪ {∞}). For any su
h B1, B2 and B3 we 
onstru
t a uniquely determinedsequen
e of disks Bn, n ≥ 1. If n > 3 and we have 
hosen B1, . . . , Bn−1, let
Bn be the disk whi
h is tangent to Bn−2, Bn−1, ∂H, and is disjoint from
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3

4
2

1

Fig. 2. Tangent disks and the 
urve γthe interiors of all disks previously 
hosen. In this way we get a sequen
e ofdisks tending to a point b ∈ ∂H .We also de�ne a 
urve γB whi
h separates the disks with even indi
es fromthose with odd indi
es. First we take the ar
 of the boundary B2 betweenthe points of tangen
y with B1 and B3 (we take the 
omponent without thepoint of tangen
y with B4). Next, for n ≥ 2 we take the part of the boundaryof Bn between the points of tangen
y with Bn−1 and Bn+1 (
ontaining thepoint of tangen
y with Bn+2). After taking the 
losure, we obtain a 
urvejoining the point of tangen
y of B1 and B2 to a point b ∈ ∂H.Now we are able to de�ne the set Y ⊂ H.The set Y is 
losed, Y ∩ C is unbounded, in parti
ular 
ontains thehalf-plane {z : Re(z) ≥ 2}. The boundary of Y 
ontains the interval withendpoints 2+i, 2−2i, and two half-lines in
luded in {z : Re(z) = 1}. In orderto de�ne the endpoints of these lines and the 
urves joining these points to
2 + i and 2 − 2i, we will use the above 
onstru
tion.Let us apply the 
onstru
tion to the following disks:
(4.4) B1 = {z ∈ C : Re(z) ≥ 2} ∪ {∞},

B2 = B(3/2 + i, 1/2),

B3 = B(3/2 + 2i, 1/2).We get the sequen
e Bn for n ≥ 1, the point b ∈ {z : Re(z) = 1} and the
urve γB joining the tangen
y point of B1 and B2, namely 2 + i, to thepoint b (note that B4 = B(9/8 + 3i/2, 1/8)).Let us take a se
ond family of disks,
(4.5) D1 = B(3/2 − i, 1/2),

D2 = {z ∈ C : Re(z) ≥ 2} ∪ {∞},
D3 = B(3/2 − 2i, 1/2).
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Fig. 3. The sets X and YWe obtain the sequen
e Dn for n ≥ 1, the point d ∈ {z : Re(z) = 1}, andthe 
urve γD joining the point of tangen
y of D1 and D2, namely 2 − i, tothe point d. In parti
ular γD 
ontains the interval with endpoints 2 − i and
2 − 2i (note that D4 = B(3/2 − 3i, 1/2), D5 = B(9/8 + 5i/2, 1/8)).The union of γB, γD and the interval between 2 + i and 2 − i is a 
urvejoining b and d, whi
h lies on the line {z : Re(z) = 1}. The rest of theboundary of Y 
onsists of the half-lines {z : Re(z) = 1 ∧ Im(z) ≥ b},
{z : Re(z) = 1 ∧ Im(z) ≤ d} and the point at in�nity.For the set X, we take I(Y ).

5. The properties of {φn,k
σ,α}(n,k)∈I . In this se
tion we prove that thefamily {φn,k

σ,α}(n,k)∈I de�ned by (1.4) and (1.5) for σ ∈ R, α ∈ (0, 1/2] formsan IFS and has the properties from Se
tion 3. We also obtain some informa-tion about the limit set.The main task is to verify OSC, and prove that the fun
tions {φn,k
σ,α}(n,k)∈Ide�ned on X have values in X. To see this we will 
onsider the maps whi
h
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are 
onjugated to {φn,k

σ,α}(n,k)∈I by I. By (4.1)�(4.3) we get(5.1) I ◦ φn,k
σ,α ◦ I = I ◦ gn

σ,α ◦ fk ◦ s ◦ I = Tn,k
σ,α ◦ Ĩif n ≥ 1, k ∈ Z or n = 0, k ≤ −3, and(5.2) I ◦ φn,k

σ,α ◦ I = I ◦ gn
σ,α ◦ fk ◦ s ◦ f ◦ I = Tn,k

σ,α ◦ Ĩ ◦ Tiif n = 0, k ≥ 2, where Ti denotes translation by i.Be
ause X = I(Y ), in order to prove that the maps φn,k
σ,α have valuesin X, it is enough to demonstrate that(5.3) (Tn,k

σ,α ◦ Ĩ)(Y ) ⊂ Y (or (Tn,k
σ,α ◦ Ĩ)(Ti(Y )) ⊂ Y ).In order to get OSC it is su�
ient to prove that if U = IntY then(5.4) (Tn,k

σ,α ◦ Ĩ)(U) ∩ (Tn′,k′

σ,α ◦ Ĩ)(U) = ∅ (or repla
e U by Ti(U)),for distin
t pairs (n, k), (n′, k′) ∈ I.Let us see what the image of Y = I(X) under Ĩ, and under Ĩ ◦ Ti, lookslike. Noti
e that the sets Ĩ(Y ) and (Ĩ ◦Ti)(Y ) are symmetri
al, be
ause thetranslation Ti maps Y onto a set symmetri
 with respe
t to the real axis.The boundary of Ĩ(Y ) is a Jordan 
urve, 
ontaining the interval withendpoints Ĩ(b), Ĩ(d), and the image of the interval between 2+ i, 2− i whi
his an ar
 with endpoints 3/2−i/2, 3/2+i/2 (with 2 in
luded). The remaining
omponents are the images of γB and γD whi
h will be 
onsiderd now.The map Ĩ preserves H, and as it maps disks onto disks, we get thefollowingRemark 5.1. The 
onstru
ted sequen
e of disks whi
h are tangentto ∂H , and the separating 
urve, are invariant under Ĩ.The images of B1, B2 and B3 (see (4.4)) are
Ĩ(B1) = B(3/2, 1/2),

Ĩ(B2) = B(3/2 − i, 1/2),

Ĩ(B3) = B(9/8 − i/2, 1/8),whereas the images of D1, D2, D3 (see (4.5)) are
Ĩ(D1) = B(3/2 + i, 1/2),

Ĩ(D2) = B(3/2, 1/2),

Ĩ(D3) = B(9/8 + i/2, 1/8).Comparing Ĩ(Bn) with Ĩ(Dn), and Ĩ(Dn) with Dn, using Remark 5.1 wegetRemark 5.2. For every n ≥ 1, the images of Bn and Dn di�er bytranslation by i. It follows that the 
urves Ĩ(γB) and Ĩ(γD) (joining Ĩ(b) to
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3/2− i/2 and Ĩ(d) to 3/2 + i/2 respe
tively) also di�er by translation by i,in parti
ular(5.5) Ĩ(d) − Ĩ(b) = i.Remark 5.3. For every n ≥ 1, the disk Ĩ(Dn) translated by −3i is equalto Dn+2, and therefore the 
urve Ĩ(γD) translated by −3i is in
luded in γD,so we also get(5.6) Ĩ(d) − 3i = d.Using Remark 5.2 we 
on
lude that the 
urve Ĩ(γD) is the interse
tionof the boundaries of the sets Ĩ(Y ) and Ti(Ĩ(Y )), whi
h are Jordan domains.Be
ause the remaining parts of the boundaries are disjoint, we 
on
lude thatupon translation by di�erent multiples of i, the interiors of Ĩ(Y ) are disjoint.By symmetry, also the interiors of Ĩ(Ti(Y )) are disjoint after making di�erenttranslations, whi
h gives (5.4) in the 
ase n = n′.To obtain (5.4) in the general 
ase, note that be
ause Y is disjointfrom B(1, 1) (see Figure 3), and is in
luded in H, we have Ĩ(Y ) ⊂ B(1, 1)∩H,so in parti
ular(5.7) Ĩ(Y ) ⊂ {z ∈ C : 1 ≤ Re(z) ≤ 2, −1 ≤ Im(z) ≤ 1}.So, if n 6= n′ the images of Int Ĩ(Y ) under Tn,k

σ,α = (1 − α)n/α + ik + iσnare disjoint provided that (1 − α)/α ≥ 1, whi
h is satis�ed for α ∈ (0, 1/2].Thus, we get the open set 
ondition for α ∈ (0, 1/2].Now we prove that the maps φn,k
σ,α de�ned on X have values in X (
on-dition (5.3)). For n ≥ 1, (5.3) is satis�ed be
ause (Tn,k

σ,α ◦ Ĩ)(Y ) is 
ontainedin the half-plane {z : Re(z) ≥ 1 + n(1 − α)/α}, hen
e for α ∈ (0, 1/2] and
n ≥ 1 also in the half-plane {z : Re(z) ≥ 2} ⊂ Y . For n = 0, it is enough toverify the 
ases of k = −3 and k = 2.For n = 0 and k = −3 by Remark 5.3 the 
urve T 0,−3

σ,α (Ĩ(γD)) (translationby −3i) is in
luded in γD, hen
e in the boundary of Y . Be
ause the remainingpart of the boundary of Ĩ(Y ) after translation by −3i is also in
luded in Y ,we get(5.8) (T 0,−3
σ,α ◦ Ĩ)(Y ) ⊂ Y,proving (5.3) for n = 0, k = −3.Let n = 0, k = 2. Be
ause of the symmetry of the sets Y , Ti(Y ) and

Ĩ(Y ), Ĩ(Ti(Y )) we get, by (5.8),
(T 0,2+1

σ,α ◦ Ĩ)(Ti(Y )) ⊂ Ti(Y ), so (T 0,2
σ,α ◦ Ĩ ◦ Ti)(Y ) ⊂ Y,whi
h gives (5.3) in this 
ase. Note that b is mapped under T 0,2

σ,α ◦ Ĩ ◦Ti ontoitself, so we get an equality similar to (5.6),(5.9) (T 0,2
σ,α ◦ Ĩ ◦ Ti)(b) = Ĩ(b + i) + 2i = b.
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Now we prove (3.1), whi
h means that the maps φn,k

σ,α are 
ontra
tionswith the same 
onstant. If φn,k
σ,α is de�ned by (1.4), it is enough to 
onsider

Fn,k
σ,α on the set s(X) be
ause s is an isometry. By (4.2), Fn,k

σ,α is 
onjugatedto Tn,k
σ,α by I, and the modulus of the derivative of I depends only on thedistan
e from zero. Thus, it is su�
ient to see that the distan
e from zeroof every point in (I ◦ s)(X) in
reases under translation by Tn,k

σ,α more than
C times, for some C ≥ 1. This is indeed true, be
ause by (4.3), (I ◦ s)(X) =

(Ĩ ◦ I)(X) = Ĩ(Y ), and it is enough to use (5.7).If φn,k
σ,α is given by (1.5), then the previous argument does not work be-
ause of the 
omposition with f . But in this 
ase it is enough to 
onsiderthe map φ0,2

σ,α. We have
φ0,2

σ,α(z) =
(i − 1)z + 1

−(2 + i)z + 2i + 1
.One 
an verify that the modulus of the derivative is greater than or equalto one in the disk B

(
1+2i
2+i , 1√

5

). Moreover, this disk is disjoint from the half-plane {z : Re(z) ≤ 1/2} whi
h 
ontains X. Hen
e the maps φn,k
σ,α are 
ontra
-tions with the same 
onstant, and from the above 
onsiderations it followsthat they are 
ontra
tions on some neighborhood of X.Now only 
onditions (1)�(4) from Se
tion 3 remain to be veri�ed. Con-dition (1) follows by 
onstru
tion, and the OSC 
ondition for U = IntRd(X)has already been 
he
ked. Condition (2) follows from the fa
t that the quo-tients of the diameters of the 
onse
utive disks whi
h were used to 
onstru
t

∂X are uniformly bounded. Condition (3) is satis�ed be
ause the maps φn,k
σ,αare homographies. In order to prove (4) note that the derivatives of 
om-positions of φn,k

σ,α vanish only at the preimages of in�nity. The maps φn,k
σ,αare 
ontra
tions on some neighborhood of X, so on that neighborhood thederivatives do not vanish, and hen
e using a version of the Koebe distortiontheorem (see [3℄), we obtain (4).Corollary 5.4. The family of maps φn,k

σ,α : X → X forms a 
onformalIFS whi
h satis�es the 
onditions from Se
tion 3.The 
losure of the limit set of the IFS will be denoted by Cσ,α. Note thatthe 
losure di�ers from the limit set by a 
ountable set of points whi
h arepreimages of in�nity under 
ompositions of φn,k
σ,α. It follows that the Hausdor�dimensions of the limit set and of its 
losure are equal.Let

l = {z : Re(z) = 1 ∧ Im(z) ≥ b} ∪ {z : Re(z) = 1 ∧ Im(z) ≤ d} ∪ {∞}.Be
ause d and b are �xed points of T 0,−3
σ,α ◦ Ĩ and T 0,2

σ,α ◦ Ĩ ◦ Ti respe
tively,
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by (5.5) we get

⋃

k≤−3

(T 0,k
σ,α ◦ Ĩ)(l) ∪

⋃

k≥2

(T 0,k
σ,α ◦ Ĩ ◦ Ti)(l) = l \ {∞}.After 
onjugation by I, we have

⋃

(0,k)∈I

φ0,k
σ,α(I(l)) = I(l).

Thus l ∈ Y , and so I(l) ⊂ X. We getCorollary 5.5. The set I(l) is 
ontained in Cσ,α.Using (5.5) for �xed n ≥ 1, we obtain
⋃

k∈Z

(Tn,k
σ,α ◦ Ĩ)(l) =

{
z ∈ C : Re(z) = 1 + n

1 − α

α

}
,and so after applying I, be
ause I(l) ⊂ Cσ,α, we haveCorollary 5.6. The 
ir
le S

( α/2
α+n(1−α) ,

α/2
α+n(1−α)

), whi
h is the 
losureof I
({

z ∈ C : Re(z) = 1 + n1−α
α

}), is 
ontained in Cσ,α.Taking n = 1 we get the 
ir
le S(α/2, α/2) of diameter α. It is thelargest 
ir
le 
ontained in Cσ,α. In further 
onsiderations the images of thedisk B(α/2, α/2) under φn,k
σ,α will be important. These images will be 
alledthe level-one disks, and denoted

Bn,k
σ,α := φn,k

σ,α(B(α/2, α/2)).Let us now 
onsider the points b and d. Set b = 1 + iyb and d = 1 − iyd.Be
ause Ĩ a
ts on the line {z : Re z = 1} as minus inversion, by (5.6)and (5.9) we get respe
tively
− 1

−yd
− 3 = −yd and − 1

yb + 1
+ 3 = yb.Be
ause |yd| > 1 and |yb| > 1, we 
on
lude that

yd =
3 +

√
5

2
and yb =

1 +
√

5

2
.The points b and d 
an also be des
ribed, in a natural way, via

yd = 3 − 1

3 − 1

3 − · · ·

, yb = 2 − 1

3 − 1

3 − · · ·

.

6. The sum of tth powers of quotients of diameters. In thisse
tion we obtain a formula for the diameters of level-one disks and 
on-sider the sum of the tth powers of their quotients.
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For α ∈ (1/2, 1), OSC obviously fails, so the setting does not have a 
leargeometri
 interpretation. Nevertheless the 
al
ulation below 
an be 
arriedout for all α ∈ (0, 1). Moreover, 
onsidering α 
lose to one helps us draw a
on
lusion for α ∈ (0, 1/2].Set

β :=
α

1 − α
.This yields a one-to-one 
orresponden
e between α ∈ (0, 1) and β ∈ (0,∞)(α = β

β+1), so we may use α and β alternatively.Now we will give a formula for the diameters of level-one disks. The disk
B(α/2, α/2) is f -invariant, so we may 
onsider both 
ases (1.4) and (1.5)together. The image of B(α/2, α/2) under s is B(1−α/2, α/2), after inversionit is B(1 + β/2, β/2); �nally after making translations Tn,k

σ,α for n, k ∈ I, weobtain the family of disks
B

(
1 +

β

2
+

n

β
+ i(k + σn),

β

2

)
,whose images under inversion are the level-one disks Bn,k

σ,α.Noti
e that the diameter of B(z, r), where |z| = R, after inversion is
1

R − r
− 1

R + r
=

2r

R2 − r2
,provided that R > r. For the disks Bn,k

σ,α we have
R2 =

(
1 +

β

2
+

n

β

)2

+ (k + σn)2 and r =
β

2
.Hen
e

diam(Bn,k
σ,α) =

β
(
1 + n

β

)2
+ 2

(
1 + n

β

)β
2 + β2

4 + (k + σn)2 − β2

4

(6.1)

=
β

(
1 + n

β

)2
+ β

(
1 + n

β

)
+ (k + σn)2

.

The sum of the tth powers of the quotients of the diameters of Bn,k
σ,α and

B(α/2, α/2) will be denoted by
Qσ,α(t) :=

∑

(n,k)∈I

(
diam(Bn,k

σ,α)

α

)t

=
∑

(n,k)∈I

(
diam(Bn,k

σ,α)
β + 1

β

)t

.

Let
Pσ,α(t) := log Qσ,α(t).If the IFS 
onsisted of a�ne maps, Pσ,α(t) would be the topologi
al pressure.
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For �xed α ∈ (0, 1) (as well β), there exist 
onstants C1, C2 > 0 su
hthat

C1(
1 + β

2 + n
β

)2
+ (k + σn)2

<
diam(Bn,k

σ,α)

α
<

C2(
1 + β

2 + n
β

)2
+ (k + σn)2

.

Hen
e we 
an estimate the terms of the sum Qσ,α(t), from above and below,by inverses, to the power t, of the distan
e from zero of points belonging tosome latti
e. We get the followingRemark 6.1. Qσ,α(t) is �nite for t > 1; furthermore, Qσ,α(t) tends toin�nity as t ց 1, whi
h gives the strong regularity of IFS.If we in
rease the exponent t suitably, we 
ould pass to the limit with
Q̃σ,α(t) as β → ∞ (α ր 1). Let us de�ne a useful fun
tion Q̃σ,α as follows:

Q̃σ,α(t) := Qσ,α

(
1

1 − α
t

)
= Qσ,α((β + 1)t).Proposition 6.2. For all t > 0 and σ ∈ R the limit

lim
β→∞

Q̃σ,α(t) =: Q̃σ(t)exists , and(6.2) Q̃σ(t) =
∑

(n,k)∈I

e−t(n+(k+σn)2).

Proof. We see from (6.1) that Q̃σ,α(t) is the sum of the following terms:
(6.3)

(
diam(Bn,k

σ,α)

α

)(β+1)t

=

(
β + 1

(1 + n
β )2 + β(1 + n

β ) + (k + σn)2

)(β+1)t

=

(
1 +

n + (k + σn)2

β + 1
+

2n

β(β + 1)
+

n2

β2(β + 1)

)−(β+1)t

.Thus
lim

β→∞

(
diam(Bn,k

σ,α)

α

)(β+1)t

= e−t(n+(k+σn)2),so the terms of Qσ,α(t) tend to respe
tive terms of (6.2). Hen
e, in order toprove the 
onvergen
e of Q̃σ,α(t) as β → ∞, it is su�
ient to show that forall t > 0,
(6.4) lim

β→∞

∑

(n,k)∈I

(
diam(Bn,k

σ,α)

α

)(β+1)t

=
∑

(n,k)∈I

lim
β→∞

(
diam(Bn,k

σ,α)

α

)(β+1)t

.

Fix β0. Using (6.3), for β > β0 ea
h term of the sum Qσ,α(t) 
an be estimated
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from above by

(
1 +

n + (k + σn)2

β + 1

)−(β+1)t

<

(
1 +

n + (k + σn)2

β0 + 1

)−(β0+1)t

.Be
ause of 
onvergen
e of terms, to get (6.4), it is enough to prove that forall t > 0 there exists β0 su
h that(6.5) ∑

(n,k)∈I

(
1 +

n + (k + σn)2

β0 + 1

)−(β0+1)t

< ∞.

For �xed β0 and (n, k) ∈ I, we have
(

1 +
n + (k + σn)2

β0 + 1

)−(β0+1)t

=

(
β0 + 1

β0 + 1 + n + (k + σn)2

)(β0+1)t

<

(
β0 + 1

n + (k + σn)

)(β0+1)t

< (β0 + 1)(β0+1)t

(
1√

n2 + (k + σn)2

)(β0+1)t

.Choosing β0 so that (β0 + 1)t > 2 yields (6.5).7. *Property. If f ∈ L1(R) and Var(f) < ∞, then we 
an de�ne aperiodi
 fun
tion Sf : R → R as follows:
Sf (σ) =

∑

k∈Z

f(k + σ).

We say that f has the ∗property if the fun
tion Sf is 
onstant. In that
ase we have Sf (σ) =
T
R

f(x) dx.Lemma 7.1. If f, g ∈ L1(R) and Var(f), Var(g) < ∞, then
Sf⋆g = f ⋆ Sg = g ⋆ Sf ,and it follows that if f or g has the ∗property , then so does f ⋆ g.Proof. Let us prove the �rst equality:

Sf⋆g(σ) =
∑

k∈Z

(f ⋆ g)(k + σ) =
∑

k∈Z

\
R

f(t)g(k + σ − t) dt

=
\
R

f(t)
∑

k∈Z

g(k + σ − t) dt =
\
R

f(t)Sg(σ − t) dt = (f ⋆ Sg)(σ).The se
ond equality 
omes from the 
ommutativity of 
onvolution:
f ⋆ Sg = Sf⋆g = Sg⋆f = g ⋆ Sf .The last assertion follows from the fa
t that 
onvolution with a 
onstantfun
tion is 
onstant.
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For m, ̺ ∈ R, ̺ 6= 0, let gm,̺ denote the normal probability distributionfun
tion,

gm,̺ =
1√
2π ̺

e−(x−m)2/2̺2

.Remark 7.2. It is well known that 
onvolution of two su
h distributionsis still a normal probability distribution,
gm,̺ ⋆ gm̃,˜̺ = gm+m̃,̺+˜̺.Lemma 7.3. No distribution gm,̺ has the ∗property.Proof. We may assume that m = 0, and g0,̺ will be denoted by g̺. Noti
ethat for ̺ ≤ 1/

√
2π we have

Sg̺(0) > g̺(0) =
1√
2π ̺

≥ 1 =
\
R

g̺ dx,

so that g̺ does not have the ∗property, be
ause Sg̺(0) 6=
T
R

g̺ dx.For ̺ > 1/
√

2π we argue by 
ontradi
tion. Assume that g˜̺ has the
∗property for some ˜̺. Considering 
onvolution of g˜̺ and g̺ for ̺ > 0, andusing Remark 7.2 and Lemma 7.1, we get the ∗property for g̺ for all ̺ ≥ ˜̺.We may treat Sg̺(σ) as a real-analyti
 fun
tion of ̺ and σ. The ∗propertyof g̺ for ̺ ≥ ˜̺means that for ̺ ≥ ˜̺ the values of Sg̺(σ) do not depend on σ.But, thanks to analyti
ity, for ˜̺ > ̺ > 0 the values of Sg̺(σ) also do notdepend on σ, whi
h gives the ∗property for ̺ ≤ 1/

√
2π, a 
ontradi
tion.Remark 7.4. One 
an give a di�erent proof using Fourier series andFourier transform.8. The dependen
e on the parameterCorollary 8.1. For any �xed t, the limit fun
tion Q̃σ(t) is not 
onstantwith respe
t to σ.Proof. Let Gt(x) = e−tx2 . Then

Q̃σ(t) =
∑

(n,k)∈I

e−t(n+(k+σn)2) =
∑

(0,k)∈I

e−tk2

+
∑

n≥1

e−tnSGt
(σn).

The �rst sum does not depend on σ, so we may only 
onsider the se
ond.The fun
tion SGt
(σ) is even (be
ause Gt is even) and by Lemma 7.3we know that it is not 
onstant. Be
ause SGt

(σ) is analyti
, we 
on
ludethat it attains an extremum at zero. Let s (even) be the order of the �rstnon-vanishing derivative at zero. The fun
tions SGt
(σn) for n ≥ 1 attain thesame extremum at zero as SGt

(σ), so the derivatives of order s are also the�rst non-vanishing ones, and have the same sign.
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We may di�erentiate the sum(8.1) ∑

n≥1

e−tnSGt
(σn)term by term, so the derivatives up to order s − 1 all vanish at zero. Be-
ause the 
oe�
ients e−tn are positive, the derivative of order s is not zero,whi
h means that (8.1) attains an extremum at σ = 0, and so Q̃σ(t) is not
onstant.Theorem 8.2. For every c > 0, the equation Qσ,α(t) = c (Pσ,α(t) =

log c) de�nes uniquely a fun
tion tc(σ, α). For �xed c > 0, the set of param-eters α for whi
h the values of tc(σ, α) do not depend on σ (whi
h may beempty) has no a

umulation points in (0, 1].Proof. The fun
tion Q̃σ,α(t) = Qσ,α

(
1

1−αt
)

= Qσ,α((β + 1)t) may be
onsidered as an analyti
 fun
tion of three variables σ, α, t de�ned on theset σ ∈ R, (β + 1)t > 1, t > 0. Moreover Q̃σ,α extends as a 
ontinuousfun
tion to the set α = 1 (β = ∞), t > 0, σ ∈ R.If we �x σ ∈ R and α ∈ (0, 1], then Q̃σ,α is a stri
tly de
reasing fun
tionof t and attains all values greater than zero. Hen
e by the impli
it fun
tiontheorem, the equation Q̃σ,α = c de�nes a fun
tion t̃c(α, σ) for α ∈ (0, 1),
σ ∈ R. Moreover, t̃c(α, σ) extends to the set α = 1.Be
ause Q̃σ is not 
onstant for any t, we 
an �nd two parameters σ1, σ2so that t̃c(α, σ1) and t̃c(α, σ2) are distin
t analyti
 fun
tions of α. Then theset of solutions of t̃c(α, σ1)− t̃c(α, σ2) = 0 
annot have a

umulation points,so the value of t̃c(α, σ) may be independent of σ at most for parameters froma set of α ∈ (0, 1] without a

umulation points.The fun
tion tc(α, σ) = t̃c(α, σ)/(β + 1) is a solution of Qσ,α(t) = c, thusthe proof is �nished.Remark 8.3. The homographies φn,k

σ,α 
ould be repla
ed by a�ne 
onfor-mal fun
tions, mapping B(α/2, α/2) onto the level-one disks. Unfortunately,it is not 
lear whether (and for whi
h parameters α) the open set 
ondition(OSC) is satis�ed, and whether the fundamental domain is mapped into it-self. The latter in fa
t 
an be ensured by in
reasing the fundamental domain.If we knew it, we would draw the 
on
lusion that the Hausdor� dimensionof the limit set does not depend on σ at most for parameters α from a setwithout a

umulation points.Indeed, for su
h an a�ne IFS the fun
tion Pσ,α(t) = log Qσ,α(t) wouldbe the topologi
al pressure. Therefore the Hausdor� dimension would be thesolution of the equation Qσ,α(t) = 1. By Theorem 8.2 the fun
tion t1(σ, α)whi
h is the solution of this equation does not depend on σ at most for α'sfrom a set without a

umulation points.
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