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Summary. This paper is motivated by the problem of dependence of the Hausdorff di-
mension of the Julia-Lavaurs sets Jo,, for the map fo(z) = 2% + 1/4 on the parameter o.
Using homographies, we imitate the construction of the iterated function system (IFS)
whose limit set is a subset of Jy », given by Urbanski and Zinsmeister. The closure of the
limit set of our IFS {¢Z,’§} is the closure of some family of circles, and if the parameter
o varies, then the behavior of the limit set is similar to the behavior of Jo . The param-
eter a determines the diameter of the largest circle, and therefore the diameters of other
circles.

We prove that for all parameters « except possibly for a set without accumulation
points, for all appropriate ¢ > 1 the sum of the tth powers of the diameters of the images
of the largest circle under the maps of the IFS depends on the parameter o. This is the
first step to verifying the conjectured dependence of the pressure and Hausdorff dimension
on o for our model and for Jo,,.

1. Introduction. This paper is devoted to construction of some infinite
conformal iterated function system (IF'S, see [4] and Section 3) which consists
of restrictions, to a domain X, of homographies depending on two parameters
(0 and «). The motivation for writing this paper has been an open problem
of dependence of the Hausdorff dimension of the Julia—Lavaurs sets on the
parameter for fo(z) = 22 + 1/4 (see Section 2, with no technical connection
with the rest of the paper).
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The domain X of our IFS is a subset of the closed disk B(1/2,1/2). We
will use the homographies
z 1

1.1 = =
(1.1) 1(z) iz+1 i+1/2
(1.2) s(z)=1-z,
which are automorphisms of B(1/2,1/2) and do not depend on parameters,
and

(1.3) Jo,al(2) =

z
(I?Ta + ia)z +1’
We have g,(B(1/2,1/2)) C B(1/2,1/2), but the IFS will be defined only
for o € (0,1/2] and in this case g,o(B(1/2,1/2)) C B(1/4,1/4).

Notice that in the coordinates 1/z the map f is translation by ¢, while
Jo,o 1s translation by (1 — «)/a + io.

The family of maps ¢Z;§ : X — X, which will form the IFS, is defined as
follows:

ceR, ae(0,1).

k k
(14) ¢Z:a = gg,oz offos
ifn>1,k€Zorn=0,k<-3,and
(1.5) Soe =goaofrosof

if n =0, k > 2. The set of pairs (n, k) for which ¢Z;§ is defined is denoted
by I.

The closure of the limit set of the IFS (we add only countably many
points) is the closure of a certain family of circles. The parameter « is the
diameter of the largest circle contained in the closure of the limit set, namely
S(a/2,c/2), and therefore controls the diameters of other circles. The pa-
rameter o influences the position of some families of circles (analogy with
the Julia-Lavaurs sets).

Choosing an arbitrary point « € X and t > 0 we can consider the
pressure P(t) with the use of the derivative of qﬁ?;ﬁ (see (3.2)). Then the
relevant Hausdorff dimension is tg such that P(ty) = 0.

If the homograpies ¢Z:§ are replaced by conformal affine functions map-
ping S(«/2,«/2) onto the image of S(«/2,a/2) under ¢Z};f§, then the deriva-
tives of the affine functions are quotients of the diameters of suitable circles.
If the IF'S obtained in this way satisfies conditions from Section 3, then the
Hausdorff dimension of its limit set depends on the value of the sum of the
tth powers of these quotients, as a function of ¢ (the dimension ¢ is then a
zero of the logarithm of this sum). We will prove that this sum really de-
pends on o, for all parameters « except possibly for a’s from a set without
accumulation points, which gives us in this ideal situation the dependence
of the Hausdorff dimension on o.
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Fig. 1. Circles

We have not been able to verify the OSC condition. Without OSC, t is
called the similarity dimension, so we prove that the similarity dimension in
the affine case is not constant.

This is a part of the author’s PhD thesis written under the supervision
of Professor Feliks Przytycki.

2. Analogy with the Julia—Lavaurs sets. For a polynomial f we
define the filled-in Julia set K(f) as the set of points that do not escape to
infinity under iteration of f. The boundary of K(f) is called the Julia set
of f. Let us consider the set of polynomials of the form f.(z) = 22 +1/4 +e¢.
We obtain the function ¢ — J(f;) with values in the set K(C) of compact
subsets of C, equipped with the Hausdorff metric. We will also consider the
function ¢ — d(1/4 + ¢), where d(1/4 4 ¢) denotes the Hausdorff dimen-
sion of J(f:). It follows from [1] and [5] that the functions € — J(f) and
e +— d(1/4 + ¢) are continuous and real-analytic respectively on the set of
parameters € for which f. is hyperbolic.

Now let ¢ € RT U {0}. If ¢ € R* then f. is hyperbolic, and J(f.) is
homeomorphic to the Cantor set. The function fy is not hyperbolic since
fo(1/2) = 1/2, and f}(1/2) = 1. It is interesting to study the behaviour of
J(f:) when e \ 0 (see [1]). We know that the function € — J(f;) is not right-
continuous at zero. The possible limits of J(f;) in (C) which occur after
passing to a subsequence are called Julia—Lavaurs sets. These sets depend
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on the parameter o € R and are denoted by Jo,, with Jy, = Jy, if and
only if 0 — o/ € Z.

The Julia-Lavaurs sets can also be defined as the closures of J(fy) and
the union of all preimages of J(fy) under g, ", for some special map g, :
Int K(fo) — C (Lavaurs map, see [1]). For all 0 € R we have J(fo) C Jo» C
K(fo) (because g, ' (Int K(f)) C Int K(fo)). The map g, has infinite degree
on Int K(fy), and o (mod1) is relevant to the Lavaurs map between Ecalle
cylinders. Furthermore, using fj, g, and symmetry with respect to zero (the
sets Jo,o, just like Jy, are symmetrical with respect to zero), we can obtain
a subset of Jy , as the closure of the limit set of some infinite conformal IFS
(see [6] and [2]). The images of this subset under the action of the iterates
of fo cover the set Jy, (beginning with the second iteration).

The function € — d(1/4 + €) is not continuous at zero either (see [2]).
If we choose a sequence of parameters €, so as to obtain convergence of
J(fe,) in the Hausdorff metric to Jy, for some o (precisely \;—Eln(mod 1)

— o), then we also obtain convergence of the Hausdorff dimension of J(fz, )
to the Hausdorff dimension of Jy,. It is a famous problem whether the
Hausdorft dimension of Jy, depends on the parameter o, and whether the
limit lim.\ o d(1/4 + €) exists.

This problem has been a motivation for this paper; we will study simpler
sets, though obtained in a similar way. Because we are interested in the
Hausdorff dimension, we will imitate the construction of the IFS generating a
subset of Jy », and the functions used there will be replaced by homographies
(1.1)—(1.3). The closure of the limit set (which will be denoted by Cy 4) is
a subset of B(1/2,1/2). Then the symmetry with respect to 0 is replaced
by the symmetry s with respect to 1/2, fy is replaced by f, and instead of
g; ! we take Jo,a- Notice that similarly to the case of fy and g, in [1], we
have

9o,a©f =[f°goa = got+ia-
The parameter ¢ plays a similar role to that in the case of Julia—Lavaurs sets,
while « is an additonal parameter which controls the diameters of circles.

In the case of Julia—Lavaurs sets the closure of the limit set is a sub-
set of Jp ., and the whole set may be obtained by taking its images under
iterates of fy. In our case, if we take the union of the images of C,, un-
der f* (it is enough to take k = 0,...,5), we may obtain the sets 50,(1.
The set Jy, is the closure of the union of the preimages of J(fp) under

g, ". The sets 5’0,(1 can be defined in a similar way: 607& is the closure of
the union of the images of S(1/2,1/2) under all compositions of the maps
f*, gy o and s, where k € Z, n € N (in the case of Julia-Lavaurs sets,
considering fy and symmetry with respect to zero does not add anything
new).
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3. Conformal IFS. In this section, following [4], we define an IFS and
state some important conditions.

Let I be a countable set with at least two elements, and let X C R? for
some d > 1. Let S = {¢; : X — X };cr be a set of injective contractions for
which there exists 0 < s < 1 such that

(3.1) |¢i(x) — di(y)| < slz —y|
for all z,y € X and i € I. Any such family S is called an [Iterated Function
System (IF'S).

If we I" then w = (wy, ldots,w,) and ¢, will be defined as follows:

P = Py © -+ O Doy
The limit set of the system S is the only set Jg which satisfies

Js = J éi(Js).
i€l

We say that the system S satisfies the Open Set Condition (OSC) if
there exists a non-empty open set U C X (in the topology of X) such that
¢i(U) C U for all i € I and ¢;(U) N ¢;(U) = 0 for i, j distinct.

Later on we will limit our considerations to the case d = 2 (X C R?).

An IFS consisting of conformal maps will be called conformal. The fol-
lowing conditions are also important (see [4]):

(1) X is a compact, connected subset of R?, and OSC is satisfied for
U = Intpa(X).

(2) There exist o, > 0 such that for every z € 0X there exists an open
cone included in Int(X) with vertex x, altitude [/, and central angle a.

(3) There exists an open connected set V with X € V C R? such that
each ¢; conformally extends onto V. Then D¢;(x) and also D¢, (z)
are similarities; their scaling coefficients are denoted by |¢}(z)| and
4L, (2).

(4) Bounded Distortion Property (BDP): There exists a constant K > 1
such that |¢/, (z)| < K|¢/,(y)| for alln € N, w € I"™ and z,y € V.

For ¢ > 0 we may define a number P(t) called the topological pressure of
the parameter ¢ by

o1 Lot
(3.2) P(t) = lim —log > _ |¢,(2)[",
weln
and the limit does not depend on z € X. On the set where it is finite, the
function P(t) is continuous, strictly decreasing to —oco and convex.
Let hg denotes the Hausdorff dimension of Jg.
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THEOREM 3.1 ([4]). For a system S which satisfies the above conditions,
we have
hs =inf{t > 0: P(t) < 0}.

COROLLARY 3.2 ([4]). Under the above assumptions, if the system S
consists of affine conformal maps, then P(t) =logy ., ¢, (z)[*, and

hg = inf{t >0: ) |¢i(x)] < 1}.
el
If there exists ¢ for which 0 < P(t) < oo then the system is called strongly
reqular.

4. Construction. In this section we construct a set X C B(1/2,1/2),
and maps gbgﬁ : X — X. In the next section we will prove that these maps
form an IFS.

The map Z(z) = 1/z (called inversion) maps B(1/2,1/2) onto the half-
plane {z : Re(z) > 1} together with the point at infinity. In many cases it
will be useful to consider the half-plane rather than the disk.

In order to define X we first describe a set Y C {z : Re(z) > 1} (the
same for all @ € (0,1/2] and ¢ € R), and take X = Z(Y). We will also
consider maps conjugated to f, gsn, s by Z, which help us to prove some
properties of the IFS.

The map f is conjugate to translation by ¢, while g, is conjugate to
translation by (1 — «)/a +io. Set

(4.1) Fr=gyao fh,

where n € N (we assume that 0 € N), k& € Z. Then Fffo’f is conjugate to

l—«

(4.2) TPk (2) =2+ n+ik+ion = (Zo FltoT)(2).

Next, the map s is conjugated by Z to
~ 1
(4.3) Z(z) ::IosoI(z):1+—1:1+I(2—1).
-y —

Hence 7 is 7 conjugated by translation by one.

Now we give a construction which will be used for the definition of Y.
The half-plane {z : Re(z) > 1} with the point at infinity will be denoted
by H.

Let closed disks B1, Bo, B3 C H have pairwise empty interiors, be pair-
wise tangent, and tangent to OH (as disks we take sets {z : Re(z) > C}
U {oo}). For any such By, By and B3 we construct a uniquely determined
sequence of disks B,,, n > 1. If n > 3 and we have chosen Bi,...,B,_1, let
B,, be the disk which is tangent to B,_s, B,_1, 0H, and is disjoint from
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Fig. 2. Tangent disks and the curve ~

the interiors of all disks previously chosen. In this way we get a sequence of
disks tending to a point b € OH.

We also define a curve vp which separates the disks with even indices from
those with odd indices. First we take the arc of the boundary By between
the points of tangency with B1 and Bs (we take the component without the
point of tangency with By). Next, for n > 2 we take the part of the boundary
of B,, between the points of tangency with B,,_1 and B,1 (containing the
point of tangency with B, 2). After taking the closure, we obtain a curve
joining the point of tangency of B; and By to a point b € OH.

Now we are able to define the set Y C H.

The set Y is closed, Y N C is unbounded, in particular contains the
half-plane {z : Re(z) > 2}. The boundary of Y contains the interval with
endpoints 2+, 2—2i, and two half-lines included in {z : Re(z) = 1}. In order
to define the endpoints of these lines and the curves joining these points to
241 and 2 — 2¢, we will use the above construction.

Let us apply the construction to the following disks:

By = {z € C:Re(z) > 2} U {0},
(4.4) By =B(3/2+1,1/2),
B3 = B(3/2 + 2i,1/2).
We get the sequence By, for n > 1, the point b € {z : Re(z) = 1} and the
curve yp joining the tangency point of By and Bs, namely 2 + ¢, to the
point b (note that By = B(9/8 + 3i/2,1/8)).
Let us take a second family of disks,
Dy = B(3/2—-1i,1/2),
(4.5) Dy = {z € C: Re(z) > 2} U {oo},
D3 = B(3/2 — 2i,1/2).
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Fig. 3. The sets X and Y

We obtain the sequence D,, for n > 1, the point d € {z : Re(z) = 1}, and
the curve vp joining the point of tangency of D and D, namely 2 — i, to
the point d. In particular vp contains the interval with endpoints 2 — ¢ and
2 — 2i (note that Dy = B(3/2 — 3i,1/2), D5 = B(9/8 + 5i/2,1/8)).

The union of v, vp and the interval between 2 4 ¢ and 2 — ¢ is a curve
joining b and d, which lies on the line {z : Re(z) = 1}. The rest of the
boundary of Y consists of the half-lines {z : Re(z) = 1 A Im(z) > b},
{z:Re(z) = 1 ANIm(z) < d} and the point at infinity.

For the set X, we take Z(Y).

5. The properties of {gbﬁjﬁ}(n?k)e]. In this section we prove that the
family {gbg,’ﬁ}(n,k)el defined by (1.4) and (1.5) for 0 € R, a € (0, 1/2] forms
an IFS and has the properties from Section 3. We also obtain some informa-
tion about the limit set.

The main task is to verify OSC, and prove that the functions {d)?jlo";}(n’k)e I
defined on X have values in X. To see this we will consider the maps which
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are conjugated to {gbgfy}(n?k)e] by Z. By (4.1)—(4.3) we get

5.1 Tod"  oT=To0g" offosoT=T"0T
o, 95,0 o,

ifn>1,k€eZorn=0,k< -3, and

5.2 Tod" oI =T0g" offosofol=T" 0ToT;
o,x gO’,Ol g,x

if n =0, k> 2, where T; denotes translation by q.

Because X = Z(Y), in order to prove that the maps ¢Zj§ have values
in X, it is enough to demonstrate that
(5.3) Tk o) (Y)Y  (or (TRF o I)(Ty(Y)) C V).

In order to get OSC it is sufficient to prove that if U = Int Y then
(5.4)  (T2FoI)(U)N(TEF oZ)(U) =0 (or replace U by T3(U)),
for distinct pairs (n, k), (n/, k') € I.

Let us see what the image of Y = Z(X) under Z, and under Z o T}, looks
like. Notice that the sets Z(Y) and (Z o T;)(Y') are symmetrical, because the
translation 7; maps Y onto a set symmetric with respect to the real axis.

The boundary of Z(Y') is a Jordan curve, containing the interval with
endpoints Z(b), Z(d), and the image of the interval between 2+, 2 —4 which
is an arc with endpoints 3/2—1/2, 3/2+1i/2 (with 2 included). The remaining
components are the images of v and yp which will be considerd now.

The map Z preserves H, and as it maps disks onto disks, we get the
following

REMARK 5.1. The constructed sequence of disks which are tangent
to OH, and the separating curve, are invariant under Z.

The images of B, By and Bs (see (4.4)) are
I(Bl) B(3/2,1/2),
I(Bs) = B(3/2 —i,1/2),
I(Bs) = B(9/8 - /2,1/8),
whereas the images of D1, Do, D3 (see (4.5)) are
I(Dy) = B(3/2 +1,1/2),
(D2) = B(3/2,1/2)
(D3) = B(9/8 +1i/2,1/8).

Comparing Z(B,,) with Z(D,), and Z(D,,) with D,,, using Remark 5.1 we
get

U

7
7

REMARK 5.2. For every n > 1, the images of E” and D, differ by
translation by i. It follows that the curves Z(vyp) and Z(yp) (joining Z(b) to
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3/2 —i/2 and Z(d) to 3/2 +i/2 respectively) also differ by translation by i,
in particular
(5.5) Z(d) — Z(b) = i.

REMARK 5.3. For every n > 1, the disk Z(D,,) translated by —3i is equal
to En+2, and therefore the curve Z(yp) translated by —3i is included in 7p,
so we also get

(5.6) Z(d) — 3i = d.

Using Remark 5.2 we conclude that the curve Z(yp) is the intersection
of the boundaries of the sets Z(Y) and Tj(Z(Y)), which are Jordan domains.
Because the remaining parts of the boundaries are disjoint, we conclude that
upon translation by different multiples of 4, the interiors of Z(Y") are disjoint.
By symmetry, also the interiors of 7 (T;(Y)) are disjoint after making different
translations, which gives (5.4) in the case n = n/.

To obtain (5.4) in the general case, note that because Y is disjoint
from B(1,1) (see Figure 3), and is included in H, we have Z(Y) ¢ B(1,1)nH,
so in particular
(5.7) Z(Y)c{zeC:1<Re(z) <2, -1 <Im(z) <1}.

So, if n # n’ the images of IntZ(Y) under Tgff = (1—-a)n/a+ ik +ion
are disjoint provided that (1 — «)/a > 1, which is satisfied for o € (0,1/2].
Thus, we get the open set condition for o € (0,1/2].

Now we prove that the maps ¢Zj§ defined on X have values in X (con-
dition (5.3)). For n > 1, (5.3) is satisfied because (T;L,f o Z)(Y) is contained
in the half-plane {z : Re(z) > 1+ n(1 — «)/a}, hence for a € (0,1/2] and
n > 1 also in the half-plane {z : Re(z) > 2} C Y. For n = 0, it is enough to
verify the cases of k = —3 and k = 2. _

For n = 0 and k = —3 by Remark 5.3 the curve T’ °(Z(7p)) (translation
by —3i) is included in 7yp, hence in the boundary of Y. Because the remaining
part of the boundary of 7 (Y) after translation by —3i is also included in Y,
we get
(5.8) (Toa*oD)(Y) CY,
proving (5.3) for n =0, k = —3.

Let n = 0, k = 2. Because of the symmetry of the sets Y, T;(Y) and
Z(Y), Z(Ti(Y)) we get, by (5.8),

(T3 e D)(T(Y)) CTi(Y), so (T9aeZoT)(Y)CY,

which gives (5.3) in this case. Note that b is mapped under Tgﬁ oZo T; onto
itself, so we get an equality similar to (5.6),

(5.9) (T2 0T o T)(b) = Z(b+1i) +2i = b.
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Now we prove (3.1), which means that the maps ¢Z;§ are contractions
with the same constant. If qbg,’]oi is defined by (1.4), it is enough to consider
Fga on the set s(X) because s is an isometry. By (4.2), F;"L;“ is conjugated

to Tga by Z, and the modulus of the derivative of Z depends only on the
distance from zero. Thus, it is sufficient to see that the distance from zero
of every point in (Z o s)(X) increases under translation by 77 & more than
C times, for some C' > 1. This is indeed true, because by (4.3), (Zos)(X) =

(IOI)(X) Z(Y), and it is enough to use (5.7).

If qbgja is given by (1.5), then the previous argument does not work be-
cause of the composition with f. But in this case it is enough to consider
0,2
the map ¢5n. We have

(i—1)z+1
—(24i)z+2i+1

02(2) =

One can verify that the modulus of the derivative is greater than or equal

to one in the disk B ( 12':22 \1[) Moreover, this disk is disjoint from the half-

plane {z : Re(z) < 1/2} which contains X. Hence the maps ¢~ are contrac-
tions with the same constant, and from the above considerations it follows
that they are contractions on some neighborhood of X.

Now only conditions (1)—(4) from Section 3 remain to be verified. Con-
dition (1) follows by construction, and the OSC condition for U = Intga(X)
has already been checked. Condition (2) follows from the fact that the quo-
tients of the diameters of the consecutive disks which were used to construct
0X are uniformly bounded. Condition (3) is satisfied because the maps ¢g,’§
are homographies. In order to prove (4) note that the derivatives of com-
positions of ¢Z;§ vanish only at the preimages of infinity. The maps ¢3;§
are contractions on some neighborhood of X, so on that neighborhood the
derivatives do not vanish, and hence using a version of the Koebe distortion
theorem (see [3]), we obtain (4).

COROLLARY b5.4. The family of maps ¢Z};’g§ : X — X forms a conformal
IFS which satisfies the conditions from Section 3.

The closure of the limit set of the IF'S will be denoted by Cy .. Note that
the closure differs from the limit set by a countable set of points which are
preimages of infinity under compositions of ¢ng. It follows that the Hausdorff
dimensions of the limit set and of its closure are equal.

Let
l={z:Re(z) =1AIm(z) > b} U{z:Re(z) =1 Alm(z) < d} U {cc}.

Because d and b are fixed points of TOQ;O? 367 and Tgﬁ oZo T; respectively,
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by (5.5) we get
U @Dy u (T2 0T o Th)(1) =1\ {oc}.
k<-3 E>2
After conjugation by Z, we have

Thus [ € Y, and so Z(I) C X. We get
COROLLARY 5.5. The set Z(1) is contained in Cy 4.
Using (5.5) for fixed n > 1, we obtain
- 1—
U@pkon)) = {z €C:Re(z)=1+n a},

o
keZ

and so after applying Z, because Z(I) C Cy 4, we have

COROLLARY 5.6. The circle S(a+§(/12_a), a+§(/12_a

of I({z € C:Re(z) =1+ni2 }), is contained in Cy .
Taking n = 1 we get the circle S(a/2,a/2) of diameter a. It is the
largest circle contained in Cy o. In further considerations the images of the

disk B(v/2, /2) under ¢ will be important. These images will be called
the level-one disks, and denoted

By = da(B(a/2,a/2)).
Let us now consider the points b and d. Set b =1 + iy, and d = 1 — iyy.

)), which s the closure

Because Z acts on the line {z : Rez = 1} as minus inversion, by (5.6)
and (5.9) we get respectively
1
— —3=-yg and - + 3 = .
—Yd Yo +1
Because |y4| > 1 and |yp| > 1, we conclude that
3+5 14+V5
Yq = and yp = 5
The points b and d can also be described, in a natural way, via
3 1 5 1
Ya = 5 1 Yo = ; 1
3— ... 3_— ...

6. The sum of tth powers of quotients of diameters. In this
section we obtain a formula for the diameters of level-one disks and con-
sider the sum of the tth powers of their quotients.
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For o € (1/2,1), OSC obviously fails, so the setting does not have a clear
geometric interpretation. Nevertheless the calculation below can be carried
out for all a € (0,1). Moreover, considering « close to one helps us draw a
conclusion for a € (0,1/2].

Set
«a

0

This yields a one-to-one correspondence between o € (0,1) and 3 € (0, 00)

1

(a = %), so we may use « and [ alternatively.
_ Now we will give a formula for the diameters of level-one disks. The disk
B(a/2,a/2) is f-invariant, so we may consider both cases (1.4) and (1.5)
together. The image of B(«/2, «/2) under s is B(1—«/2, «/2), after inversion
it is B(1 + 3/2,3/2); finally after making translations Tgolf for n,k € I, we
obtain the family of disks
E(l—i— g +%+i(k+an),§>,
whose images under inversion are the level-one disks EZ;Q.
Notice that the diameter of B(z,r), where |z| = R, after inversion is
1 12
R—r R+r RZ—7p?

provided that R > r. For the disks EZ;Q we have

R2:<1 é+ﬁ>2+(k+an)2 and r:é.
273 2
Hence
(6.1) diam(BpE) = 5 B ; ;
4 204+ )5+ S+ (ke on)2 - &

B
(1+28)°+8(1+2) + (k+on)?

The sum of the ¢tth powers of the quotients of the diameters of EZ,’Q and
B(a/2,a/2) will be denoted by

cal(t) = 7diam(§&§)>t = (diam Bk w)t
Qralt) (H%I( < 3 (aumiz 5
Let
Py o(t) :==1og Qu.a(t).
If the IF'S consisted of affine maps, P, ,(t) would be the topological pressure.
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For fixed « € (0,1) (as well 3), there exist constants C7,Cy > 0 such
that

Cy - diam (B - Cy
(14+5+5)"+ (k+on) o (14+5+5)"+ (k+on)

Hence we can estimate the terms of the sum Qs (%), from above and below,
by inverses, to the power ¢, of the distance from zero of points belonging to
some lattice. We get the following

REMARK 6.1. Qs (t) is finite for ¢ > 1; furthermore, Qs (t) tends to
infinity as ¢ \, 1, which gives the strong regularity of IF'S.

_ If we increase the exponent ¢ suitably, we could pass to the limit with
Qoa(t) as B — 0o (a " 1). Let us define a useful function Qg o as follows:

Grat) = Qra 122 1) = Qual 5+ 1)
PROPOSITION 6.2. For all t > 0 and o € R the limit
Jim Qoa(t) = Qo(t)
exists, and

(62) éo’(t): Z e—t(n+(k+0n)2).

(n,k)el

Proof. We see from (6.1) that @U,a(t) is the sum of the following terms:

diam<gn,k) (B+1)t A41 (B+1)t
(6.3) < ) <u+ >+ﬁa+%»uk+mm>

L P + (k + on)? 2n L+ n? )—(Bﬂ)t
p+1 BB+1) BB+

Thus

;
B—o0

(B+1)t
lim (dla Bsa ) — o t(nt(kton)?)
)

so the terms of Qs (t) tend to respective terms of (6.2). Hence, in order to

prove the convergence of Qg,a( ) as 3 — o0, it is sufficient to show that for
all ¢t > 0,

. Bn.ky\ (B+1)t . Bk \ (B+1)t
(6.4) lim Z (dlam(Bma)) _ Z lim <d1am(Ba,a)> .
Fmo0 o hel @ (mpyer” % @

Fix (. Using (6.3), for 3 > (y each term of the sum Q)5 () can be estimated
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from above by
<1 N n+ (k+ an)2>_(ﬁ+1)t _ (1 N n+ (k +an)2>_(ﬂ°+1)t
g+1 Bo+1 '

Because of convergence of terms, to get (6.4), it is enough to prove that for
all t > 0 there exists Gy such that

(6.5) > <1 o kdon)” U")2)_(ﬁo+1)t <o
‘ (n,k)el BO +1 ‘
For fixed By and (n, k) € I, we have
n+ (k +0‘n)2 —(Bo+1)t By + 1 (Bo+1)t
14 2T o) _
< Bo+1 ) <ﬂo+1+n+(k‘+an)2>
1 (Bo+1)t 1 (Bo+1)t
< <ﬁ07+> < (ﬁO + 1)(ﬁ0+1)t< ) .
n+ (k+on) n? + (k + on)?

Choosing [y so that (8o + 1)t > 2 yields (6.5). =

7. *Property. If f € L'(R) and Var(f) < oo, then we can define a
periodic function Sy : R — R as follows:

Sp(o) =Y f(k+0).

kEZ

We say that f has the *property if the function Sy is constant. In that
case we have Sy(o) =\ f(z) dx.

LEMMA 7.1. If f,g € LY(R) and Var(f), Var(g) < oo, then
Sf*g = f*Sg :g*Sf,
and it follows that if f or g has the *property, then so does f x g.

Proof. Let us prove the first equality:

Spag(0) = D (frg)k+0) =D | f()g(k+o —1t)dt

keZ keZ R
=Vrm)> gk +o—tydt =1\ f(t)Sy(oc —t)dt = (f x S,)(0).
R keZ R

The second equality comes from the commutativity of convolution:
f*Sg = Sf*g = Sg*f = g*Sf.

The last assertion follows from the fact that convolution with a constant
function is constant. m
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For m,p € R, o # 0, let gy, , denote the normal probability distribution
function,
L —mp/2g?,

= e
gm:@ \/ﬂ 0

REMARK 7.2. It is well known that convolution of two such distributions
is still a normal probability distribution,

9m,o * 9m,5 = Im+m,o+0-
LEMMA 7.3. No distribution g, , has the *property.

Proof. We may assume that m = 0, and go , will be denoted by g,. Notice
that for o < 1/4/27 we have

Sg,(0) > go(0) =

1
>1= dx,
Voro Hig‘-’

so that g, does not have the *property, because Sy, (0) # {5 g, d.

For o > 1/ V2n we argue by contradiction. Assume that g; has the
*property for some p. Considering convolution of gz and g, for ¢ > 0, and
using Remark 7.2 and Lemma 7.1, we get the *property for g, for all o > o.

We may treat Sy, (o) as a real-analytic function of ¢ and o. The *property
of g, for ¢ > ¢ means that for o > ¢ the values of Sy,(c) do not depend on o.
But, thanks to analyticity, for ¢ > ¢ > 0 the values of Sy, (o) also do not
depend on o, which gives the *property for o < 1/ V27, a contradiction. =

REMARK 7.4. One can give a different proof using Fourier series and
Fourier transform.

8. The dependence on the parameter

COROLLARY 8.1. For any fized t, the limit function @U(t) is not constant
with respect to o.

Proof. Let Gy(z) = e™***. Then
Qo (t) = Z e tnt(k+on)?) _ Z et Ze*mSGt(an).

(n.k)el (0,k)el n>1

The first sum does not depend on o, so we may only consider the second.

The function Sg, (o) is even (because G; is even) and by Lemma 7.3
we know that it is not constant. Because Sg, (o) is analytic, we conclude
that it attains an extremum at zero. Let s (even) be the order of the first
non-vanishing derivative at zero. The functions Sg, (on) for n > 1 attain the
same extremum at zero as Sg, (o), so the derivatives of order s are also the
first non-vanishing ones, and have the same sign.
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We may differentiate the sum

(8.1) Z e "Sq, (on)

n>1

term by term, so the derivatives up to order s — 1 all vanish at zero. Be-
cause the coefficients e ™" are positive, the derivative of order s is not zero,
which means that (8.1) attains an extremum at ¢ = 0, and so Q,(t) is not
constant. m

THEOREM 8.2. For every ¢ > 0, the equation Qsq(t) = ¢ (Pro(t) =
log c¢) defines uniquely a function t.(o, ). For fized ¢ > 0, the set of param-
eters a for which the values of t.(o,a) do not depend on o (which may be
empty) has no accumulation points in (0,1].

Proof. The function Qvg,a(t) = Qg,a(ﬁt) = Qo.a((f + 1)t) may be
considered as an analytic function of three variables o, «, t defined on the
set 0 € R, (B+ 1)t > 1, t > 0. Moreover (), extends as a continuous
function to the set « =1 (8 =00), ¢t >0, 0 € R.

If we fix o € R and « € (0,1], then Qg is a strictly decreasing function
of ¢t and attains all values greater than zero. Hence by the implicit function
theorem, the equation Qa,a = ¢ defines a function t.(, o) for a € (0,1),
o € R. Moreover, t.(a, o) extends to the set @ = 1.

Because @U is not constant for any ¢, we can find two parameters o1, o9
so that t.(a, o) and t.(a, 02) are distinct analytic functions of a. Then the
set of solutions of tc(a o1) — tc(a 02) = 0 cannot have accumulation points,
so the value of %Vc(a, o) may be independent of o at most for parameters from
a set of a € (0, 1] without accumulation points.

The function t.(, o) = t.(a, ) /(8 + 1) is a solution of Qy (t) = ¢, thus
the proof is finished.

REMARK 8.3. The homographies qbg,’]oi could be replaced by affine confor-
mal functions, mapping B(a/2, a/2) onto the level-one disks. Unfortunately,
it is not clear whether (and for which parameters «) the open set condition
(OSC) is satisfied, and whether the fundamental domain is mapped into it-
self. The latter in fact can be ensured by increasing the fundamental domain.
If we knew it, we would draw the conclusion that the Hausdorff dimension
of the limit set does not depend on ¢ at most for parameters « from a set
without accumulation points.

Indeed, for such an affine IFS the function P, (t) = log Qs (t) would
be the topological pressure. Therefore the Hausdorff dimension would be the
solution of the equation Qs (t) = 1. By Theorem 8.2 the function ¢ (o, )
which is the solution of this equation does not depend on o at most for a’s
from a set without accumulation points.
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