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Summary. The group generated by double tangency symmetries in a Laguerre plane is
investigated. The geometric classification of involutions of a symmetric Laguerre plane is
given. We introduce the notion of projective automorphisms using the double tangency and
parallel perspectivities. We give the description of the groups of projective automorphisms
and automorphisms generated by double tangency symmetries as subgroups of the group
M(F,R) of automorphisms of a chain geometry X'(F,R) following Benz.

Introduction. In [7] we introduced the axioms (C) and (S) character-
izing miquelian Laguerre planes of characteristic different from 2. Any La-
guerre plane L satisfying (C) and (S) will be called a symmetric Laguerre
plane. For any pair of non-tangent circles K, L and any point p € K of a
symmetric Laguerre plane there is exactly one circle through p tangent to
both K and L. This defines the so called double tangency perspectivity. It has
a unique extension to a double tangency symmetry Sk 1, i.e. an involutory
automorphism exchanging K, L (cf. [7]) and preserving all the circles tan-
gent to both K and L. A symmetry with two pointwise fixed generators is
a special case of a double tangency symmetry, the same as the Laguerre in-
version considered by H. Mé&urer in [9]. It is natural to investigate the group
of automorphisms generated by all double tangency symmetries. This gives
a new approach to the results of H. Maurer (cf. [10], [11]) and yields some
new results.

In [2] W. Benz described a Laguerre plane over a field F as a chain
geometry Y (F,R) where R is the ring of dual numbers over F. This yields
a clear representation of the group Aut(L) as the group M(F,R) described
by homographies and automorphisms of R preserving F.
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In [12] H. Zeitler proved for symmetric Minkowski planes that the prod-
ucts of an even number of symmetries with respect to circles are exactly
normographies, i.e. the homographies represented by matrices with determi-
nants from F*R*?. Additionally any normography is a product of at most
four symmetries. In symmetric Laguerre planes the notion of normography
cannot be applied because F*R*? = R*.

In this paper we describe the subgroup of M(IF, R) generated by double
tangency symmetries (Theorem 2.2). In general this group properly con-
tains the group generated by symmetries with pointwise fixed generators.
We emphasize that homographies of symmetric Laguerre planes are exactly
products of an even number of double tangency symmetries (two or four).
We give a geometric description of involutions of symmetric Laguerre planes
by invariant circles. We prove that a symmetry with respect to a circle is
a composition of three double tangency symmetries, and other involutions
are compositions of two such symmetries. In [7] we introduced the double
tangency pencil (K, L) as the set of circles tangent to both K and L. We
investigate the group generated by double tangency symmetries associated
with pairs of circles from this pencil. We get the three-reflection theorem
for double tangency symmetries (cf. Theorem 3.1(3)) similar to that for
symmetries with respect to circles from an orthogonal pencil in symmetric
Minkowski planes (cf. [12]).

In the last section we introduce the notion of t-projectivity as the com-
position of double tangency and parallel perspectivities. We show that the
von Staudt group of a circle (associated with t-projectivities) is PGLa(IF)
(Theorem 4.1). This motivates the definition of a projective automorphism of
a symmetric Laguerre plane as an automorphism which has a t-projectivity
as the restriction to any circle (Definition 4.3). Theorem 4.2 characterizes
the group of all projective automorphisms. This group properly contains the
group generated by double tangency symmetries.

Acknowledgements. The authors wish to thank the reviewer for many
helpful remarks and suggestions.

1. Preliminaries. A Laguerre plane is a structure . = (P, C, ||), where
P is a set of points denoted by small Latin letters, C C 27 is a set of circles
denoted by capital Latin letters, and || C P x P is an equivalence relation
known as parallelity. The equivalence classes of || will be called generators
and denoted also by capital Latin letters. We suppose that the following
axioms are satisfied:

(1) Any three mutually non-parallel points a, b, ¢ are joined by a unique
circle, denoted by (a, b, c)°.
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(2) For every circle K and any two non-parallel points p € K, ¢ ¢ K
there is precisely one circle L which passes through ¢ and satisfies
KnL={p}

(3) For any point p and any circle K there exists exactly one point ¢
such that p || ¢ and ¢ € K; we write ¢ = pK.

(4) There is a circle containing at least three but not all points.

We say circles K and L are tangent at pif KNL={p}or K=L.Ifpisa
point of a circle K then we write (p, K) for the pencil of circles tangent to
K at the point p. If ¢ Jf p the circle of the pencil (p, K) passing through ¢
will be denoted by (p, K, ¢)°. For any pair of non-parallel points x,y the set
of circles containing them will be called the pencil of circles with the vertices
x,y and denoted by (x,y).

For any circles K, L the map

[K&L]lK—)L;ZL‘I—)Q}L

is called a parallel perspectivity.

The derived plane at a point p of a Laguerre plane L. consists of all points
not parallel to p and, as lines, all circles passing through p (excluding p) and
all generators not passing through p. The derived plane is an affine plane
and is denoted by A,,.

An automorphism of a Laguerre plane is a permutation of the set of
points which maps circles to circles (and generators to generators). An au-
tomorphism ¢ is called central if there exists a fixed point p such that ¢
induces a central collineation of Kp, the projective extension of the derived
affine plane A,,.

An LL-homothety is a central automorphism which induces a homothety
of A, for some fixed point p. An automorphism ¢ is an LL-homothety iff there
exist non-parallel points p, ¢ such that ¢(M) = M for any M € (p,q).

An LL-strain is a central automorphism which induces a central collinea-
tion of Kp with a proper axis for some fixed point p. The L-strain will be
said to be with respect to a generator or with respect to a circle if the axis is
associated with a generator or a circle respectively. An involutory L-strain
with respect to a generator fixes also the points of the other generator.
It is called a Laguerre symmetry and denoted by Sx y.ns where X,Y are
the pointwise fixed generators and M is a fixed circle (not pointwise). An
involutory L-strain with respect to a circle is called the symmetry (with
respect to the circle) and denoted by Sk where K is the fixed circle.

A Laguerre plane L = (P, C, ||) is called symmetric if the following axioms
are satisfied:

(C) For any circles K, L and any point p € K \ L there exists exactly
one circle M such that M € (p, K) and |[M N L| = 1.
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(S) If K, L, M, N are circles and a,b, ¢,d are points with K N L = {a},
LNnM={b}, MNN ={c}, NN K = {d} and a } ¢, then there
exists a circle passing through a, b, ¢, d.

We have ([7, Theorem 2.2, p. 241]):

THEOREM 1.1. A Laguerre plane L is symmetric iff it is a plane over a
field of characteristic different from 2.

In the following we assume L to be a symmetric Laguerre plane.

For any distinct circles K, L and a point p € K \ L the unique circle of
the pencil (p, K) tangent to L will be denoted by (p, K, L)°, and the point
of tangency of the circles L and (p, K, L)° by pK L. Additionally we define
pK L :=p for p € KN L. For distinct circles K, L the set of circles tangent
to K and L will be denoted by (K, L) and called a double tangency pencil.
If K and L are tangent at p we have (K, L) = (p, K) by |7, Proposition 2.1,
p. 241|. If K, L are any non-tangent circles the map

K 5 L):K— Lz zKL

is called a double tangency perspectivity.
By (C) and [7, Proposition 2.2, p. 241] we have:

PROPOSITION 1.1. Let K, L be non-tangent circles, a € K\L, b:= aKL,
c:=al,d:=bK and N := (c,L,d)°. Then N is tangent to K.

By [7, Theorem 3.1, p. 242] a double tangency perspectivity [K A L]
has a unique extension to an involutory automorphism. This automorphism
is called the double tangency symmetry associated with K, L and denoted by
SK,L-

[7, Theorem 3.1, p. 242| and [7, Theorem 3.2, p. 244] imply:

ProroSITION 1.2. Let K, L be non-tangent circles. Then:

(1) Sk,r.(M) =M for M € (K, L) and conversely Sk 1, is the only such
automorphism.

(2) If SK7L(.T) 7& x, then SK7L(M) =M fOT M e <‘T,SK7L($)>.

(3) If L/ = SK7L(K/) 7é K/, then SK,L = SK’,L’-

(4) If KNL = {z,y}, then Sk, = Sx,y;m where M is any circle fized by
Sk, and X,Y are the generators through x,y respectively. If K N L
= (), then Sk,1, does not have fized points.

(5) Sxv:m = Sx,y.m where M’ is any circle fived by Sx y,um-

(6) Through any pair of points x,y such that x € X, y € Y there is
exactly one circle fized by Sx y .-

Direct calculations (over a field of characteristic different from 2) give
the following properties of the symmetry with respect to a circle:
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PROPOSITION 1.3. Let K,L,M € C. Then:

(1) There is exactly one circle P such that Sp(K) = L, and Sp is the
unique automorphism interchanging K, L and preserving all genera-
tors.

(2) There is exactly one circle N such that Si o Sy, 0 Sy = Sy

Let F be a field of characteristic different from 2 and let R be a ring
extension of F by an element ¢ with €2 = 0. We denote by AutpR the
group of all automorphisms of R preserving F and by Autg R the group of
all automorphisms of R preserving F pointwise (cf. [12]). We have

(1.1) AutpR = {¢ | A € F*, 0 € AutF}

where ¢ (a + be) := a” + A\b%e. Let ¢y := ¢i!. Then

(1.2) Autp R ={¢y) | A € F*}.

An automorphism ¢, is an involution iff A = —1; we write Z := ¢_1(2).

According to [2] any symmetric Laguerre plane is isomorphic to a chain
geometry X' (F,R) = (Pr,Cr, ||r) where Py = P(R), Cr = {P(F)? | ¢ e T(R)}
and I'(R) := PGLy(R). Any element = of P(R) (a point) with representative
(z1,x2) is denoted by [x1,x2]. The relation of parallelity is defined by

T x
(1.3) w1, 20) Ik [y, 0] i | 0 0 | € R\ RN
Y1 Y2
Any element M of Cr (a circle) is a set of points described by the equation
(1.4) 21, 2] M [ " ] ~0
x2

where MT + M = 0. The matrix M can be written

M- [ Qe —H'QBE ]
T _1-B¢

2 e
where «a, 3,7 € F (cf. |2, p. 27]). We say that the circle M has matriz M.
This representation is useful because of the connection with parabolas (and
lines) with equations y + ax? 4+ Bz + v = 0 in the so called isotropic model
(cf. [2, p. 19]).
We have (cf. [2, Satz 3.1, p. 88] for any commutative ring R):

PROPOSITION 1.4. For any two triples of mutually non-parallel points
(x,y,2) and (2,y/, 2") there exists exactly one ¢ € T'(R) such that p(x) =/,
ey) =y, p(z) =2

An easy calculation gives:
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PROPOSITION 1.5. Two circles with matrices

Qe 1+2ﬂ15 Qo 1+§25
e e |7 | R e

are tangent iff (31 — (2)? = 4(a1 — o) (71 — 72).

We will denote by E the circle P(F) (with matrix [_?/2 162] ).
Any automorphism ¢ of X(IF,R) is a map

(15) ] = efaf]| ¢

where 7 € Auty R and ‘Zs‘ € R* (cf. [2, Satz 3.1, p. 176]).

In the following we suppose that | ¢ s‘ € IF* in (1.5) (this is possible since
F*R*2 = R*).

The group of automorphisms of X(F,R) is denoted by M(F,R). If L is a
symmetric Laguerre plane, then the group Aut(LL) is isomorphic to M(FF, R).

Recall that the group I'(R) (a normal subgroup of M(F,R)) consists of

—

the maps defined by (1.5) with 7 = id; we denote by I'(R), I'(R) the normal
subgroups of M(IF,R) described by (1.5) for 7 € {id,¢_1}, 7 € AutpR
respectively.

2. Involutions. The group generated by double tangency sym-
metries

—_~—

THEOREM 2.1. Let ¢ € I'(R) be an involution. Then exactly one of the
following holds:

(a) For any x # ¢(z) and M € (z,p(x)) we have ¢(M) = M. Then ¢
18 a double tangency symmetry and it maps

a T

(21, 22] = [T1, 7] [ } ,  where r,s € F.

s —a

(b) There exists exactly one circle K such that p(x) = x forx € K. Then
» = Sk, p is a composition of three double tangency symmetries and
it maps

a re

., wherer,s €.
SE @

[z1, 72| = [T1, T [

(c) For any x }f p(x) there exists exactly one M € (z,¢(x)) such that

(M) = M. Then ¢ is a composition of two double tangency sym-
metries and it maps

(w1, 29] [xl,mg][ a b }

cC —a
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We have divided the proof into a sequence of lemmas.

LEMMA 2.1. If a map [z1,22] — [2],23][¢ S] with 7 € AutpR is an

involution, then 7 = id or 7(x) = T for x € R. In the first case we have
d = —a. In the second case, either

(2.1) d=—-a and b,ceF
or
(2.2) d=a and b,ceR\R"

Proof. From [2]7,237]ATA = [z,y] it follows that 72 = id.

A standard computation in the ring R proves the assertion for the case
7 = id. Therefore in what follows we assume that 7 = ¢_1 is the conjugacy.

From the condition

[a 5][a b]:A[1 0]
¢ d c d 0 1
where A € F* we get

(2.3) a@ + be = be + dd,

(2.4) @b+ bd = 0,

(2.5) at+cd = 0.

Now, (2.3) gives aa@ — dd = be — be. Since aa — dd € F and b¢ — bc € R\ R*,
we get

(2.6) aa = dd,
(2.7) be = be.
Write
b —d b
A=Y . B=
c d ¢ —a

Suppose first that b € R*. By (2.4), (2.7) we obtain bA = bB. Since
det B = det A and det A € F* we get det A = det B. Hence A = AB where
A = +1. The case A = —1 is impossible because then b = —b, which contra-
dicts be R*. Thus d = —a, b="0, c =, hence b€ F* and ¢ € F.

Let us consider the case b ¢ R*, which gives a,d € R*. By (2.4)—(2.6) we
obtain @A = —bB. Hence A = A\B where A = £1. If \ = 1, then b = b, hence
b = 0. We also have d = —a and ¢ = ¢, hence ¢ € F. This together with the
previous case proves (2.1). If A\ = —1, then @ = d and b = —b, ¢ = —¢, hence

bc € R\R*. u
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a Te

LEMMA 2.2. An involution [x1,x2] — [T1,T2] [ - a]’ where r;s € F, is a

symmetry with respect to a circle with matriz

_r_ 1 _ ap
2(115 2 2a16
1 _a. __s .

where a = a1 + ase, ai,as € F.

LEMMA 2.3. An involution ¢: [x1,z2] — [T71,T2) [Z _Ta}, where r,s € T,
1s a double tangency symmetry. A circle with matriz
Qe 1+2ﬁ5 :|

_lpe o,

is fixed by @ iff 18 = as + as — yr where a = a1 + age, a,a9 € F.

Proof. A circle with matrix M is fixed by ¢ iff AMT = MAT where

A= [Z _TE] A calculation shows that this equation is equivalent to a8 =
as + as —yr.
Suppose first that a € F. Then ¢ fixes E (cf. [2, Lemma 1.1, p. 94]). Let

K, L be the circles with matrices
F—¢

1 ’ 1
2 0 -3t a;frs6 a’+rs
We have ¢(K) = L and K, L are tangent to E by Proposition 1.5. We prove
that ¢ = Sk 1. By Proposition 1.5 a circle with matrix M is tangent to both
K and L iff 32 = 4(a — 1)y and

2as > a? s
_ —4 _ _ 2 )
(6 a2+rs> (a a2+rs> (7 a2+rs>
This clearly forces a8 = sa — ry. Thus p(M) = M for M € (K, L), hence

¢ = Sk,1, by Proposition 1.2(1).
Let a ¢ F. If a circle K has matrix M where A = 32 — 4a7y # 0, then the

involution
_B _ e a
2A T 1 A ]

|

2
a 1 as
2+rsC 3 T %2—1—7’3& ]

[\

[3:1,372] — [Tl,fg] [

maps I to K. We prove that this involution is Sk g. To do this, we take the
circle M = (p, E, p(p))°, where p = [p1,1], p1 € F, and infer that M is also
tangent to K. Any circle tangent to F at p has matrix

|: —me 1+2;2;1m6 :|

1—2p1me 2
——5 —mpie

for some m € F. From the condition ¢(p) € M we deduce that m =
N/ (4(ap? + Bp1 +7)). From this, using Proposition 1.5 we conclude that
the circles K, M are tangent. =
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LEMMA 2.4. An involution ¢ € I'(R) has fized circles.
Proof. By Lemma 2.1, ¢ is a map [z1,z2] — |1, 23] [i _ba]. We recall

the assumption |CC‘ _ba‘ € F*. Write a = a1 + ase, b = by + bee, ¢ = ¢1 + o6,
where a;, b;,c; € F. A circle with matrix

- [ ae 1+2ﬂ6 ]

is fixed by ¢ iff BM = dMB" where B = [? ° ], d € R*. This equation is
equivalent to the following system of linear equations:

2&10{ + bl/ﬁ = b27
cra+ by = —ag,
c18 — 2a1y = —ca.
This system has a solution since c1b2 + 2a1a2 + bicas = 0 is equivalent to
‘a b ‘ cF* m
c —a
LEMMA 2.5. An involution ¢ € I'(R) is the composition Sy o Sk.1, for
some circles K, L, M. The circle M is an arbitrary circle fived by .

Proof. Let M be fixed by ¢. By Proposition 1.4 there exists ) € I'(R)
such that (M) = E. The involution % o ¢ o ¢~! has matrix [Z _Tq] where
q,7,5 € F since ) o pop™(E) = E (cf. [2, Lemma 1.1, p. 94]). This in-
volution is the composition of the maps [x1,x2] — [Z1,T2] and [z, z2] —
[T1, Ta] [g _Tq]. By Lemmas 2.2 and 2.3, the first automorphism is Sg and
the second is Sgvys for some circles K', L. Hence ¢ = Sjps o Sgk,1, where
K=y(K'"), L=1y(L"). n

LEMMA 2.6. Let K,L,M,N be circles and a,b,c,d be points such that
KNnM={a}, LNM ={b}, LNN ={c}, NNK ={d},al ¢ bl dand
let P be a circle such that Sp(K) = L. Then:

(1) Sp(M) =N.

(2) P=Sk,(P)=Sun(P).

(3) The circles K,L, M, N are fized by Sxy.p where X,Y are the gen-

erators through a,b respectively.

(4) SP = SX7y;p o SK,L 9] SM,N-

Proof. (1) We have Sp(a) = ¢, Sp(b) = d. Hence Sp maps M to a circle
tangent to K at d and to L at c. The only such circle is N.

(2) Let P := Sk,(P). We have Sp/(K) = Sk, o SpoSk,(K) = L,
hence P = P’ by Proposition 1.3(1). By (1) the same reasoning applies to
the equation Sy y(P) = P.

(3) The symmetry Sx y.x fixes the circle M as a circle tangent to K at a
point of the generator X . Hence it also fixes the circle L (as a circle tangent to
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M at b). From this and Proposition 1.3(1) we conclude that Sx y.x (P) = P.
Hence, by Proposition 1.2(5), Sx v,k = Sx,v;p and Sx,y.p fixes each of the
circles K, L, M, N.

(4) We first prove that the composition ¢ = S K,L°SM, N is an involution.
If KL | Sy (x) for any x € K, then ¢ fixes all generators. It is clear that
¢(K) =L and ¢(L) = K. Hence ¢ = Sp by Proposition 1.3. From Lemmas
2.1 and 2.3 we see that ¢ € I'(R). This is a contradiction since Sp ¢ I'(R)
by Lemma 2.2. Therefore there exists « € K such that KL }f Sy n(z). Let
' = Sun(z), Q = (z,K,L)°, Q = («/,K,L)°. We get Sy n(Q') = Q,
hence ¢(Q’) = @ since Sk, (Q) = Q. This gives ¢(z') = x and ¢ is an
involution by [2, Satz 3.2, p. 89]. From ¢(K) = L it follows that p(P) = P.
Hence ¢ = SpoSg g for some circles R, S by Lemma 2.5. It is also clear that
©(X) = X and ¢(Y) =Y. Therefore Sp s = Sx,y,p by Proposition 1.2(4),
and (4) is proved. =

COROLLARY 2.1. Any involution ¢ € I'(R) is the composition of two
double tangency symmetries.

To complete the proof of Theorem 2.1 it is enough to establish the fol-
lowing extension of Lemma 2.4:

LEMMA 2.7. There is exactly one circle fized by an involution ¢ € I'(R)
through any point x such that p(x) # x.

Proof. By Lemma 2.5, ¢ is the composition of a double tangency symme-
try ¥ and the symmetry Sp, where P is any fixed circle of ¢. If x € P, then
o(z) € P and ¢(x) = 1(x). By Proposition 1.2(2), 1 fixes all the circles of
the pencil (z, ¢(x)) while Sp fixes only P. Hence P is the only circle through
x fixed by ¢.

Let us consider the case = ¢ P. Write y := xP. We get o(y) =
¢(x)P since p(P) = P. Let K’ := (y, P, ()%, L' == (p(y), P,)°, M :=
(z, L', ¢o(x))°. From Proposition 1.1 it follows that M € (K’  L'). It is evident
that ¢(K’) = L'. Hence p(M) = M. Set N = Sp(M), 2/ = Sp(x). The circle
Sp(L’) is tangent to N at z’. Let K := (a/, N, p(x))°. By Proposition 1.1,
K is tangent to K’ at (), hence K is tangent to M. Write L := Sp(K). It
is clear that L € (M, N), ¢(K) = L and ¢(N) = N. This gives /(M) = N,
hence 9 = Sps,n, by Proposition 1.2(2). From Lemma 2.6(4) we conclude
that ¢ = Sk 1 0Sx ,(x);1 where X is the generator through z. By Proposi-
tion 1.2(1), Sk, z, fixes all the circles of the pencil (z, ¢(z)). By Proposition
1.2(6), Sx ,(x);m fixes exactly one circle of the pencil (z,p(z)). From this
we obtain the assertion for the point z. =

LEMMA 2.8. Any automorphism ¢ € I'(R) is the composition of two
involutions from I'(R).
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Proof. An automorphism ¢ is the map [z1,x2] — [z1,x2] [‘Z Z] (where
“Z 2‘ € F*). We have
. _
1 0 b b bd
— % for be € R*,
—bc | —c 0 —ac —bc
b 1 [ e d- —cd ad—d*—b
R R G e N “| for ceR*, b¢R*,
c d 10 —c c? cd
1 [ -» o0 ab b’
— . for be R*, c¢ R*.
\—b2_a—d b] [ad—az—bc —ab] #
Moreover, because of the assumption ‘ Z Z{ € F* the matrix [g Z] is propor-

tional (over R*) to one of the following three which, on the other hand, can
be decomposed as follows:

t re | 1 0 r —rse  —r
= . for r,s,t € F*,
se 1 rs| —s 0 st rSe
t ore | 1 - t 1
(e e - re for r;t € F*,t # 1,
0 1 1—-t | t—1 re 1—t —re
1 re | 1 - 1
e = e, 0 forreF. =
0 1 0 -1 0 -1

THEOREM 2.2.

(1) I'(R) is the group generated by all double tangency symmetries.
(2) Any automorphism ¢ € I'(R) is the composition of two or four double
tangency symmetries.

Proof. (2) By Lemma 2.8 and Corollary 2.1.
(1) By (2) and Theorem 2.1(b). =

3. The three-reflection theorem

LEMMA 3.1. Letz,y € K,z || z, 2 #y,2. If p(x) = ¢'(z), ¢(y) = ¢'(y),
0(z) = ¢ (2), p(K) = ¢'(K) = K for automorphisms ¢,¢’ € I'(R), then
o=y

Proof. 1t is enough to prove that the identity is the only automorphism
¢ € I'(R) fixing the points x,y, z and the circle K. Suppose that ¢(v) # v
for some v € K. By Proposition 1.4 there exists exactly one automorphism
of I'(R) mapping x,y, v to x,y, p(v) respectively. This automorphism is the
L-homothety with vertices x,y mapping v to ¢(v). This contradicts our
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assumption ¢(z) = z. Hence ¢ fixes K pointwise, and consequently it is the
identity by Proposition 1.4. =

THEOREM 3.1. Let K, L be non-tangent circles, z,z’ € K\ L and x # x'.
Then:

/

(1) There exists exactly one automorphism ¢ € I'(R) such that p(x) = o,
p(K) =K, ¢(L) = L.

(2) The automorphism @ is the composition of two double tangency sym-
metries Sy v © Sy,n where M, N, M',N" € (K,L) and Sy;,n can
be chosen arbitrarily.

(3) For any M;,N; € (K,L) (M; # N;, 1 < i < 3) there exist M,N €
<K, L> such that SMl,Nl o) S]\/[%N2 e} SM3,N3 = SM,N-

Proof. (1) Let us take ¢ := Sy n © Spr,v where M = (z, K, L)°, M’ =
(/,K,L)°, N € (K,L), N # M,M’; then ¢ is as required in (1). Now we
show that an automorphism ¢ required in (1) is indeed unique. Let y :=
KL,y :=2'KL, z:= yK, 2/ =y’ K. We obtain ¢(y) = v/, p(z) = 2’ and
Lemma, 3.1 completes the proof.

(2) Let M, N be arbitrary distinct circles of the pencil (K, L), z” :=
Sun(x), M':= (2", K,L)°, N' := (2/, K, L)°. It is easy to check that ¢ =
Smr N © SMN-

(3) This is clear from (1) and (2). =

COROLLARY 3.1. Any L-homothety with vertices p,q can be represented
as the composition ¢ := Syp n o Syr,n where M, M',N € (K,L) and K, L

are arbitrary distinct circles of the pencil (p,q).

4. Projectivities and projective automorphisms. A natural ques-
tion arises how to define a projective automorphism of a symmetric
Laguerre plane to preserve the analogy to the classical definition of a pro-
jective collineation, as a map whose restriction to any line is a projectivity,
i.e. a composition of perspectivities. We propose to use double tangency
and parallel perspectivities (cf. Definitions 4.1 and 4.3). This allows us to
omit the notion of a derived affine plane. The restriction of any double tan-
gency symmetry to any non-fixed circle is a double tangency perspectivity
by Proposition 1.2(3). For a fixed circle the restriction is a composition of
double tangency and parallel perspectivities (cf. Theorem 4.1). Hence au-
tomorphisms from I'(R) should be called projective. The same refers to an
LL-strain with respect to a circle since its restriction is a parallel perspectiv-
ity. The group I'(R) does not contain non-involutory L-strains with respect
to circles. Indeed, any LL-strain with respect to E is a map [z, x2| — [2], 23]
where 7 € Auty R. Consequently, the proposed group of projective automor-
phisms is larger than I'(R).
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A difference between Laguerre and Minkowski planes is worth pointing
out here. For the latter, the only automorphism of R preserving F pointwise
is the involutory conjugacy z +— Z. Therefore, if we present a Minkowski
plane M in the form M = X'(F,R) for a suitable ring R, then the group of
projective automorphisms of M is I'(R).

Let K,L € C.

DEFINITION 4.1. A map ¢ : K — L is called a t-projectivity if it is a
composition of double tangency and parallel perspectivities.

DEFINITION 4.2. The von Staudt group of the circle K is the set of all
t-projectivities of K. It will be denoted by I'k.

DEFINITION 4.3. An automorphism ¢ € Aut(L) is called projective if
¢|K is a t-projectivity for any K € C.

THEOREM 4.1. Let K € C.
(1) I'x ~ PGLy(F).
(2) If ¢ € I' is an involution, then:

(a) there exist L, M € C such that ¢ = St m|K,
(b) there exists N € C such that
6=[NLK]o[K L N
(3) If ¢ € I' is not an involution, then there exist L, M € C such that
o=[M2ILK]o[LL Mo[K L L)

Proof. We can assume that K := E = P(F) since a parallel perspectivity
establishes the isomorphism of I'r and ['x for any K € C.

(2a) From the analytic description presented in Theorem 2.1(a) it follows
that any product [M 2 EJo[L % M]o[E % L] = [M % EJoS, |Lo[E % L]
is an involution of PGLy(F) for any non-tangent circles L, M. In particular
if £ is a fixed circle of Sg, s, then Sz a|p is an involution of PGLy(F)
(in this case the matrix of Sy, 5s has coefficients in [F). From this we obtain
I'y C PGLy(F). Let z,2',y,y' € E and = # y, 2’ # y'. We will show that
there exist circles L, M such that Sy, p/(z) = 2’ and Sz p(y) = ¢/. From this
the assertion follows since any involution of PGLy(F) is determined by any
two pairs of interchanging points. Suppose first  # x’ and y # 3. Let z be
any point such that z # z, z || # and write L := (2/, F,2)°, N = (2,y,v)°,
Z=a'N, M = (x,E,2")°, P = (z,L,2")°. By Proposition 1.1, the circle P
is also tangent to M. Hence Sy, as fixes the circles E, P and Sy y(x) = x,
Sr.m(z) = 2. By Proposition 1.2(2), Sz a(N) = N, hence Sz a(y) =y In
the case y = ¢’ the proof is analogous, we take N := (z, E, y)°. If additionally

x = 2/, it is enough to consider an arbitrary double tangency symmetry Sg ¢
where Q € (z,y) and Q # E.



136 J. Kosiorek and A. Matras

(b) To deduce (b) from (a) we can use any automorphism fixing the
generators. Let @ be the circle such that Sg(L) = E, by 1.3(1). We have

[Se(M) + EJ o [E = Sq(M)] = Srule-

(1) and (3) follow from the above since any element of PGLy(F) is the
composition of two involutions. m

COROLLARY 4.1. An automorphism ¢ € Aut(L) is projective iff [¢(E)
L E) o ¢|lp € PGLy(F).

Proof. “=" This follows directly from Theorem 4.1(1).

“<” By Theorem 4.1(1), ¢|g is a t-projectivity and we have ¢|x =
[p(E) 2 o(K)] o ¢|po[K % EJ], hence ¢|k is a t-projectivity. m

THEOREM 4.2. I'(R) is the group of all projective automorphisms of a
symmetric Laguerre plane L.

Proof. Write x1 := x11 + T12€, T2 := x21 + X228, @ := a1 + asE,.... By
(1.1), (1.5) any automorphism ¢ € M(F,R) maps

a
[X11 + x126, To1 + waoe] > [2]] + Ao, 29 + Axgye] [
c

where o € AutF, A € F*. An easy computation shows that [p(E) & E]oyp|x
is the map

s o1l @ b
[711, w21] > [2]1, 25, ] :
C1 d1

From this and Corollary 4.1 we obtain: ¢ is projective < [o(E) 2 Eloyp|p €
PGLy(F) & o =id = p € I'(R). =
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