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The Double Tangen
y Symmetries in Laguerre PlanesbyJarosªaw KOSIOREK and Andrzej MATRA�Presented by Jan RYCHLEWSKISummary. The group generated by double tangen
y symmetries in a Laguerre plane isinvestigated. The geometri
 
lassi�
ation of involutions of a symmetri
 Laguerre plane isgiven. We introdu
e the notion of proje
tive automorphisms using the double tangen
y andparallel perspe
tivities. We give the des
ription of the groups of proje
tive automorphismsand automorphisms generated by double tangen
y symmetries as subgroups of the group
M(F, R) of automorphisms of a 
hain geometry Σ(F, R) following Benz.Introdu
tion. In [7℄ we introdu
ed the axioms (C) and (S) 
hara
ter-izing miquelian Laguerre planes of 
hara
teristi
 di�erent from 2. Any La-guerre plane L satisfying (C) and (S) will be 
alled a symmetri
 Laguerreplane. For any pair of non-tangent 
ir
les K,L and any point p ∈ K of asymmetri
 Laguerre plane there is exa
tly one 
ir
le through p tangent toboth K and L. This de�nes the so 
alled double tangen
y perspe
tivity. It hasa unique extension to a double tangen
y symmetry SK,L, i.e. an involutoryautomorphism ex
hanging K,L (
f. [7℄) and preserving all the 
ir
les tan-gent to both K and L. A symmetry with two pointwise �xed generators isa spe
ial 
ase of a double tangen
y symmetry, the same as the Laguerre in-version 
onsidered by H. Mäurer in [9℄. It is natural to investigate the groupof automorphisms generated by all double tangen
y symmetries. This givesa new approa
h to the results of H. Mäurer (
f. [10℄, [11℄) and yields somenew results.In [2℄ W. Benz des
ribed a Laguerre plane over a �eld F as a 
haingeometry Σ(F,R) where R is the ring of dual numbers over F. This yieldsa 
lear representation of the group Aut(L) as the group M(F,R) des
ribedby homographies and automorphisms of R preserving F.2000 Mathemati
s Subje
t Classi�
ation: Primary 51B15.Key words and phrases: miquelian Laguerre plane, double tangen
y symmetry, pro-je
tive automorphism. [123℄ 
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In [12℄ H. Zeitler proved for symmetri
 Minkowski planes that the prod-u
ts of an even number of symmetries with respe
t to 
ir
les are exa
tlynormographies, i.e. the homographies represented by matri
es with determi-nants from F∗R∗2. Additionally any normography is a produ
t of at mostfour symmetries. In symmetri
 Laguerre planes the notion of normography
annot be applied be
ause F∗R∗2 = R∗.In this paper we des
ribe the subgroup of M(F,R) generated by doubletangen
y symmetries (Theorem 2.2). In general this group properly 
on-tains the group generated by symmetries with pointwise �xed generators.We emphasize that homographies of symmetri
 Laguerre planes are exa
tlyprodu
ts of an even number of double tangen
y symmetries (two or four).We give a geometri
 des
ription of involutions of symmetri
 Laguerre planesby invariant 
ir
les. We prove that a symmetry with respe
t to a 
ir
le isa 
omposition of three double tangen
y symmetries, and other involutionsare 
ompositions of two su
h symmetries. In [7℄ we introdu
ed the doubletangen
y pen
il 〈K,L〉 as the set of 
ir
les tangent to both K and L. Weinvestigate the group generated by double tangen
y symmetries asso
iatedwith pairs of 
ir
les from this pen
il. We get the three-re�e
tion theoremfor double tangen
y symmetries (
f. Theorem 3.1(3)) similar to that forsymmetries with respe
t to 
ir
les from an orthogonal pen
il in symmetri
Minkowski planes (
f. [12℄).In the last se
tion we introdu
e the notion of t-proje
tivity as the 
om-position of double tangen
y and parallel perspe
tivities. We show that thevon Staudt group of a 
ir
le (asso
iated with t-proje
tivities) is PGL2(F)(Theorem 4.1). This motivates the de�nition of a proje
tive automorphism ofa symmetri
 Laguerre plane as an automorphism whi
h has a t-proje
tivityas the restri
tion to any 
ir
le (De�nition 4.3). Theorem 4.2 
hara
terizesthe group of all proje
tive automorphisms. This group properly 
ontains thegroup generated by double tangen
y symmetries.A
knowledgements. The authors wish to thank the reviewer for manyhelpful remarks and suggestions.
1. Preliminaries. A Laguerre plane is a stru
ture L = (P, C, ‖), where

P is a set of points denoted by small Latin letters, C ⊂ 2P is a set of 
ir
lesdenoted by 
apital Latin letters, and ‖ ⊂ P × P is an equivalen
e relationknown as parallelity. The equivalen
e 
lasses of ‖ will be 
alled generatorsand denoted also by 
apital Latin letters. We suppose that the followingaxioms are satis�ed:(1) Any three mutually non-parallel points a, b, c are joined by a unique
ir
le, denoted by (a, b, c)◦.
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(2) For every 
ir
le K and any two non-parallel points p ∈ K, q /∈ Kthere is pre
isely one 
ir
le L whi
h passes through q and satis�es

K ∩ L = {p}.(3) For any point p and any 
ir
le K there exists exa
tly one point qsu
h that p ‖ q and q ∈ K; we write q = pK.(4) There is a 
ir
le 
ontaining at least three but not all points.We say 
ir
les K and L are tangent at p if K ∩ L = {p} or K = L. If p is apoint of a 
ir
le K then we write 〈p,K〉 for the pen
il of 
ir
les tangent to
K at the point p. If q ∦ p the 
ir
le of the pen
il 〈p,K〉 passing through qwill be denoted by (p,K, q)◦. For any pair of non-parallel points x, y the setof 
ir
les 
ontaining them will be 
alled the pen
il of 
ir
les with the verti
es
x, y and denoted by 〈x, y〉.For any 
ir
les K,L the map

[K
p
→ L] : K → L; x 7→ xLis 
alled a parallel perspe
tivity.The derived plane at a point p of a Laguerre plane L 
onsists of all pointsnot parallel to p and, as lines, all 
ir
les passing through p (ex
luding p) andall generators not passing through p. The derived plane is an a�ne planeand is denoted by Ap.An automorphism of a Laguerre plane is a permutation of the set ofpoints whi
h maps 
ir
les to 
ir
les (and generators to generators). An au-tomorphism φ is 
alled 
entral if there exists a �xed point p su
h that φindu
es a 
entral 
ollineation of Ap, the proje
tive extension of the deriveda�ne plane Ap.An L-homothety is a 
entral automorphism whi
h indu
es a homothetyof Ap for some �xed point p. An automorphism φ is an L-homothety i� thereexist non-parallel points p, q su
h that φ(M) = M for any M ∈ 〈p, q〉.An L-strain is a 
entral automorphism whi
h indu
es a 
entral 
ollinea-tion of Ap with a proper axis for some �xed point p. The L-strain will besaid to be with respe
t to a generator or with respe
t to a 
ir
le if the axis isasso
iated with a generator or a 
ir
le respe
tively. An involutory L-strainwith respe
t to a generator �xes also the points of the other generator.It is 
alled a Laguerre symmetry and denoted by SX,Y ;M where X,Y arethe pointwise �xed generators and M is a �xed 
ir
le (not pointwise). Aninvolutory L-strain with respe
t to a 
ir
le is 
alled the symmetry (withrespe
t to the 
ir
le) and denoted by SK where K is the �xed 
ir
le.A Laguerre plane L = (P, C, ‖) is 
alled symmetri
 if the following axiomsare satis�ed:(C) For any 
ir
les K,L and any point p ∈ K \ L there exists exa
tlyone 
ir
le M su
h that M ∈ 〈p,K〉 and |M ∩ L| = 1.
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(S) If K,L,M,N are 
ir
les and a, b, c, d are points with K ∩ L = {a},

L ∩M = {b}, M ∩ N = {c}, N ∩ K = {d} and a ∦ c, then thereexists a 
ir
le passing through a, b, c, d.We have ([7, Theorem 2.2, p. 241℄):Theorem 1.1. A Laguerre plane L is symmetri
 i� it is a plane over a�eld of 
hara
teristi
 di�erent from 2.In the following we assume L to be a symmetri
 Laguerre plane.For any distin
t 
ir
les K,L and a point p ∈ K \ L the unique 
ir
le ofthe pen
il 〈p,K〉 tangent to L will be denoted by (p,K,L)◦, and the pointof tangen
y of the 
ir
les L and (p,K,L)◦ by pKL. Additionally we de�ne
pKL := p for p ∈ K ∩ L. For distin
t 
ir
les K,L the set of 
ir
les tangentto K and L will be denoted by 〈K,L〉 and 
alled a double tangen
y pen
il.If K and L are tangent at p we have 〈K,L〉 = 〈p,K〉 by [7, Proposition 2.1,p. 241℄. If K,L are any non-tangent 
ir
les the map

[K
t
→ L] : K → L; x 7→ xKLis 
alled a double tangen
y perspe
tivity.By (C) and [7, Proposition 2.2, p. 241℄ we have:Proposition 1.1. Let K,L be non-tangent 
ir
les , a ∈ K\L, b := aKL,

c := aL, d := bK and N := (c, L, d)◦. Then N is tangent to K.By [7, Theorem 3.1, p. 242℄ a double tangen
y perspe
tivity [K
t
→ L]has a unique extension to an involutory automorphism. This automorphismis 
alled the double tangen
y symmetry asso
iated with K,L and denoted by

SK,L.[7, Theorem 3.1, p. 242℄ and [7, Theorem 3.2, p. 244℄ imply:Proposition 1.2. Let K,L be non-tangent 
ir
les. Then:(1) SK,L(M) = M for M ∈ 〈K,L〉 and 
onversely SK,L is the only su
hautomorphism.(2) If SK,L(x) 6= x, then SK,L(M) = M for M ∈ 〈x, SK,L(x)〉.(3) If L′ = SK,L(K ′) 6= K ′, then SK,L = SK′,L′ .(4) If K∩L = {x, y}, then SK,L = SX,Y ;M where M is any 
ir
le �xed by
SK,L and X,Y are the generators through x, y respe
tively. If K ∩ L
= ∅, then SK,L does not have �xed points.(5) SX,Y ;M = SX,Y ;M ′ where M ′ is any 
ir
le �xed by SX,Y ;M .(6) Through any pair of points x, y su
h that x ∈ X, y ∈ Y there isexa
tly one 
ir
le �xed by SX,Y ;M .Dire
t 
al
ulations (over a �eld of 
hara
teristi
 di�erent from 2) givethe following properties of the symmetry with respe
t to a 
ir
le:
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Proposition 1.3. Let K,L,M ∈ C. Then:(1) There is exa
tly one 
ir
le P su
h that SP (K) = L, and SP is theunique automorphism inter
hanging K,L and preserving all genera-tors.(2) There is exa
tly one 
ir
le N su
h that SK ◦ SL ◦ SM = SN .Let F be a �eld of 
hara
teristi
 di�erent from 2 and let R be a ringextension of F by an element ε with ε2 = 0. We denote by AutF R thegroup of all automorphisms of R preserving F and by AutF R the group ofall automorphisms of R preserving F pointwise (
f. [12℄). We have(1.1) AutF R = {φσ

λ | λ ∈ F∗, σ ∈ Aut F}where φσ
λ(a+ bε) := aσ + λbσε. Let φλ := φid

λ . Then(1.2) AutF R = {φλ | λ ∈ F∗}.An automorphism φλ is an involution i� λ = −1; we write z := φ−1(z).A

ording to [2℄ any symmetri
 Laguerre plane is isomorphi
 to a 
haingeometry Σ(F,R) = (PF, CF, ‖F) where PF = P(R), CF = {P(F)ϕ | ϕ ∈ Γ(R)}and Γ(R) := PGL2(R). Any element x of P(R) (a point) with representative
(x1, x2) is denoted by [x1, x2]. The relation of parallelity is de�ned by(1.3) [x1, x2] ‖F [y1, y2] :⇔

∣

∣

∣

∣

∣

x1 x2

y1 y2

∣

∣

∣

∣

∣

∈ R \ R∗.Any element M of CF (a 
ir
le) is a set of points des
ribed by the equation(1.4) [x1, x2] M

[

x1

x2

]

= 0

where M
T

+ M = 0. The matrix M 
an be written
M :=

[

αε 1+βε
2

−1−βε
2 γε

]

where α, β, γ ∈ F (
f. [2, p. 27℄). We say that the 
ir
le M has matrix M.This representation is useful be
ause of the 
onne
tion with parabolas (andlines) with equations y + αx2 + βx+ γ = 0 in the so 
alled isotropi
 model(
f. [2, p. 19℄).We have (
f. [2, Satz 3.1, p. 88℄ for any 
ommutative ring R):Proposition 1.4. For any two triples of mutually non-parallel points
(x, y, z) and (x′, y′, z′) there exists exa
tly one ϕ ∈ Γ(R) su
h that ϕ(x) = x′,
ϕ(y) = y′, ϕ(z) = z′.An easy 
al
ulation gives:
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Proposition 1.5. Two 
ir
les with matri
es

[

α1ε
1+β1ε

2

−1−β1ε
2 γ1ε

]

,

[

α2ε
1+β2ε

2

−1−β2ε
2 γ2ε

]

are tangent i� (β1 − β2)
2 = 4(α1 − α2)(γ1 − γ2).We will denote by E the 
ir
le P(F) (with matrix [ 0

−1/2
1/2
0

]).Any automorphism ϕ of Σ(F,R) is a map(1.5) [x1, x2] 7→ [xτ
1, x

τ
2 ]

[

a b

c d

]

where τ ∈ AutF R and ∣

∣

a b
c d

∣

∣ ∈ R∗ (
f. [2, Satz 3.1, p. 176℄).In the following we suppose that ∣

∣

a b
c d

∣

∣ ∈ F∗ in (1.5) (this is possible sin
e
F∗R∗2 = R∗).The group of automorphisms of Σ(F,R) is denoted by M(F,R). If L is asymmetri
 Laguerre plane, then the group Aut(L) is isomorphi
 to M(F,R).Re
all that the group Γ (R) (a normal subgroup of M(F,R)) 
onsists ofthe maps de�ned by (1.5) with τ = id; we denote by Γ (R), Γ̃ (R) the normalsubgroups of M(F,R) des
ribed by (1.5) for τ ∈ {id, φ−1}, τ ∈ AutF Rrespe
tively.2. Involutions. The group generated by double tangen
y sym-metriesTheorem 2.1. Let ϕ ∈ Γ̃ (R) be an involution. Then exa
tly one of thefollowing holds :

(a) For any x 6= ϕ(x) and M ∈ 〈x, ϕ(x)〉 we have ϕ(M) = M . Then ϕis a double tangen
y symmetry and it maps
[x1, x2] 7→ [x1, x2]

[

a r

s −a

]

, where r, s ∈ F.

(b) There exists exa
tly one 
ir
le K su
h that ϕ(x) = x for x ∈ K. Then
ϕ = SK , ϕ is a 
omposition of three double tangen
y symmetries andit maps

[x1, x2] 7→ [x1, x2]

[

a rε

sε a

]

, where r, s ∈ F.

(c) For any x ∦ ϕ(x) there exists exa
tly one M ∈ 〈x, ϕ(x)〉 su
h that
ϕ(M) = M . Then ϕ is a 
omposition of two double tangen
y sym-metries and it maps

[x1, x2] 7→ [x1, x2]

[

a b

c −a

]

.
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We have divided the proof into a sequen
e of lemmas.Lemma 2.1. If a map [x1, x2] 7→ [xτ

1 , x
τ
2 ]

[

a b
c d

] with τ ∈ AutF R is aninvolution, then τ = id or τ(x) = x for x ∈ R. In the �rst 
ase we have
d = −a. In the se
ond 
ase, either(2.1) d = −a and b, c ∈ For(2.2) d = a and b, c ∈ R \ R∗.Proof. From [xττ

1 , xττ
2 ]AτA = [x, y] it follows that τ2 = id.A standard 
omputation in the ring R proves the assertion for the 
ase

τ = id. Therefore in what follows we assume that τ = φ−1 is the 
onjuga
y.From the 
ondition
[

a b

c d

] [

a b

c d

]

= λ

[

1 0

0 1

]

where λ ∈ F∗ we get
aa+ bc = bc+ dd,(2.3)
ab+ bd = 0,(2.4)
ac+ cd = 0.(2.5)Now, (2.3) gives aa− dd = bc− bc. Sin
e aa− dd ∈ F and bc− bc ∈ R \ R∗,we get

aa = dd,(2.6)
bc = bc.(2.7)Write

A =

[

a b

c d

]

, B =

[

−d b

c −a

]

.

Suppose �rst that b ∈ R∗. By (2.4), (2.7) we obtain bA = bB. Sin
e
detB = detA and detA ∈ F∗ we get detA = detB. Hen
e A = λB where
λ = ±1. The 
ase λ = −1 is impossible be
ause then b = −b, whi
h 
ontra-di
ts b ∈ R∗. Thus d = −a, b = b, c = c, hen
e b ∈ F∗ and c ∈ F.Let us 
onsider the 
ase b /∈ R∗, whi
h gives a, d ∈ R∗. By (2.4)�(2.6) weobtain aA = −bB. Hen
e A = λB where λ = ±1. If λ = 1, then b = b, hen
e
b = 0. We also have d = −a and c = c, hen
e c ∈ F. This together with theprevious 
ase proves (2.1). If λ = −1, then a = d and b = −b, c = −c, hen
e
b, c ∈ R \ R∗.
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Lemma 2.2. An involution [x1, x2] 7→ [x1, x2]

[

a rε
sε a

], where r, s ∈ F, is asymmetry with respe
t to a 
ir
le with matrix
[

r
2a1
ε 1

2 − a2

2a1
ε

−1
2 − a2

2a1
ε − s

2a1
ε

]

where a = a1 + a2ε, a1, a2 ∈ F.Lemma 2.3. An involution ϕ: [x1, x2] 7→ [x1, x2]
[ a r

s −a

], where r, s ∈ F,is a double tangen
y symmetry. A 
ir
le with matrix
M =

[

αε 1+βε
2

−1−βε
2 γε

]

is �xed by ϕ i� a1β = a2 + αs− γr where a = a1 + a2ε, a1, a2 ∈ F.Proof. A 
ir
le with matrix M is �xed by ϕ i� AMT = MAT where
A =

[ a r
s −a

]. A 
al
ulation shows that this equation is equivalent to a1β =
a2 + αs− γr.Suppose �rst that a ∈ F. Then ϕ �xes E (
f. [2, Lemma 1.1, p. 94℄). Let
K,L be the 
ir
les with matri
es

[

ε 1
2

−1
2 0

]

,

[

a2

a2+rs
ε 1

2 + as
a2+rs

ε

−1
2 + as

a2+rs
ε s2

a2+rs
ε

]

.We have ϕ(K) = L and K,L are tangent to E by Proposition 1.5. We provethat ϕ = SK,L. By Proposition 1.5 a 
ir
le with matrix M is tangent to both
K and L i� β2 = 4(α− 1)γ and

(

β −
2as

a2 + rs

)2

= 4

(

α−
a2

a2 + rs

)(

γ −
s2

a2 + rs

)

.This 
learly for
es aβ = sα − rγ. Thus ϕ(M) = M for M ∈ 〈K,L〉, hen
e
ϕ = SK,L by Proposition 1.2(1).Let a /∈ F. If a 
ir
le K has matrix M where △ = β2 − 4αγ 6= 0, then theinvolution

[x1, x2] 7→ [x1, x2]

[

− β
2△ − ε

4
α
△

− γ
△

β
2△ − ε

4

]

maps E to K. We prove that this involution is SK,E . To do this, we take the
ir
le M = (p,E, ϕ(p))◦, where p = [p1, 1], p1 ∈ F, and infer that M is alsotangent to K. Any 
ir
le tangent to E at p has matrix
[

−mε 1+2p1mε
2

−1−2p1mε
2 −mp2

1ε

]

for some m ∈ F. From the 
ondition ϕ(p) ∈ M we dedu
e that m =
△/(4(αp2

1 + βp1 + γ)). From this, using Proposition 1.5 we 
on
lude thatthe 
ir
les K,M are tangent.
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Lemma 2.4. An involution ϕ ∈ Γ (R) has �xed 
ir
les.Proof. By Lemma 2.1, ϕ is a map [x1, x2] 7→ [x1, x2]

[ a b
c −a

]. We re
allthe assumption ∣

∣

a b
c −a

∣

∣ ∈ F∗. Write a = a1 + a2ε, b = b1 + b2ε, c = c1 + c2ε,where ai, bi, ci ∈ F. A 
ir
le with matrix
M =

[

αε 1+βε
2

−1−βε
2 γε

]

is �xed by ϕ i� BM = dMB
T where B =

[ a b
c −a

], d ∈ R∗. This equation isequivalent to the following system of linear equations:










2a1α+ b1β = b2,

c1α+ b1γ = −a2,

c1β − 2a1γ = −c2.This system has a solution sin
e c1b2 + 2a1a2 + b1c2 = 0 is equivalent to
∣

∣

a b
c −a

∣

∣ ∈ F∗.Lemma 2.5. An involution ϕ ∈ Γ (R) is the 
omposition SM ◦ SK,L forsome 
ir
les K,L,M . The 
ir
le M is an arbitrary 
ir
le �xed by ϕ.Proof. Let M be �xed by ϕ. By Proposition 1.4 there exists ψ ∈ Γ (R)su
h that ψ(M) = E. The involution ψ ◦ ϕ ◦ ψ−1 has matrix [ q r
s −q

] where
q, r, s ∈ F sin
e ψ ◦ ϕ ◦ ψ−1(E) = E (
f. [2, Lemma 1.1, p. 94℄). This in-volution is the 
omposition of the maps [x1, x2] 7→ [x1, x2] and [x1, x2] 7→
[x1, x2]

[ q r
s −q

]. By Lemmas 2.2 and 2.3, the �rst automorphism is SE andthe se
ond is SK′L′ for some 
ir
les K ′, L′. Hen
e ϕ = SM ◦ SK,L where
K = ψ(K ′), L = ψ(L′).Lemma 2.6. Let K,L,M,N be 
ir
les and a, b, c, d be points su
h that
K ∩M = {a}, L ∩M = {b}, L ∩N = {c}, N ∩K = {d}, a ‖ c, b ‖ d andlet P be a 
ir
le su
h that SP (K) = L. Then:

(1) SP (M) = N .
(2) P = SK,L(P ) = SM,N (P ).
(3) The 
ir
les K,L,M,N are �xed by SX,Y ;P where X,Y are the gen-erators through a, b respe
tively.
(4) SP = SX,Y ;P ◦ SK,L ◦ SM,N .Proof. (1) We have SP (a) = c, SP (b) = d. Hen
e SP maps M to a 
ir
letangent to K at d and to L at c. The only su
h 
ir
le is N .
(2) Let P ′ := SK,L(P ). We have SP ′(K) = SK,L ◦ SP ◦ SK,L(K) = L,hen
e P = P ′ by Proposition 1.3(1). By (1) the same reasoning applies tothe equation SM,N (P ) = P .
(3) The symmetry SX,Y ;K �xes the 
ir
le M as a 
ir
le tangent to K at apoint of the generator X. Hen
e it also �xes the 
ir
le L (as a 
ir
le tangent to
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M at b). From this and Proposition 1.3(1) we 
on
lude that SX,Y ;K(P ) = P .Hen
e, by Proposition 1.2(5), SX,Y ;K = SX,Y ;P and SX,Y ;P �xes ea
h of the
ir
les K,L,M,N .

(4) We �rst prove that the 
omposition ϕ = SK,L ◦SM,N is an involution.If xKL ‖ SM,N (x) for any x ∈ K, then ϕ �xes all generators. It is 
lear that
ϕ(K) = L and ϕ(L) = K. Hen
e ϕ = SP by Proposition 1.3. From Lemmas2.1 and 2.3 we see that ϕ ∈ Γ (R). This is a 
ontradi
tion sin
e SP /∈ Γ (R)by Lemma 2.2. Therefore there exists x ∈ K su
h that xKL ∦ SM,N (x). Let
x′ := SM,N (x), Q := (x,K,L)◦, Q′ := (x′,K, L)◦. We get SM,N (Q′) = Q,hen
e ϕ(Q′) = Q sin
e SK,L(Q) = Q. This gives ϕ(x′) = x and ϕ is aninvolution by [2, Satz 3.2, p. 89℄. From ϕ(K) = L it follows that ϕ(P ) = P .Hen
e ϕ = SP ◦SR,S for some 
ir
les R,S by Lemma 2.5. It is also 
lear that
ϕ(X) = X and ϕ(Y ) = Y . Therefore SR,S = SX,Y ;P by Proposition 1.2(4),and (4) is proved.Corollary 2.1. Any involution ϕ ∈ Γ (R) is the 
omposition of twodouble tangen
y symmetries.To 
omplete the proof of Theorem 2.1 it is enough to establish the fol-lowing extension of Lemma 2.4:Lemma 2.7. There is exa
tly one 
ir
le �xed by an involution ϕ ∈ Γ (R)through any point x su
h that ϕ(x) 6= x.Proof. By Lemma 2.5, ϕ is the 
omposition of a double tangen
y symme-try ψ and the symmetry SP , where P is any �xed 
ir
le of ϕ. If x ∈ P , then
ϕ(x) ∈ P and ϕ(x) = ψ(x). By Proposition 1.2(2), ψ �xes all the 
ir
les ofthe pen
il 〈x, ϕ(x)〉 while SP �xes only P . Hen
e P is the only 
ir
le through
x �xed by ϕ.Let us 
onsider the 
ase x /∈ P . Write y := xP . We get ϕ(y) =
ϕ(x)P sin
e ϕ(P ) = P . Let K ′ := (y, P, ϕ(x))◦, L′ := (ϕ(y), P, x)◦, M :=
(x, L′, ϕ(x))◦. From Proposition 1.1 it follows thatM ∈ 〈K ′, L′〉. It is evidentthat ϕ(K ′) = L′. Hen
e ϕ(M) = M . Set N = SP (M), x′ = SP (x). The 
ir
le
SP (L′) is tangent to N at x′. Let K := (x′, N, ϕ(x))◦. By Proposition 1.1,
K is tangent to K ′ at ϕ(x), hen
e K is tangent to M . Write L := SP (K). Itis 
lear that L ∈ 〈M,N〉, ϕ(K) = L and ϕ(N) = N . This gives ψ(M) = N ,hen
e ψ = SM,N , by Proposition 1.2(2). From Lemma 2.6(4) we 
on
ludethat ϕ = SK,L ◦ SX,ϕ(X);M where X is the generator through x. By Proposi-tion 1.2(1), SK,L �xes all the 
ir
les of the pen
il 〈x, ϕ(x)〉. By Proposition1.2(6), SX,ϕ(X);M �xes exa
tly one 
ir
le of the pen
il 〈x, ϕ(x)〉. From thiswe obtain the assertion for the point x.Lemma 2.8. Any automorphism ϕ ∈ Γ (R) is the 
omposition of twoinvolutions from Γ (R).
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Proof. An automorphism ϕ is the map [x1, x2] 7→ [x1, x2]

[

a b
c d

] (where
∣

∣

a b
c d

∣

∣ ∈ F∗). We have
[

a b

c d

]

=















































1

−bc

[

0 b

−c 0

]

·

[

bc bd

−ac −bc

] for bc ∈ R∗,

1

−c2

[

c d− a

0 −c

]

·

[

−cd ad− d2 − bc

c2 cd

] for c∈R∗, b /∈R∗,

1

−b2

[

−b 0

a− d b

]

·

[

ab b2

ad− a2 − bc −ab

] for b∈R∗, c /∈R∗.

Moreover, be
ause of the assumption ∣

∣

a b
c d

∣

∣ ∈ F∗ the matrix [

a b
c d

] is propor-tional (over R∗) to one of the following three whi
h, on the other hand, 
anbe de
omposed as follows:
[

t rε

sε 1

]

=
1

rs

[

0 r

−s 0

]

·

[

−rsε −r

st rsε

] for r, s, t ∈ F∗,

[

t rε

0 1

]

=
1

1 − t

[

−rε t

t− 1 rε

]

·

[

rε −1

1 − t −rε

] for r, t ∈ F∗, t 6= 1,
[

1 rε

0 1

]

=

[

1 −rε

0 −1

]

·

[

1 0

0 −1

] for r ∈ F.Theorem 2.2.
(1) Γ (R) is the group generated by all double tangen
y symmetries.
(2) Any automorphism ϕ ∈ Γ (R) is the 
omposition of two or four doubletangen
y symmetries.Proof. (2) By Lemma 2.8 and Corollary 2.1.(1) By (2) and Theorem 2.1(b).3. The three-re�e
tion theoremLemma 3.1. Let x, y ∈ K, x ‖ z, x 6= y, z. If ϕ(x) = ϕ′(x), ϕ(y) = ϕ′(y),

ϕ(z) = ϕ′(z), ϕ(K) = ϕ′(K) = K for automorphisms ϕ,ϕ′ ∈ Γ (R), then
ϕ = ϕ′.Proof. It is enough to prove that the identity is the only automorphism
ϕ ∈ Γ (R) �xing the points x, y, z and the 
ir
le K. Suppose that ϕ(v) 6= vfor some v ∈ K. By Proposition 1.4 there exists exa
tly one automorphismof Γ (R) mapping x, y, v to x, y, ϕ(v) respe
tively. This automorphism is the
L-homothety with verti
es x, y mapping v to ϕ(v). This 
ontradi
ts our
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assumption ϕ(z) = z. Hen
e ϕ �xes K pointwise, and 
onsequently it is theidentity by Proposition 1.4.Theorem 3.1. Let K,L be non-tangent 
ir
les , x, x′ ∈ K\L and x 6= x′.Then:

(1) There exists exa
tly one automorphism ϕ∈ Γ (R) su
h that ϕ(x) = x′,
ϕ(K) = K, ϕ(L) = L.

(2) The automorphism ϕ is the 
omposition of two double tangen
y sym-metries SM ′,N ′ ◦ SM,N where M,N,M ′, N ′ ∈ 〈K,L〉 and SM,N 
anbe 
hosen arbitrarily.
(3) For any Mi, Ni ∈ 〈K,L〉 (Mi 6= Ni, 1 ≤ i ≤ 3) there exist M,N ∈

〈K,L〉 su
h that SM1,N1
◦ SM2,N2

◦ SM3,N3
= SM,N .Proof. (1) Let us take ϕ := SM ′,N ◦ SM,N where M = (x,K,L)◦, M ′ =

(x′,K, L)◦, N ∈ 〈K,L〉, N 6= M,M ′; then ϕ is as required in (1). Now weshow that an automorphism ϕ required in (1) is indeed unique. Let y :=
xKL, y′ := x′KL, z := yK, z′ = y′K. We obtain ϕ(y) = y′, ϕ(z) = z′ andLemma 3.1 
ompletes the proof.

(2) Let M,N be arbitrary distin
t 
ir
les of the pen
il 〈K,L〉, x′′ :=
SM,N (x), M ′ := (x′′,K, L)◦, N ′ := (x′,K, L)◦. It is easy to 
he
k that ϕ =
SM ′,N ′ ◦ SM,N .

(3) This is 
lear from (1) and (2).Corollary 3.1. Any L-homothety with verti
es p, q 
an be representedas the 
omposition ϕ := SM ′,N ◦ SM,N where M,M ′, N ∈ 〈K,L〉 and K,Lare arbitrary distin
t 
ir
les of the pen
il 〈p, q〉.4. Proje
tivities and proje
tive automorphisms. A natural ques-tion arises how to de�ne a proje
tive automorphism of a symmetri
Laguerre plane to preserve the analogy to the 
lassi
al de�nition of a pro-je
tive 
ollineation, as a map whose restri
tion to any line is a proje
tivity,i.e. a 
omposition of perspe
tivities. We propose to use double tangen
yand parallel perspe
tivities (
f. De�nitions 4.1 and 4.3). This allows us toomit the notion of a derived a�ne plane. The restri
tion of any double tan-gen
y symmetry to any non-�xed 
ir
le is a double tangen
y perspe
tivityby Proposition 1.2(3). For a �xed 
ir
le the restri
tion is a 
omposition ofdouble tangen
y and parallel perspe
tivities (
f. Theorem 4.1). Hen
e au-tomorphisms from Γ (R) should be 
alled proje
tive. The same refers to an
L-strain with respe
t to a 
ir
le sin
e its restri
tion is a parallel perspe
tiv-ity. The group Γ (R) does not 
ontain non-involutory L-strains with respe
tto 
ir
les. Indeed, any L-strain with respe
t to E is a map [x1, x2] 7→ [xτ

1, x
τ
2 ]where τ ∈ AutF R. Consequently, the proposed group of proje
tive automor-phisms is larger than Γ (R).
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A di�eren
e between Laguerre and Minkowski planes is worth pointingout here. For the latter, the only automorphism of R preserving F pointwiseis the involutory 
onjuga
y z 7→ z. Therefore, if we present a Minkowskiplane M in the form M = Σ(F,R) for a suitable ring R, then the group ofproje
tive automorphisms of M is Γ (R).Let K,L ∈ C.Definition 4.1. A map φ : K → L is 
alled a t-proje
tivity if it is a
omposition of double tangen
y and parallel perspe
tivities.Definition 4.2. The von Staudt group of the 
ir
le K is the set of allt-proje
tivities of K. It will be denoted by ΓK .Definition 4.3. An automorphism ϕ ∈ Aut(L) is 
alled proje
tive if

ϕ|K is a t-proje
tivity for any K ∈ C.Theorem 4.1. Let K ∈ C.
(1) ΓK ≈ PGL2(F).
(2) If φ ∈ ΓK is an involution, then:

(a) there exist L,M ∈ C su
h that φ = SL,M |K ,
(b) there exists N ∈ C su
h that

φ = [N
p
→ K] ◦ [K

t
→ N ].

(3) If φ ∈ ΓK is not an involution, then there exist L,M ∈ C su
h that
φ = [M

p
→ K] ◦ [L

t
→M ] ◦ [K

t
→ L].Proof. We 
an assume that K := E = P(F) sin
e a parallel perspe
tivityestablishes the isomorphism of ΓE and ΓK for any K ∈ C.

(2a) From the analyti
 des
ription presented in Theorem 2.1(a) it followsthat any produ
t [M
p
→ E]◦[L

t
→M ]◦[E

p
→ L] = [M

p
→ E]◦SL,M |L◦[E

p
→ L]is an involution of PGL2(F) for any non-tangent 
ir
les L,M . In parti
ularif E is a �xed 
ir
le of SL,M , then SL,M |E is an involution of PGL2(F)(in this 
ase the matrix of SL,M has 
oe�
ients in F). From this we obtain

ΓE ⊆ PGL2(F). Let x, x′, y, y′ ∈ E and x 6= y, x′ 6= y′. We will show thatthere exist 
ir
les L,M su
h that SL,M (x) = x′ and SL,M (y) = y′. From thisthe assertion follows sin
e any involution of PGL2(F) is determined by anytwo pairs of inter
hanging points. Suppose �rst x 6= x′ and y 6= y′. Let z beany point su
h that z 6= x, z ‖ x and write L := (x′, E, z)◦, N = (z, y, y′)◦,
z′ = x′N , M = (x,E, z′)◦, P = (z, L, z′)◦. By Proposition 1.1, the 
ir
le Pis also tangent to M . Hen
e SL,M �xes the 
ir
les E,P and SL,M (x) = x′,
SL,M (z) = z′. By Proposition 1.2(2), SL,M (N) = N , hen
e SL,M (y) = y′. Inthe 
ase y = y′ the proof is analogous, we take N := (z, E, y)◦. If additionally
x = x′, it is enough to 
onsider an arbitrary double tangen
y symmetry SE,Qwhere Q ∈ 〈x, y〉 and Q 6= E.
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(b) To dedu
e (b) from (a) we 
an use any automorphism �xing thegenerators. Let Q be the 
ir
le su
h that SQ(L) = E, by 1.3(1). We have

[SQ(M)
p
→ E] ◦ [E

t
→ SQ(M)] = SL,M |E .(1) and (3) follow from the above sin
e any element of PGL2(F) is the
omposition of two involutions.Corollary 4.1. An automorphism ϕ ∈ Aut(L) is proje
tive i� [ϕ(E)

p
→ E] ◦ ϕ|E ∈ PGL2(F).Proof. �⇒� This follows dire
tly from Theorem 4.1(1).�⇐� By Theorem 4.1(1), ϕ|E is a t-proje
tivity and we have ϕ|K =

[ϕ(E)
p
→ ϕ(K)] ◦ ϕ|E ◦ [K

p
→ E], hen
e ϕ|K is a t-proje
tivity.Theorem 4.2. Γ̃ (R) is the group of all proje
tive automorphisms of asymmetri
 Laguerre plane L.Proof. Write x1 := x11 + x12ε, x2 := x21 + x22ε, a := a1 + a2ε, . . . . By(1.1), (1.5) any automorphism ϕ ∈ M(F,R) maps

[x11 + x12ε, x21 + x22ε] 7→ [xσ
11 + λxσ

12ε, x
σ
21 + λxσ

22ε]

[

a b

c d

]

where σ ∈ Aut F, λ ∈ F∗. An easy 
omputation shows that [ϕ(E)
p
→ E]◦ϕ|Eis the map

[x11, x21] 7→ [xσ
11, x

σ
21]

[

a1 b1

c1 d1

]

.

From this and Corollary 4.1 we obtain: ϕ is proje
tive ⇔ [ϕ(E)
p
→ E]◦ϕ|E ∈

PGL2(F) ⇔ σ = id ⇔ ϕ ∈ Γ̃ (R).
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