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Summary. Let Convg(R") be the space of all non-empty closed convex sets in Euclidean
space R™ endowed with the Fell topology. We prove that Convp(R™) = R" x @ for every
n > 1 whereas Convp(R) ~ R x I.

Let Conv(X) be the set of all non-empty closed convex sets in a normed
linear space X = (X, || - ||). We can consider various topologies on Conv(X).
In [6], the AR-property of the spaces Conv(X) with the Hausdorff metric
topology, the Attouch—Wets topology, and the Wijsman topology has been
studied. In this paper, we shall consider the Fell topology on Conv(X), which
is generated by the sets of the form

U ={A€Conv(X)| ANU # 0} and
(X \E)" = {A € Conv(X) | A C X\ K},

where U is open and K is compact in X . This topology is also defined on the
set Conv*(X) = Conv(X) U {0}. By Convj(X) and Convp(X), we denote
the spaces Conv*(X) and Conv(X) equipped with the Fell topology.

In case X is finite-dimensional (equivalently locally compact), Conv g (X)
is a locally compact metrizable space and Conv}(X) is its Aleksandrov one-
point compactification. It is easy to see that Convg((0,1)) is homeomorphic
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to (=) the triangle with two vertices removed, A \ {(0,0),(1,1)}, where
A = {(z,y) € I?| = < y} C I. Since Convp(R) ~ Convy((0,1)), we have

Convp(R) ~ A\ {(0,0),(1,1)} =R x I,
hence
Convip(R) = A/{(0,0), (1, 1)} = (S' x I)/({pt} x I),
where S! is the unit circle. For n > 1, the space Convy(R") is infinite-
dimensional. Let @ = [~1,1]Y be the Hilbert cube. We prove the following
result:

MAIN THEOREM. For each n > 1, Convp(R") ~ R" x Q and

Convix(R") = (S" x Q)/({pt} x Q) = (B" x Q)/(S" ! x Q),
where B™ and S™1 are the closed unit ball and the unit sphere in R™.

REMARK 1. As studied in [6], Conv(X) has other metrizable topologies
called the Attouch—Wets topology and the Wijsman topology. However, in
case X is finite-dimensional, these are equal to the Fell topology. For the
above topologies, we refer to the book [1].

REMARK 2. The space Convy(X) with the Hausdorff metric topology
is rather complicated. Concerning the subspace CCx(X) C Convy(X) con-
sisting of non-empty compact convex sets, it is shown in [4] in case n > 1
that CCyx(R™) ~ @\ {0}. It should be remarked that CCp(R™) = CCy(R"),
which can be obtained from [9, Theorem 3|. As is observed in [6, §2],
CCy(R") is a component of Convy(R"?) (!). However, as will be seen in
Proposition 3, CCr(R™) is homotopy dense in Convg(R").

The open ball and the closed ball in R" centered at the point x € R"
with radius r > 0 are respectively denoted as follows:

B(z,r) =int(z +rB") and B(z,r)=2x+rB".

PROPOSITION 1. For every n € N, Convy(R") is compact, hence it is
the Aleksandrov one-point compactification of Convp(R™).

Proof. Since the hyperspace Cld(R™) of all closed sets in R™ with the Fell
topology is compact [1, Theorem 5.1.3|, it suffices to show that Convy(R")
is closed in Cldz(R™). For A € Cld*(R"™) \ Conv*(R"™), we have a,b € A and
¢ € {a,b) \ A, where (a,b) is the convex hull of {a,b}. Choose ¢ > 0 and
§ > 0 such that B(c,e)N A =0 and (x,y) N B(c,e) # 0 if ||z — a|]| < § and
lly — b|| < 4. Then

(R"\ B(c,£))* N B(a,8)~ N B(b,5)~

is a neighborhood of A which misses Conv*(R"). u

(*) The subspace Convi (R™) C Convg(R™) consisting of all bounded closed convex
sets coincides with CCg (R"™).
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Every locally compact Hausdorff space X has the Aleksandrov one-point
compactification, which is denoted by aX = X U {oco}. Let f : X — Y
be a map between locally compact Hausdorff spaces. If f is proper, that
is, f~1(C) is compact for each compact set C C Y, then f extends to
a map f: aX — oY such that f(oo) = oo. By identifying X with the
subset of Cldp(X) consisting of singletons and oo with ), we can regard
aX C Cldp(X).

For A € Conv(R"), let p(A) be the nearest point of A from the origin
0 € R™ with respect to the Euclidean metric (cf. the proof of [5, Lemma 1.6]).

LEMMA 2. The function p : Convp(R™) — R™ is continuous and proper,
hence it extends to a map p* : Convy(R™) — aR™ with p*(0) = cc.

Proof. For each ¢ > 0, A € Conv(R"™) has the following neighborhood:
U = B(p(A),e)” N(R"\ ([p(4)]| - £)B")" N Conv(R"),
where (||p(4)|| —¢)B™ = 0 if ||p(A)|| — e < 0. Then, for every B € U,
Ip(A)[|—e < llp(B)|| < llp(A)|| +e, which implies ||p(4) —p(B)|| < e. Hence,

p is continuous at A.
For each r > 0, p~1(rB") is a closed subset of

Convy(R™) \ (R™\ rB™)" = Conv}.(R™) \ (R™\ rB™)™,
which is compact by Proposition 1. Then p~!(rB") is also compact. It follows
that p is proper. =
PROPOSITION 3. There is a homotopy h : Convi(R™) x I — Convy(R™)
such that hy = id, hy = p*, ht|aR™ = id and p*hy = p* for every t € 1,
h({0} xI) ={0} and h(Conv(R") x (0,1]) Cc CC(R").
Thus, aR™ (resp. R™) is a strong deformation retract of Convy(R™) (resp.
Convp(R™)), CC*(R™) (resp. CC(R™)) is homotopy dense in Convy(R™)
(resp. Convp(R™)) and each fiber of p* is contractible (hence p* is a CE-
map).

Proof. The desired homotopy h is defined as follows:
1—t
ht(A) = AN (p(A) +— B”) for A € Conv(R"™) and ¢ > 0.
Obviously, h satisfies the desired conditions. It remains to verify the conti-
nuity of h. Since p(hi(A)) = p(A) for all A € Conv(R") and ¢ € I,
R YR\ rB™M)T) = (R"\ rB")" xI  for r > 0,
hence h is continuous at (0, ¢).

Let A € Conv(R") and t € I. Assume that K C R" is compact and
hi(A)N K =0. When t =0, V = (R™\ K)* N Conv(R") is a neighborhood
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of A in Convp(R™) and hs(B)NK = () for all B € V and s € L. In case
t > 0, choose 0 < &€ < t/2 so that
1—-1t+4+2
KNnAn(p(4A)+ ——B" | =0.
(p( )+ t— 2 > 0

Since p is continuous, A has a neighborhood ¢/ in Conv(R") such that B € U
implies
1—-t4+2 1—-t+e¢

A)—p(B)| < )
Ip(4) — p(B)l| < ——a —
and then for s >t — ¢,
1—s 1—-t+e¢ 1—-t+2¢
B)+ ——B" B)+ ——B" A)+ —B".
p(B) + — Cp(B) + —— Cp(A)+ ——

Thus, A has the following neighborhood in Conv g (R"):
1—t+2 N
voun (R (Kn(pa) + —E2Epgn .
t—2¢
Then hy(B) N K = for every B€ V and s >t —e.

Next, assume U C R" is open and hy(A)NU # (. When t =1, p(A) € U.
By continuity of p, V = p~1(U) is a neighborhood of A in Convg(R"), and
p(B) € hs(B)NU for all B € V. In case t < 1, choose 0 < & < (1 —1t)/2
so that

t+2¢
We have a neighborhood U of A in Convp(R"™) such that B € U implies
l1-t—¢ 1-t-2¢

UmAQO®+1:iZ%ﬁ¥)#0

A) —p(B)|| <
lp(A) — p(B)] P T
and then for s <t + ¢,
1—t—2 1—t— 1-—
p(A) + B p(B) + “B" cp(B)+ — 2 B"

T+ 2¢ t+e¢
Thus, V =UNU" is a neighborhood of A in Convg(R™) and hs(B)NU # ()
forevery BeVand s<t+ec. m

A separable metrizable space M is called a Hilbert cube manifold or a
Q-manifold if each point of M has an open neighborhood which is homeo-
morphic to an open set in Q.

COROLLARY 4. For every n > 1, Convp(R") is a Q-manifold.

Proof. As observed in Remark 2, CCp(R") = CCy(R") = Q \ {0} for
every n > 1. Since CCr(R"™) is homotopy dense in Convg(R™) by Proposi-
tion 3, we can apply the Toruriczyk characterization of @-manifolds [8] to
show that Convp(R"™) is a @-manifold. =

Now, we prove the Main Theorem.
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Proof of Main Theorem. First, note that R™ x @) is a (J-manifold. Since
p is a CE-map by Proposition 3, p x id : Convp(R") x @ — R" x Q is
a near homeomorphism by the CE Approximation Theorem [2, 43.1]. By
the Stability Theorem [2, 15.1], Convy(R") x Q ~ Conv(R") (?). Then, it
follows that Convp(R™) ~ R™ x Q. Moreover, by Proposition 1, we have

Convy(R") = a(R" x Q) ~ (8" x Q)/({pt} x Q).
The proof is complete. m
The following is a direct consequence of the above proof:

COROLLARY 5. For each n € N, Convi(R™) has the unique singular
point ) and Convy(R™) has the homotopy type of S™. If m # n then neither
Convy(R™) =~ Convi(R™) nor Convp(R™) ~ Convp(R™). =
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(?) For non-compact @Q-manifolds, the book [3] is not sufficient—one should refer to
Chapman’s lecture notes [2].



