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GENERAL TOPOLOGY

The Spa
es of Closed Convex Setsin Eu
lidean Spa
es with the Fell TopologybyKatsuro SAKAI and Zhongqiang YANGPresented by Czesªaw BESSAGA
Summary. Let ConvF (Rn) be the spa
e of all non-empty 
losed 
onvex sets in Eu
lideanspa
e R

n endowed with the Fell topology. We prove that ConvF (Rn) ≈ R
n
× Q for every

n > 1 whereas ConvF (R) ≈ R × I.Let Conv(X) be the set of all non-empty 
losed 
onvex sets in a normedlinear spa
e X = (X, ‖ · ‖). We 
an 
onsider various topologies on Conv(X).In [6℄, the AR-property of the spa
es Conv(X) with the Hausdor� metri
topology, the Attou
h�Wets topology, and the Wijsman topology has beenstudied. In this paper, we shall 
onsider the Fell topology on Conv(X), whi
his generated by the sets of the form
U− = {A ∈ Conv(X) | A ∩ U 6= ∅} and

(X \ K)+ = {A ∈ Conv(X) | A ⊂ X \ K},where U is open and K is 
ompa
t in X. This topology is also de�ned on theset Conv∗(X) = Conv(X) ∪ {∅}. By Conv∗

F
(X) and ConvF (X), we denotethe spa
es Conv∗(X) and Conv(X) equipped with the Fell topology.In 
ase X is �nite-dimensional (equivalently lo
ally 
ompa
t), ConvF (X)is a lo
ally 
ompa
t metrizable spa
e and Conv∗

F
(X) is its Aleksandrov one-point 
ompa
ti�
ation. It is easy to see that ConvF ((0, 1)) is homeomorphi
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to (≈) the triangle with two verti
es removed, ∆ \ {(0, 0), (1, 1)}, where
∆ = {(x, y) ∈ I

2 | x ≤ y} ⊂ I
2. Sin
e ConvF (R) ≈ ConvF ((0, 1)), we have

ConvF (R) ≈ ∆ \ {(0, 0), (1, 1)} ≈ R × I,hen
e
Conv∗F (R) ≈ ∆/{(0, 0), (1, 1)} ≈ (S1 × I)/({pt} × I),where S

1 is the unit 
ir
le. For n > 1, the spa
e ConvF (Rn) is in�nite-dimensional. Let Q = [−1, 1]N be the Hilbert 
ube. We prove the followingresult:
Main Theorem. For ea
h n > 1, ConvF (Rn) ≈ R

n × Q and
Conv∗

F (Rn) ≈ (Sn × Q)/({pt} × Q) ≈ (Bn × Q)/(Sn−1 × Q),where B
n and S

n−1 are the 
losed unit ball and the unit sphere in R
n.Remark 1. As studied in [6℄, Conv(X) has other metrizable topologies
alled the Attou
h�Wets topology and the Wijsman topology. However, in
ase X is �nite-dimensional, these are equal to the Fell topology. For theabove topologies, we refer to the book [1℄.Remark 2. The spa
e ConvH(X) with the Hausdor� metri
 topologyis rather 
ompli
ated. Con
erning the subspa
e CCH(X) ⊂ ConvH(X) 
on-sisting of non-empty 
ompa
t 
onvex sets, it is shown in [4℄ in 
ase n > 1that CCH(Rn) ≈ Q\{0}. It should be remarked that CCF (Rn) = CCH(Rn),whi
h 
an be obtained from [9, Theorem 3℄. As is observed in [6, �2℄,

CCH(Rn) is a 
omponent of ConvH(Rn) (1). However, as will be seen inProposition 3, CCF (Rn) is homotopy dense in ConvF (Rn).The open ball and the 
losed ball in R
n 
entered at the point x ∈ R

nwith radius r > 0 are respe
tively denoted as follows:
B(x, r) = int(x + rBn) and B(x, r) = x + rBn.Proposition 1. For every n ∈ N, Conv∗

F
(Rn) is 
ompa
t , hen
e it isthe Aleksandrov one-point 
ompa
ti�
ation of ConvF (Rn).Proof. Sin
e the hyperspa
e Cld∗

F (Rn) of all 
losed sets in R
n with the Felltopology is 
ompa
t [1, Theorem 5.1.3℄, it su�
es to show that Conv∗

F
(Rn)is 
losed in Cld∗

F (Rn). For A ∈ Cld∗(Rn) \Conv∗(Rn), we have a, b ∈ A and
c ∈ 〈a, b〉 \ A, where 〈a, b〉 is the 
onvex hull of {a, b}. Choose ε > 0 and
δ > 0 su
h that B(c, ε) ∩ A = ∅ and 〈x, y〉 ∩ B(c, ε) 6= ∅ if ‖x − a‖ < δ and
‖y − b‖ < δ. Then

(Rn \ B(c, ε))+ ∩ B(a, δ)− ∩ B(b, δ)−is a neighborhood of A whi
h misses Conv∗(Rn).
(1) The subspa
e ConvB

H(Rn) ⊂ ConvH(Rn) 
onsisting of all bounded 
losed 
onvexsets 
oin
ides with CCH(Rn).
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Every lo
ally 
ompa
t Hausdor� spa
e X has the Aleksandrov one-point
ompa
ti�
ation, whi
h is denoted by αX = X ∪ {∞}. Let f : X → Ybe a map between lo
ally 
ompa
t Hausdor� spa
es. If f is proper, thatis, f−1(C) is 
ompa
t for ea
h 
ompa
t set C ⊂ Y , then f extends toa map f̃ : αX → αY su
h that f̃(∞) = ∞. By identifying X with thesubset of CldF (X) 
onsisting of singletons and ∞ with ∅, we 
an regard

αX ⊂ Cld∗

F (X).For A ∈ Conv(Rn), let p(A) be the nearest point of A from the origin
0 ∈ R

n with respe
t to the Eu
lidean metri
 (
f. the proof of [5, Lemma 1.6℄).Lemma 2. The fun
tion p : ConvF (Rn) → R
n is 
ontinuous and proper ,hen
e it extends to a map p∗ : Conv∗

F
(Rn) → αR

n with p∗(∅) = ∞.Proof. For ea
h ε > 0, A ∈ Conv(Rn) has the following neighborhood:
U = B(p(A), ε)− ∩ (Rn \ (‖p(A)‖ − ε)Bn)+ ∩ Conv(Rn),where (‖p(A)‖ − ε)Bn = ∅ if ‖p(A)‖ − ε < 0. Then, for every B ∈ U ,

‖p(A)‖−ε < ‖p(B)‖ < ‖p(A)‖+ε, whi
h implies ‖p(A)−p(B)‖ < ε. Hen
e,
p is 
ontinuous at A.For ea
h r > 0, p−1(rBn) is a 
losed subset of

ConvF (Rn) \ (Rn \ rBn)+ = Conv∗

F (Rn) \ (Rn \ rBn)+,whi
h is 
ompa
t by Proposition 1. Then p−1(rBn) is also 
ompa
t. It followsthat p is proper.Proposition 3. There is a homotopy h : Conv∗

F
(Rn)× I → Conv∗

F
(Rn)su
h that h0 = id, h1 = p∗, ht|αR

n = id and p∗ht = p∗ for every t ∈ I,
h({∅} × I) = {∅} and h(Conv(Rn) × (0, 1]) ⊂ CC(Rn).Thus, αR
n (resp. R

n) is a strong deformation retra
t of Conv∗

F
(Rn) (resp.

ConvF (Rn)), CC∗(Rn) (resp. CC(Rn)) is homotopy dense in Conv∗

F
(Rn)(resp. ConvF (Rn)) and ea
h �ber of p∗ is 
ontra
tible (hen
e p∗ is a CE-map).Proof. The desired homotopy h is de�ned as follows:

h0 = id, h({∅} × I) = {∅},

ht(A) = A ∩

(
p(A) +

1 − t

t
B

n

) for A ∈ Conv(Rn) and t > 0.Obviously, h satis�es the desired 
onditions. It remains to verify the 
onti-nuity of h. Sin
e p(ht(A)) = p(A) for all A ∈ Conv(Rn) and t ∈ I,
h−1((Rn \ rBn)+) = (Rn \ rBn)+ × I for r > 0,hen
e h is 
ontinuous at (∅, t).Let A ∈ Conv(Rn) and t ∈ I. Assume that K ⊂ R

n is 
ompa
t and
ht(A) ∩ K = ∅. When t = 0, V = (Rn \ K)+ ∩ Conv(Rn) is a neighborhood
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of A in ConvF (Rn) and hs(B) ∩ K = ∅ for all B ∈ V and s ∈ I. In 
ase
t > 0, 
hoose 0 < ε < t/2 so that

K ∩ A ∩

(
p(A) +

1 − t + 2ε

t − 2ε
B

n

)
= ∅.Sin
e p is 
ontinuous, A has a neighborhood U in Conv(Rn) su
h that B ∈ Uimplies

‖p(A) − p(B)‖ <
1 − t + 2ε

t − 2ε
−

1 − t + ε

t − ε
,and then for s > t − ε,

p(B) +
1 − s

s
B

n ⊂ p(B) +
1 − t + ε

t − ε
B

n ⊂ p(A) +
1 − t + 2ε

t − 2ε
B

n.Thus, A has the following neighborhood in ConvF (Rn):
V = U ∩

(
R

n \

(
K ∩

(
p(A) +

1 − t + 2ε

t − 2ε
B

n−1

)))+

.Then hs(B) ∩ K = ∅ for every B ∈ V and s > t − ε.Next, assume U ⊂ R
n is open and ht(A)∩U 6= ∅. When t = 1, p(A) ∈ U .By 
ontinuity of p, V = p−1(U) is a neighborhood of A in ConvF (Rn), and

p(B) ∈ hs(B) ∩ U for all B ∈ V. In 
ase t < 1, 
hoose 0 < ε < (1 − t)/2so that
U ∩ A ∩

(
p(A) +

1 − t − 2ε

t + 2ε
B

n

)
6= ∅.We have a neighborhood U of A in ConvF (Rn) su
h that B ∈ U implies

‖p(A) − p(B)‖ <
1 − t − ε

t + ε
−

1 − t − 2ε

t + 2ε
,and then for s < t + ε,

p(A) +
1 − t − 2ε

t + 2ε
B

n ⊂ p(B) +
1 − t − ε

t + ε
B

n ⊂ p(B) +
1 − s

s
B

n.Thus, V = U ∩U− is a neighborhood of A in ConvF (Rn) and hs(B)∩U 6= ∅for every B ∈ V and s < t + ε.A separable metrizable spa
e M is 
alled a Hilbert 
ube manifold or a
Q-manifold if ea
h point of M has an open neighborhood whi
h is homeo-morphi
 to an open set in Q.Corollary 4. For every n > 1, ConvF (Rn) is a Q-manifold.Proof. As observed in Remark 2, CCF (Rn) = CCV (Rn) ≈ Q \ {0} forevery n > 1. Sin
e CCF (Rn) is homotopy dense in ConvF (Rn) by Proposi-tion 3, we 
an apply the Toru«
zyk 
hara
terization of Q-manifolds [8℄ toshow that ConvF (Rn) is a Q-manifold.Now, we prove the Main Theorem.
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Proof of Main Theorem. First, note that R

n × Q is a Q-manifold. Sin
e
p is a CE-map by Proposition 3, p × id : ConvF (Rn) × Q → R

n × Q isa near homeomorphism by the CE Approximation Theorem [2, 43.1℄. Bythe Stability Theorem [2, 15.1℄, ConvF (Rn) ×Q ≈ ConvF (Rn) (2). Then, itfollows that ConvF (Rn) ≈ R
n × Q. Moreover, by Proposition 1, we have

Conv∗

F (Rn) ≈ α(Rn × Q) ≈ (Sn × Q)/({pt} × Q).The proof is 
omplete.The following is a dire
t 
onsequen
e of the above proof:Corollary 5. For ea
h n ∈ N, Conv∗

F
(Rn) has the unique singularpoint ∅ and Conv∗

F
(Rn) has the homotopy type of S

n. If m 6= n then neither
Conv∗

F
(Rn) ≈ Conv∗

F
(Rm) nor ConvF (Rn) ≈ ConvF (Rm).
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(2) For non-
ompa
t Q-manifolds, the book [3℄ is not su�
ient�one should refer toChapman's le
ture notes [2℄.


