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Summary. The category Top of topological spaces and continuous maps has the struc-
tures of a fibration category and a cofibration category in the sense of Baues, where fibra-
tion = Hurewicz fibration, cofibration = the usual cofibration, and weak equivalence =
homotopy equivalence. Concentrating on fibrations, we consider the problem: given a full
subcategory C of Top, is the fibration structure of Top restricted to C a fibration category?
In this paper we take the special case where C is the full subcategory ANR of Top whose
objects are absolute neighborhood retracts. The main result is that ANR has the structure
of a fibration category if fibration = map having a property that is slightly stronger than
the usual homotopy lifting property, and weak equivalence = homotopy equivalence.

1. Introduction. The best known approach to axiomatic homotopy the-
ory is Quillen’s model category [3]. Baues [1]| introduced the notions of a
fibration category and a cofibration category. Those notions make the con-
structions of homotopy theory available in more contexts by simply weaken-
ing the assumptions and concentrating on either fibrations or cofibrations.

The category Top of topological spaces and continuous maps is the best
known example of a fibration category and a cofibration category. Typical
structures of the fibration category and the cofibration category consist of
Hurewicz fibrations, the usual cofibrations, and homotopy equivalences (see
[1, Theorem 5.1, p. 34; Theorem 5.2, p. 35|, for example).

Concentrating on the structure of a fibration category for Top, we con-
sider the following problem: given a full subcategory C of Top, is the fibration
structure of Top restricted to C a fibration category?
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We observe that if C is a full subcategory of Top which has the following
properties: (i) X, Y € C = X xY €C; (ii) X € C = X! € C; (iii) X € C, and
A C X is closed = A € C, then the fibration structure of Top restricted to C
is a fibration category. Here, I = [0, 1]. For example, the full subcategory M
of Top whose objects are metric spaces satisfies those properties.

In this paper we take the special case where C is the full subcategory ANR
of Top whose objects are absolute neighborhood retracts (ANR’s). ANR’s are
useful in many areas of topology. For example, shape theory is in some sense
an extension of the usual homotopy theory restricted to ANR [2]. Thus it
is a natural question whether the restriction to ANR has the structure of a
fibration category.

We observe that ANR fails to have property (iii), so it is not automatic
that the restriction of the fibration structure on Top to ANR is a fibration
category. In this paper we show that it becomes a fibration category if we
take for fibrations maps having a property that is slightly stronger than the
usual homotopy lifting property.

A map p : E — B is said to have the strong homotopy lifting property
(SHLP) with respect to a space X providedifh: X — Fand H: XxI — B
are maps such that

ph = H07
there is a map H : X x I — E such that
h=Hy, pH=H,

and whenever H is constant on x x I, H is constant on x x I.

E<—hX><0

¥\ ~
pl \}\I lC
B<—H X x1I

If a Hurewicz fibration has the unique path lifting property, it has the SHLP
with respect to every space (see [4, Theorem 5, p. 68]).
The following are the main results of the paper:

THEOREM A. ANR is a fibration category if fibration = map having the
SHLP with respect to every space, and weak equivalence = homotopy equiv-
alence.

THEOREM B. The full subcategory M of Top whose objects are metric
spaces is a fibration category if fibration = map having the SHLP with respect
to every space, and weak equivalence = homotopy equivalence.

A fibration category is a category F with the structure (F, fib, we) which
satisfies axioms (F1)—(F4) below. Here fib and we are classes of morphisms,
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called fibrations and weak equivalences, respectively. For more details, the
reader is referred to [1].

(F1) Composition aziom. The isomorphisms in F are weak equivalences
and fibrations. For any morphisms f: X — Y and ¢g:Y — Z, if
any two of f, g, and gf are weak equivalences, so is the third. The

composition of fibrations is a fibration.

(F2) Pull-back aziom. For any 2-sink B 9y L X in F with f being a

fibration, there is a pull-back diagram in F

r—2-x

1]
B>y
Where_f is a fibration. Moreover, if f (resp., g) is a weak equivalence,
so is f (resp., g).
(F3) Factorization aziom. Each morphism f : X — Y admits a factor-

ization

X—f>Y

| A

A

where g is a weak equivalence and h is a fibration.

(F4) Aziom on cofibrant models. Each object X in F admits a trivial
fibration (i.e., a morphism which is both a fibration and a weak
equivalence) RX — X where RX is a cofibrant in F. An object R
is a cofibrant if each trivial fibration f : () — R admits a morphism
s: R — @ such that fs = 1p.

A cofibration category is a category F with the structure (F, cof, we),
where cof and we are classes of morphisms in F, called cofibrations and weak
equivalences, respectively, and it satisfies the condition that the opposite
category C = F°P is a fibration category, where the structure of C is given by

e f°P is a fibration in C iff f is a cofibration in F,
e f°P is a weak equivalence in C iff f is a weak equivalence in F.

Throughout the paper, space means topological space, and map means
continuous map.

For any space X with a metric d, for any € > 0, and for any = € X, let
B.(x) ={y € X : d(x,y) < €}. For any open covering V of a space Y, two
points y, 3 of Y are V-near, denoted (y,y’) <V, provided y,y" € V for some
V €V, and two maps f,g: X — Y are V-near, denoted (f,g) < V, provided
f(z) and g(x) are V-near for each z € X. For any open covering U of a space
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X and for any subset A of X, let st(A,U) = J{U e U : UN A # 0}, and
let stU be the open covering {st(U,U) : U € U} of X. For any coverings U
and V of a space X, U is a refinement of V, denoted U < V, provided for
each U € U there exists V € V such that U C V.

Let X be a space with a metric d. For any path « : I — X, the diameter
|| of v is defined as the diameter of the image of «, i.e.,

|| = sup{d(a(t),a(t)) : t,t' € I}.

Then the function X! — Rxg : a + |/ is continuous, and |a| = 0 iff a is a
constant path.

2. Proof of Theorem A

THEOREM 2.1. Every map f : A — B between ANR’s is the composition
of a homotopy equivalence q : A — E and a map p : E — B having the
SHLP with respect to every space, where E is an ANR.

Proof. Let B be embedded in a convex subset K of a normed linear
space. Then there exist an open neighborhood N of B in K and a retraction
r: N — B. Let W be the set of open balls W in K such that W C N, and
let V={WnNB: W W} Set E={(z,w) € Ax B':(f(z),w(0)) < V}.
Note that E is an ANR since it is an open subset of the ANR A x B!. Define
amap o: F — Bl by

o(z, w)(t) = r((1 — 1) f(z) + tw(0)).

Then for each (z,w) € E, o(x,w) is a path from f(z) to w(0) in B. The
map f factors into the composition of ¢ : A — F and p : E — B defined by
q(v) = (z,ef(y)) for v € X and p(z,w) = w(1) for (z,w) € E, respectively.
Here for any yo € B, ey, denotes the constant map I — B : ey, (t) = yo.

Now, ¢ is a homotopy equivalence. Indeed, if p4 : E — A is the restriction
of the projection map of A x B! onto A, then pag = 14, and gpa ~ 1, with
the homotopy H : E x I — F,

($, eg(w,w)(Qt))’ 0<t< 1/25

H(@,w),t) = { (t,w_1),  1/2<t<L.

Here, for each t € I, the path wy : I — B is defined by wi(s) = w(st) for
sel.

It remains to show that p has the SHLP with respect to every space X.
Suppose that we are given a commutative diagram

E<~2"Xx0

AN
pl ) lg
N
@ N

B=—Xx1
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Write () = (¢1(x), p2(x)) € A x B!. Then the diagram can be completed
by the map ¥ : X x I — E, U(x,t) = (¥1(z,t),%(x,t)) € A x B!, defined
as follows. Let ¥ (z,t) = p1(x). For each (z,t) € X x I with |pa(x)| # 0 or
Bu(x)] # 0, set

u(x,t) _ |§02($)‘ V(m‘,t) _ ’ét(‘r”

 lea(@) + [@e()]  lea(@)] + [@e(2)]
Here, for each (z,t) € X x I, &;(x) € B! is defined by

&y(x)(u) = &(x,tu) for u € I.

Then for each (z,t) € X x I, define the path Wy(z,t) by setting, for each

u€l,
@ ()

(0 <u < p(z,1))

if [2(x)| # 0 and [P¢(z)] # 0,

Wo(a,t)(u) = { &y(2) (%@;t))
(w(z,t) <u<1)

Dy(x)(u

if [p2(2)| = 0 and |P¢(z)| # 0,
if @y (z)| = 0.

pa(z)(u

If @ is constant on x x I, then |®;(x)| = 0 for ¢t € I, so by the definition, ¥ is
constant on x X I. It remains to show that ¥ is continuous. Fix (z,t) € X x I,
and let £ > 0. Take £ > 0 with 0 < £ < min{1,e} such that if |u — /| < ¢
(u,u’ € I), then

(2.1) d(pa(2)(u), p2(z)(u')) < €/3,
(2.2) A(Py () (), Py(z) () < /3.

Also take d; > 0 such that if d(z,2") < d; (2’ € X) and |t —t/| < 01 (¥ € I),
then

(2.3) d(ip2(@), p2(2")) <e/3,
(2.4) d(®¢(x), Py (2')) < /3.
Choose ¢ > 0 with the following properties:
(2.5) & <¢&/2,

, 1 v(z,t)
(26) &< émln{

pu(z,t)?

3 } if |p2(x)| # 0 and |P:(z)| # 0.

1
p(x,t)
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In turn, choose £’ > 0 with the following properties:

2.7 ¢¢<¢,
28) ¢ <22@o 00 20,

4
(29 ¢'< Wg’ if |@(x)| # 0,
p_ S le@)? L 12@)?
(2.10) ¢" < m1n{4’¢t(x)| g, e 13 } if |p2(z)| # 0 and |Py(z)| # 0.

Note that the functions X — R>q : 2 +— |p2(z)| and X x I — R>¢ : (z,t) —
|®,(x)| are continuous. So, there is d2 > 0 such that if d(x,z’) < d2 (' € X)
and |t —t'| < d2 (t' € I), then

(2.11) | pa(@)] = l2(2))]| < €,
(2.12) [ |@4(2)] = v (2)]] < £

Using (2.7)-(2.12), we find that whenever d(z,z’) < d2 (' € X) and [t—t'| <
) (t, € I), then

1 1 PR

(213) o | <€ el 2o
1 1 ;o

(2.14) oD @) < g if [@y(x)] # 0.

Let 6 = min{dy, d2}, and suppose that (z/,t') € X x [ satisfies d(x,2’) < §
and |t —t'| < §. We wish to show

(2.15) d(W(z,t)(u), ¥a(z’,t')(u)) <& for any u € I.

CASE 1: |pa(x)| # 0 and |@(z)| # 0. Without loss of generality, we can
assume |pa(z’)] # 0 and |Py(2')] # 0

(1) 160 < u < (@', t') < () or 0 < u < p(x,t) < p(a',¢), then by
(2.1), (2.3) and (2.13),

(0 () ) ()
) ()

: d<@2(x)<u(

r (e (i ) 2 (1)) <=

—

SRS
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)o@ ()
< a(20) (S HED). 0,0)0)) 4 (20000, 200 (i ) )
+ 4 () 220 () ) <
(4) If p(a',t') < p(z,t) <u < 1or p(z,t) < p@,t') <u <1, then by
(2.2), (2.4), (2.6), (2.13), and (2.14),

CASE 2: |p2(x)| = 0 and |@:(z)| # 0.
(1) If 0 < w < p(a’, '), then by (2.4), (2.9), (2.11), and (2.12),

d(dﬂt(m)(u)v p2(a') (ﬁ»

< d(Dy(x)(u), Po(2)(0) + d(P1()(0), Dy (2)(0))

+ d<302(x')(1),<p2(:n')<u(;7 5 > <e.
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(2) If p(a’,t') < u < 1, then by (2.2), (2.4), (2.9), (2.11), and (2.12),

d(dﬁt(x)(’u)@t'(m )<u V(Z’(,xt )t )>>
< d<@t($)(u)7(pt( )<u ,,(/;(,t/) /)>>

Fa(o (S5 e () ) <

CASE 3: |pa(z)| # 0 and |®¢(z)| = 0.

(1) If 0 < u < p(2/,t'), then by (2.1), and (2.13),

(23)
(e 2) (7)) = 420 o >(

o i) = G

(2) If pu(2',t') < u <1, then by (2.1), (2.3) (2.8), (2.11), a

);
d(g@z(iﬂ)(u)a@t'( )<u v M(x’)t )>>

(2’
< d(spa(@)(u), p2(2)(1)) + d(e2(z)(1), p2(2)(1))

(s (D) <

CASE 4: |pa(x)| = 0 and |P(z)| =
(1) If 0 < w < p(a’,t"), then by (2.3),

(10020 (7))
< d< ) o ())<=

(2) If pu(2',t") < u <1, then by (2.4) and (2.12),

a(2(@)(0), 20 () (2N < 4y 2)(1), 0 (0') (1))
( (%

+ d<¢t/(m’)(1),¢t/(x’)<%>> <c. m

THEOREM 2.2. For any pull-back diagram

x-2-a

|

Y —B
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if p has the SHLP with respect to every space, and if A, B, andY are ANR’s,
then X is an ANR.

Proof. Suppose that f : C — X is a map from a closed subset C' of a
space Z into X. We wish to show that f has an extension over some open
neighborhood U of C.

Let V be an open covering of B so that any two V-near maps ¢, : W —
B admit a homotopy H : W x I — B which connects them and is constant
on z x I whenever p(z) = (), and let V' be an open covering of B such that
stV < V. Since A and Y are ANR’s, the maps gf : C — Aandpf :C — Y
extend to maps f; : U — A and f) : U — Y for some open neighbor-
hood U’ of C. Let U = f; 'p™ V' A f g™V, and let U = st(C,U). If
fi: U — Aand fo : U — Y are the restrictions of f| and f}, respec-
tively, then (pfi,gf2) < V. Indeed, for each x € U, there exist ¢ € C' and
Vi,Va € V' such that both x and ¢ belong to f{ 'p~'(Vi) A f5 lg ' (Va).
Then pfi(c) = gfa(c) € VinVa # 0, pfi(z) € Vi, and gfa(z) € Va,
which implies that pfi(z),gf2(x) € Vi U Ve C V for some V € V as re-
quired. By the choice of V, pfi >~ gfs. Since p has the SHLP, there is a map

1+ U — Asuch that f{" ~ fi, pf{ = gfo, and f{(z) = fi(z) whenever
pfi(x) = gfa(x) for x € U. The maps fi’ and f; define amap f: U — X
such that Gf = f/ and 5f = fo. Moreover, if z € C, then pfy(z) = gfo(z),
so f{'(z) = fi(x), and hence f is an extension of f. This proves that X is
an ANR. =

THEOREM 2.3. For each 2-sink Y % B & A in ANR with f having the
SHLP with respect to every space, there is a pull-back diagram

x-2-4

pl l”
y—2-p

in ANR with p having the SHLP with respect to every space. Moreover, if p
(resp., g) is a homotopy equivalence, so is D (resp., g).

Proof. The existence of the pull-back diagram follows from Theorem 2.2.
That p has the SHLP with respect to every space easily follows. The second
assertion follows from the case of Top. =

THEOREM A. ANR is a fibration category if fibration = map having the
SHLP with respect to every space, and weak equivalence = homotopy equiv-
alence.

Proof. (F2) and (F3) follow from Theorems 2.3 and 2.2, respectively.
(F1) and (F4) follow from those properties for Top. m
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3. Proof of Theorem B

THEOREM 3.1. Every map f : A — B between metric spaces is the
composition of a homotopy equivalence ¢ : A — FE and a mapp : E — B
having the SHLP with respect to every space, where E is some metric space.

Proof. Let E = {(z,w) € Ax B! : f(x) = w(0)}. Then E is a metric
space. The map f factors into the composition of : A - Fandp: £ — B
which are defined as in the proof of Theorem 2.1. Then ¢ is a homotopy
equivalence. Indeed, if p4 : E — A is the restriction of the projection map
of A x B onto A, then pap = 14, and ppa ~ 1g with the homotopy
H:ExI—FE, H{(z,w),t) = (x,w;). That p has the SHLP with respect to
any space X is proven similarly to Theorem 2.1. =

THEOREM B. The full subcategory M of Top whose objects are metric
spaces is a fibration category if fibration = map having the SHLP with respect
to every space, and weak equivalence = homotopy equivalence.

Proof. (F2) easily follows, and (F3) follows from Theorem 3.1. (F1) and
(F4) follow from those properties for Top. m

REMARK. We observe that the Eckmann—Hilton duality breaks down
when taking subcategories. Top has the structures of a fibration category
and a cofibration category, but the restriction of the cofibration structure to
M is not a cofibration category, while the restriction of the fibration structure
to M is a fibration category.
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