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Fibrations in the Categoryof Absolute Neighborhood Retra
tsbyTakahisa MIYATAPresented by Czesªaw BESSAGA
Summary. The 
ategory Top of topologi
al spa
es and 
ontinuous maps has the stru
-tures of a �bration 
ategory and a 
o�bration 
ategory in the sense of Baues, where �bra-tion = Hurewi
z �bration, 
o�bration = the usual 
o�bration, and weak equivalen
e =homotopy equivalen
e. Con
entrating on �brations, we 
onsider the problem: given a fullsub
ategory C of Top, is the �bration stru
ture of Top restri
ted to C a �bration 
ategory?In this paper we take the spe
ial 
ase where C is the full sub
ategory ANR of Top whoseobje
ts are absolute neighborhood retra
ts. The main result is that ANR has the stru
tureof a �bration 
ategory if �bration = map having a property that is slightly stronger thanthe usual homotopy lifting property, and weak equivalen
e = homotopy equivalen
e.

1. Introdu
tion. The best known approa
h to axiomati
 homotopy the-ory is Quillen's model 
ategory [3℄. Baues [1℄ introdu
ed the notions of a�bration 
ategory and a 
o�bration 
ategory. Those notions make the 
on-stru
tions of homotopy theory available in more 
ontexts by simply weaken-ing the assumptions and 
on
entrating on either �brations or 
o�brations.The 
ategory Top of topologi
al spa
es and 
ontinuous maps is the bestknown example of a �bration 
ategory and a 
o�bration 
ategory. Typi
alstru
tures of the �bration 
ategory and the 
o�bration 
ategory 
onsist ofHurewi
z �brations, the usual 
o�brations, and homotopy equivalen
es (see[1, Theorem 5.1, p. 34; Theorem 5.2, p. 35℄, for example).Con
entrating on the stru
ture of a �bration 
ategory for Top, we 
on-sider the following problem: given a full sub
ategory C of Top, is the �brationstru
ture of Top restri
ted to C a �bration 
ategory?2000 Mathemati
s Subje
t Classi�
ation: 54C55, 55U35, 55P30.Key words and phrases: ANR, �bration 
ategory, strong homotopy lifting property.[145℄ 
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146 T. Miyata
We observe that if C is a full sub
ategory of Top whi
h has the followingproperties: (i) X,Y ∈ C ⇒ X×Y ∈ C; (ii) X ∈ C ⇒ XI ∈ C; (iii) X ∈ C, and

A ⊆ X is 
losed ⇒ A ∈ C, then the �bration stru
ture of Top restri
ted to Cis a �bration 
ategory. Here, I = [0, 1]. For example, the full sub
ategory Mof Top whose obje
ts are metri
 spa
es satis�es those properties.In this paper we take the spe
ial 
ase where C is the full sub
ategory ANRof Top whose obje
ts are absolute neighborhood retra
ts (ANR's). ANR's areuseful in many areas of topology. For example, shape theory is in some sensean extension of the usual homotopy theory restri
ted to ANR [2℄. Thus itis a natural question whether the restri
tion to ANR has the stru
ture of a�bration 
ategory.We observe that ANR fails to have property (iii), so it is not automati
that the restri
tion of the �bration stru
ture on Top to ANR is a �bration
ategory. In this paper we show that it be
omes a �bration 
ategory if wetake for �brations maps having a property that is slightly stronger than theusual homotopy lifting property.A map p : E → B is said to have the strong homotopy lifting property(SHLP) with respe
t to a spa
e X provided if h : X → E and H : X×I → Bare maps su
h that
ph = H0,there is a map H̃ : X × I → E su
h that

h = H̃0, pH̃ = H,and whenever H is 
onstant on x× I, H̃ is 
onstant on x× I.
E

p

��

X × 0
hoo

⊆

��
B X × I

Hoo

H̃

bbF
F

F
F

F

If a Hurewi
z �bration has the unique path lifting property, it has the SHLPwith respe
t to every spa
e (see [4, Theorem 5, p. 68℄).The following are the main results of the paper:
Theorem A. ANR is a �bration 
ategory if �bration = map having theSHLP with respe
t to every spa
e, and weak equivalen
e = homotopy equiv-alen
e.
Theorem B. The full sub
ategory M of Top whose obje
ts are metri
spa
es is a �bration 
ategory if �bration = map having the SHLP with respe
tto every spa
e, and weak equivalen
e = homotopy equivalen
e.A �bration 
ategory is a 
ategory F with the stru
ture (F , �b, we) whi
hsatis�es axioms (F1)�(F4) below. Here �b and we are 
lasses of morphisms,
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alled �brations and weak equivalen
es, respe
tively. For more details, thereader is referred to [1℄.(F1) Composition axiom. The isomorphisms in F are weak equivalen
esand �brations. For any morphisms f : X → Y and g : Y → Z, ifany two of f , g, and gf are weak equivalen
es, so is the third. The
omposition of �brations is a �bration.(F2) Pull-ba
k axiom. For any 2-sink B g

→ Y
f
← X in F with f being a�bration, there is a pull-ba
k diagram in F

E

f̄

��

g // X

f

��
B

g // Ywhere f is a �bration. Moreover, if f (resp., g) is a weak equivalen
e,so is f (resp., g).(F3) Fa
torization axiom. Ea
h morphism f : X → Y admits a fa
tor-ization
X

f //

g

��

Y

A

h

>>
}}}}}}}where g is a weak equivalen
e and h is a �bration.(F4) Axiom on 
o�brant models. Ea
h obje
t X in F admits a trivial�bration (i.e., a morphism whi
h is both a �bration and a weakequivalen
e) RX → X where RX is a 
o�brant in F . An obje
t Ris a 
o�brant if ea
h trivial �bration f : Q→ R admits a morphism

s : R→ Q su
h that fs = 1R.A 
o�bration 
ategory is a 
ategory F with the stru
ture (F , 
of, we),where 
of and we are 
lasses of morphisms in F , 
alled 
o�brations and weakequivalen
es, respe
tively, and it satis�es the 
ondition that the opposite
ategory C = Fop is a �bration 
ategory, where the stru
ture of C is given by
• fop is a �bration in C i� f is a 
o�bration in F ,
• fop is a weak equivalen
e in C i� f is a weak equivalen
e in F .Throughout the paper, spa
e means topologi
al spa
e, and map means
ontinuous map.For any spa
e X with a metri
 d, for any ε > 0, and for any x ∈ X, let

Bε(x) = {y ∈ X : d(x, y) < ε}. For any open 
overing V of a spa
e Y , twopoints y, y′ of Y are V-near, denoted (y, y′) < V, provided y, y′ ∈ V for some
V ∈ V, and two maps f, g : X → Y are V-near, denoted (f, g) < V, provided
f(x) and g(x) are V-near for ea
h x ∈ X. For any open 
overing U of a spa
e
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X and for any subset A of X, let st(A,U) =

⋃

{U ∈ U : U ∩ A 6= ∅}, andlet stU be the open 
overing {st(U,U) : U ∈ U} of X. For any 
overings Uand V of a spa
e X, U is a re�nement of V, denoted U < V, provided forea
h U ∈ U there exists V ∈ V su
h that U ⊆ V .Let X be a spa
e with a metri
 d. For any path α : I → X, the diameter
|α| of α is de�ned as the diameter of the image of α, i.e.,

|α| = sup{d(α(t), α(t′)) : t, t′ ∈ I}.Then the fun
tion XI → R≥0 : α 7→ |α| is 
ontinuous, and |α| = 0 i� α is a
onstant path.2. Proof of Theorem ATheorem 2.1. Every map f : A→ B between ANR's is the 
ompositionof a homotopy equivalen
e q : A → E and a map p : E → B having theSHLP with respe
t to every spa
e, where E is an ANR.Proof. Let B be embedded in a 
onvex subset K of a normed linearspa
e. Then there exist an open neighborhood N of B in K and a retra
tion
r : N → B. Let W be the set of open balls W in K su
h that W ⊆ N , andlet V = {W ∩ B : W ∈ W}. Set E = {(x, ω) ∈ A × BI : (f(x), ω(0)) < V}.Note that E is an ANR sin
e it is an open subset of the ANR A×BI . De�nea map ̺ : E → BI by̺

(x, ω)(t) = r((1− t)f(x) + tω(0)).Then for ea
h (x, ω) ∈ E, ̺(x, ω) is a path from f(x) to ω(0) in B. Themap f fa
tors into the 
omposition of q : A→ E and p : E → B de�ned by
q(x) = (x, ef(x)) for x ∈ X and p(x, ω) = ω(1) for (x, ω) ∈ E, respe
tively.Here for any y0 ∈ B, ey0

denotes the 
onstant map I → B : ey0
(t) = y0.Now, q is a homotopy equivalen
e. Indeed, if pA : E → A is the restri
tionof the proje
tion map of A×BI onto A, then pAq = 1A, and qpA ≃ 1E , withthe homotopy H : E × I → E,

H((x, ω), t) =

{

(x, e̺(x,ω)(2t)), 0 ≤ t ≤ 1/2,

(x, ω2t−1), 1/2 ≤ t ≤ 1.Here, for ea
h t ∈ I, the path ωt : I → B is de�ned by ωt(s) = ω(st) for
s ∈ I.It remains to show that p has the SHLP with respe
t to every spa
e X.Suppose that we are given a 
ommutative diagram

E

p

��

X × 0
ϕoo

⊆

��
B X × I

Ψ

bbF
F

F
F

F
Φoo
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Write ϕ(x) = (ϕ1(x), ϕ2(x)) ∈ A×B

I . Then the diagram 
an be 
ompletedby the map Ψ : X × I → E, Ψ(x, t) = (Ψ1(x, t), Ψ2(x, t)) ∈ A × B
I , de�nedas follows. Let Ψ1(x, t) = ϕ1(x). For ea
h (x, t) ∈ X × I with |ϕ2(x)| 6= 0 or

|Φt(x)| 6= 0, set
µ(x, t) =

|ϕ2(x)|

|ϕ2(x)|+ |Φt(x)|
, ν(x, t) =

|Φt(x)|

|ϕ2(x)|+ |Φt(x)|
.Here, for ea
h (x, t) ∈ X × I, Φt(x) ∈ B

I is de�ned by
Φt(x)(u) = Φ(x, tu) for u ∈ I.Then for ea
h (x, t) ∈ X × I, de�ne the path Ψ2(x, t) by setting, for ea
h

u ∈ I,

Ψ2(x, t)(u) =































































ϕ2(x)

(

u

µ(x, t)

)

(0 ≤ u ≤ µ(x, t))

Φt(x)

(

u− µ(x, t)

ν(x, t)

)

(µ(x, t) < u ≤ 1)







































if |ϕ2(x)| 6= 0 and |Φt(x)| 6= 0,

Φt(x)(u) if |ϕ2(x)| = 0 and |Φt(x)| 6= 0,

ϕ2(x)(u) if |Φt(x)| = 0.If Φ is 
onstant on x× I, then |Φt(x)| = 0 for t ∈ I, so by the de�nition, Ψ is
onstant on x×I. It remains to show that Ψ is 
ontinuous. Fix (x, t) ∈ X×I,and let ε > 0. Take ξ > 0 with 0 < ξ < min{1, ε} su
h that if |u − u′| < ξ(u, u′ ∈ I), then
d(ϕ2(x)(u), ϕ2(x)(u

′)) < ε/3,(2.1)
d(Φt(x)(u), Φt(x)(u

′)) < ε/3.(2.2)Also take δ1 > 0 su
h that if d(x, x′) < δ1 (x′ ∈ X) and |t− t′| < δ1 (t′ ∈ I),then
d(ϕ2(x), ϕ2(x

′)) < ε/3,(2.3)
d(Φt(x), Φt′(x

′)) < ε/3.(2.4)Choose ξ′ > 0 with the following properties:
ξ′ < ξ/2,(2.5)
ξ′ <

1

8
min

{

1

µ(x, t)
ξ,
ν(x, t)

µ(x, t)2
ξ

} if |ϕ2(x)| 6= 0 and |Φt(x)| 6= 0.(2.6)
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In turn, 
hoose ξ′′ > 0 with the following properties:

ξ′′ < ξ′,(2.7)
ξ′′ <

|ϕ2(x)|

4
ξ′ if |ϕ2(x)| 6= 0,(2.8)

ξ′′ <
|Φt(x)|

4
ξ′ if |Φt(x)| 6= 0,(2.9)

ξ′′ < min

{

|ϕ2(x)|
2

4|Φt(x)|
ξ′,
|Φt(x)|

2

4|ϕ2(x)|
ξ′

} if |ϕ2(x)| 6= 0 and |Φt(x)| 6= 0.(2.10)Note that the fun
tions X → R≥0 : x 7→ |ϕ2(x)| and X× I → R≥0 : (x, t) 7→
|Φt(x)| are 
ontinuous. So, there is δ2 > 0 su
h that if d(x, x′) < δ2 (x′ ∈ X)and |t− t′| < δ2 (t′ ∈ I), then

| |ϕ2(x)| − |ϕ2(x
′)| | < ξ′′,(2.11)

| |Φt(x)| − |Φt′(x
′)| | < ξ′′.(2.12)Using (2.7)�(2.12), we �nd that whenever d(x, x′) < δ2 (x′ ∈ X) and |t−t′| <

δ2 (t′ ∈ I), then
∣

∣

∣

∣

1

µ(x, t)
−

1

µ(x′, t′)

∣

∣

∣

∣

< ξ′ if |ϕ2(x)| 6= 0,(2.13)
∣

∣

∣

∣

1

ν(x, t)
−

1

ν(x′, t′)

∣

∣

∣

∣

< ξ′ if |Φt(x)| 6= 0.(2.14)Let δ = min{δ1, δ2}, and suppose that (x′, t′) ∈ X × I satis�es d(x, x′) < δand |t− t′| < δ. We wish to show(2.15) d(Ψ2(x, t)(u), Ψ2(x
′, t′)(u)) < ε for any u ∈ I.

Case 1: |ϕ2(x)| 6= 0 and |Φt(x)| 6= 0. Without loss of generality, we 
anassume |ϕ2(x
′)| 6= 0 and |Φt′(x

′)| 6= 0.(1) If 0 ≤ u ≤ µ(x′, t′) < µ(x, t) or 0 ≤ u ≤ µ(x, t) < µ(x′, t′), then by(2.1), (2.3) and (2.13),
d

(

ϕ2(x)

(

u

µ(x, t)

)

, ϕ2(x
′)

(

u

µ(x′, t′)

))

≤ d

(

ϕ2(x)

(

u

µ(x, t)

)

, ϕ2(x)

(

u

µ(x′, t′)

))

+ d

(

ϕ2(x)

(

u

µ(x′, t′)

)

, ϕ2(x
′)

(

u

µ(x′, t′)

))

< ε.
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(2) If µ(x′, t′) < u ≤ µ(x, t), then by (2.1), (2.2), (2.4), (2.6), and (2.13),

d

(

ϕ2(x)

(

u

µ(x, t)

)

, Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

≤ d

(

ϕ2(x)

(

u

µ(x, t)

)

, ϕ2(x)(1)

)

+ d

(

Φt(x)(0), Φt(x)

(

u− µ(x′, t′)

ν(x′, t′)

))

+ d

(

Φt(x)

(

u− µ(x′, t′)

ν(x′, t′)

)

, Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

< ε.

(3) If µ(x, t) < u ≤ µ(x′, t′), then by (2.1)�(2.3), (2.6), and (2.13),
d

(

Φt(x)

(

u− µ(x, t)

ν(x, t)

)

, ϕ2(x
′)

(

u

µ(x′, t′)

))

≤ d

(

Φt(x)

(

u−µ(x, t)

ν(x, t)

)

, Φt(x)(0)

)

+d

(

ϕ2(x)(1), ϕ2(x)

(

u

µ(x′, t′)

))

+ d

(

ϕ2(x)

(

u

µ(x′, t′)

)

, ϕ2(x
′)

(

u

µ(x′, t′)

))

< ε.

(4) If µ(x′, t′) < µ(x, t) < u ≤ 1 or µ(x, t) < µ(x′, t′) < u ≤ 1, then by(2.2), (2.4), (2.6), (2.13), and (2.14),
d

(

Φt(x)

(

u− µ(x, t)

ν(x, t)

)

, Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

≤ d

(

Φt(x)

(

u− µ(x, t)

ν(x, t)

)

, Φt(x)

(

u− µ(x′, t′)

ν(x′, t′)

))

+ d

(

Φt(x)

(

u− µ(x,′ t′)

ν(x′, t′)

)

, Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

< ε.

Case 2: |ϕ2(x)| = 0 and |Φt(x)| 6= 0.(1) If 0 ≤ u ≤ µ(x′, t′), then by (2.4), (2.9), (2.11), and (2.12),
d

(

Φt(x)(u), ϕ2(x
′)

(

u

µ(x′, t′)

))

≤ d(Φt(x)(u), Φt(x)(0)) + d(Φt(x)(0), Φt′(x
′)(0))

+ d

(

ϕ2(x
′)(1), ϕ2(x

′)

(

u

µ(x′, t′)

))

< ε.
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(2) If µ(x′, t′) < u ≤ 1, then by (2.2), (2.4), (2.9), (2.11), and (2.12),

d

(

Φt(x)(u), Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

≤ d

(

Φt(x)(u), Φt(x)

(

u− µ(x′, t′)

ν(x′, t′)

))

+ d

(

Φt(x)

(

u− µ(x′, t′)

ν(x′, t′)

)

, Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

< ε.

Case 3: |ϕ2(x)| 6= 0 and |Φt(x)| = 0.(1) If 0 ≤ u ≤ µ(x′, t′), then by (2.1), (2.3) and (2.13),
d

(

ϕ2(x)(u), ϕ2(x
′)

(

u

µ(x′, t′)

))

≤ d

(

ϕ2(x)(u), ϕ2(x)

(

u

µ(x′, t′)

))

+ d

(

ϕ2(x)

(

u

µ(x′, t′)

)

, ϕ2(x
′)

(

u

µ(x′, t′)

))

< ε.(2) If µ(x′, t′) < u ≤ 1, then by (2.1), (2.3) (2.8), (2.11), and (2.12),
d

(

ϕ2(x)(u), Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

≤ d(ϕ2(x)(u), ϕ2(x)(1)) + d(ϕ2(x)(1), ϕ2(x
′)(1))

+ d

(

Φt′(x
′)(0), Φt′(x

′)

(

u− µ(x′, t′)

ν(x′, t′)

))

< ε.

Case 4: |ϕ2(x)| = 0 and |Φt(x)| = 0.(1) If 0 ≤ u ≤ µ(x′, t′), then by (2.3),
d

(

ϕ2(x)(0), ϕ2(x
′)

(

u

µ(x′, t′)

))

≤ d

(

ϕ(x)

(

u

µ(x′, t′)

)

, ϕ(x′)

(

u

µ(x′, t′)

))

< ε.(2) If µ(x′, t′) < u ≤ 1, then by (2.4) and (2.12),
d

(

ϕ2(x)(0), Φt′(x
′)

(

u− µ(x′, t′)

ν(x′, t′)

))

≤ d(Φt(x)(1), Φt′(x
′)(1))

+ d

(

Φt′(x
′)(1), Φt′(x

′)

(

u− µ(x′, t′)

ν(x′, t′)

))

< ε.Theorem 2.2. For any pull-ba
k diagram
X

p
��

g // A

p
��

Y
g // B
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if p has the SHLP with respe
t to every spa
e, and if A, B, and Y are ANR's,then X is an ANR.Proof. Suppose that f : C → X is a map from a 
losed subset C of aspa
e Z into X. We wish to show that f has an extension over some openneighborhood U of C.Let V be an open 
overing of B so that any two V-near maps ϕ, ψ : W →
B admit a homotopy H : W × I → B whi
h 
onne
ts them and is 
onstanton x×I whenever ϕ(x) = ψ(x), and let V ′ be an open 
overing of B su
h that
stV ′ < V. Sin
e A and Y are ANR's, the maps gf : C → A and pf : C → Yextend to maps f ′1 : U ′ → A and f ′2 : U ′ → Y for some open neighbor-hood U ′ of C. Let U = f ′−1

1 p−1V ′ ∧ f ′−1
2 g−1V ′, and let U = st(C,U). If

f1 : U → A and f2 : U → Y are the restri
tions of f ′1 and f ′2, respe
-tively, then (pf1, gf2) < V. Indeed, for ea
h x ∈ U , there exist c ∈ C and
V1, V2 ∈ V

′ su
h that both x and c belong to f−1
1 p−1(V1) ∧ f

−1
2 g−1(V2).Then pf1(c) = gf2(c) ∈ V1 ∩ V2 6= ∅, pf1(x) ∈ V1, and gf2(x) ∈ V2,whi
h implies that pf1(x), gf2(x) ∈ V1 ∪ V2 ⊆ V for some V ∈ V as re-quired. By the 
hoi
e of V, pf1 ≃ gf2. Sin
e p has the SHLP, there is a map

f ′′1 : U → A su
h that f ′′1 ≃ f1, pf ′′1 = gf2, and f ′′1 (x) = f1(x) whenever
pf1(x) = gf2(x) for x ∈ U . The maps f ′′1 and f2 de�ne a map f̃ : U → Xsu
h that gf̃ = f ′′1 and pf̃ = f2. Moreover, if x ∈ C, then pf1(x) = gf2(x),so f ′′1 (x) = f1(x), and hen
e f̃ is an extension of f . This proves that X isan ANR.Theorem 2.3. For ea
h 2-sink Y g

→ B
p
← A in ANR with f having theSHLP with respe
t to every spa
e, there is a pull-ba
k diagram

X

p

��

g // A

p

��
Y

g // Bin ANR with p having the SHLP with respe
t to every spa
e. Moreover , if p(resp., g) is a homotopy equivalen
e, so is p (resp., g).Proof. The existen
e of the pull-ba
k diagram follows from Theorem 2.2.That p has the SHLP with respe
t to every spa
e easily follows. The se
ondassertion follows from the 
ase of Top.
Theorem A. ANR is a �bration 
ategory if �bration = map having theSHLP with respe
t to every spa
e, and weak equivalen
e = homotopy equiv-alen
e.Proof. (F2) and (F3) follow from Theorems 2.3 and 2.2, respe
tively.(F1) and (F4) follow from those properties for Top.
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3. Proof of Theorem BTheorem 3.1. Every map f : A → B between metri
 spa
es is the
omposition of a homotopy equivalen
e q : A → E and a map p : E → Bhaving the SHLP with respe
t to every spa
e, where E is some metri
 spa
e.Proof. Let E = {(x, ω) ∈ A × BI : f(x) = ω(0)}. Then E is a metri
spa
e. The map f fa
tors into the 
omposition of q : A→ E and p : E → Bwhi
h are de�ned as in the proof of Theorem 2.1. Then q is a homotopyequivalen
e. Indeed, if pA : E → A is the restri
tion of the proje
tion mapof A × BI onto A, then pAp = 1A, and ppA ≃ 1E with the homotopy

H : E× I → E, H((x, ω), t) = (x, ωt). That p has the SHLP with respe
t toany spa
e X is proven similarly to Theorem 2.1.
Theorem B. The full sub
ategory M of Top whose obje
ts are metri
spa
es is a �bration 
ategory if �bration = map having the SHLP with respe
tto every spa
e, and weak equivalen
e = homotopy equivalen
e.Proof. (F2) easily follows, and (F3) follows from Theorem 3.1. (F1) and(F4) follow from those properties for Top.
Remark. We observe that the E
kmann�Hilton duality breaks downwhen taking sub
ategories. Top has the stru
tures of a �bration 
ategoryand a 
o�bration 
ategory, but the restri
tion of the 
o�bration stru
ture toM is not a 
o�bration 
ategory, while the restri
tion of the �bration stru
tureto M is a �bration 
ategory.
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