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GENERAL TOPOLOGY

On the Lifshits Constant for Hyperspa
esbyK. LE�NIAKPresented by Czesªaw BESSAGA
Summary. The Lifshits theorem states that any k-uniformly Lips
hitz map with abounded orbit on a 
omplete metri
 spa
e X has a �xed point provided k < κ(X) where
κ(X) is the so-
alled Lifshits 
onstant of X. For many spa
es we have κ(X) > 1. It isinteresting whether we 
an use the Lifshits theorem in the theory of iterated fun
tionsystems. Therefore we investigate the value of the Lifshits 
onstant for several 
lasses ofhyperspa
es.1. Preliminaries. The standard method for showing that an iteratedfun
tion system admits a unique invariant set makes use of the Bana
h
ontra
tion prin
iple applied to the hyperspa
e (see [Hu℄). But this methodfails for non
ontra
tive systems. Therefore one looks for other �xed pointprin
iples ([H℄, [Ha℄, [E℄, [LM℄, [L1℄, [O℄). In [AG℄ the authors propose to usethe Lifshits �xed point theorem for this purpose. This leads to the problemof 
al
ulation of the Lifshits 
onstant for hyperspa
es. In this arti
le weinvestigate the Lifshits 
onstant for several 
lasses of hyperspa
es, improvingand extending our earlier results from [L2℄.Let (X, d) be a metri
 spa
e. We denote by D(x, r) the 
losed r-ball with
enter at x, and by diamA the diameter of A ⊂ X. Let c ≥ 1. We shall saythat balls are c-regular in X if
(1) ∀k < c∃η, α ∈ (0, 1)∀x, y ∈ X ∀r > 0 [d(x, y) ≥ (1− η)r ⇒ ∃z ∈ X

D(x, (1 + η)r) ∩D(y, k(1 + η)r) ⊂ D(z, αr)].Set
κ(X) = sup{c ≥ 1 : balls are c-regular}.2000 Mathemati
s Subje
t Classi�
ation: 54B20, 51K99, 46B20.Key words and phrases: Lifshits 
onstant, hyperspa
e, Hausdor� metri
, Pompeiumetri
, ℓp-produ
t, ψ-produ
t.Partially supported by the Ni
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Then κ(X) is 
alled the Lifshits 
onstant (or the Lifshits 
hara
teristi
) ofX.Below we re
all the Lifshits theorem.Theorem 1. Let (X, d) be a 
omplete metri
 spa
e. Let f : X → X bea k-uniformly Lips
hitz map:

∀x, y ∈ X ∀n ∈ N d[ fn(x), fn(y) ] ≤ kd(x, y),where k < κ(X) and fn stands for the n-fold 
omposition. If there exists x0su
h that the orbit {fn(x0) : n ∈ N} is bounded , then f has a �xed point.This theorem is nontrivial be
ause for many spa
es we have κ(X) > 1;e.g. if X is a Hilbert spa
e then κ(X) =
√

2. More details on the Lifshits
onstant 
an be found in [GK℄, [AT℄, [LF℄. Some interesting modi�
ations ofthis geometri
 
onstant are given in [WW℄.For the rest of the paper the following te
hni
al lemma will play a 
ru
ialrole.Lemma 1. Let (X, d) be a metri
 spa
e and let p1, p2, q1, q2 ∈ X havethe following distan
es: d(p1, p2) = d(qi, pj) = r, i, j = 1, 2, d(q1, q2) = 2r.Then κ(X) = 1.Proof. Put in (1) η = 0, k = 1, x = p1, y = p2. If D(p1, r) ∩ D(p2, r)
⊂ D(z, αr) for some z ∈ X, α ∈ (0, 1), then diam[D(p1, r) ∩ D(p2, r)]
≤ diamD(z, αr) ≤ 2αr < 2r. On the other hand, sin
e q1, q2 ∈ D(p1, r)
∩D(p2, r), we get diam[D(p1, r) ∩D(p2, r)] ≥ 2r. This 
ontradi
tion showsthat balls are never c-regular for any 
hoi
e of c > k ≥ 1.2. Hyperspa
es with Hausdor� and Pompeiu metri
s. We denoteby F2(X) the family of all nonempty subsets ofX with at most two elements,
Fb(X) the family of all nonempty 
losed bounded subsets of X, Fc(X) thefamily of all nonempty 
losed bounded 
onne
ted subsets of X, Fk(X) thefamily of all nonempty 
losed bounded 
onvex subsets of X, K(X) the familyof all nonempty 
ompa
t subsets of X, Kc(X) the family of all nonempty
ompa
t 
onne
ted subsets ofX, and Kk(X) the family of all nonempty 
om-pa
t 
onvex subsets of X. The family F2(X) is also referred to as the 2-foldsymmetri
 produ
t of X. A topologized family of sets is 
alled a hyperspa
e.Let A,B ⊂ X. The ex
ess of the set A over B is

e(A,B) = sup
a∈A

inf
b∈B

d(a, b).The Hausdor� distan
e between A and B is
dH(A,B) = max{e(A,B), e(B,A)},and the Pompeiu distan
e is
dP(A,B) = e(A,B) + e(B,A).
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Re
all that Fb(X) equipped with either dH or dP is a metri
 spa
e. Thegeometri
 theory of hyperspa
es is presented in [IN℄.Theorem 2. Let X be a metri
 spa
e 
ontaining at least three points
x0, x1, x2 whi
h satisfy 0 < d(x0, x1) = d(x1, x2) = 1

2
d(x0, x2). Then

κ(F2(X), dH) = 1 = κ(F2(X), dP).Proof. Set r = d(x0, x1). In the 
ase of the Hausdor� metri
 dH take
P1 = {x1}, P2 = {x1, x2}, Q1 = {x0, x2}, Q2 = {x2}. Then

e(P1, P2) = 0, e(P2, P1) = r; e(Q1, Q2) = 2r, e(Q2, Q1) = 0;

e(Q1, P1) = r = e(P1, Q1); e(P2, Q2) = r, e(Q2, P2) = 0;

e(Q1, P2) = r = e(P2, Q1); e(Q2, P1) = r = e(P1, Q2).Therefore we 
an use Lemma 1.In the 
ase of the Pompeiu metri
 dP by taking P1 = {x1}, P2 =
{x0, x1, x2}, Q1 = {x0, x1}, Q2 = {x1, x2} we get

e(P1, P2) = 0, e(P2, P1) = r; e(Q1, Q2) = r = e(Q2, Q1);

e(Q1, P1) = r, e(P1, Q1) = 0; e(P2, Q2) = r, e(Q2, P2) = 0;

e(Q1, P2) = 0, e(P2, Q1) = r; e(Q2, P1) = r, e(P1, Q2) = 0.Again Lemma 1 applies.The above also holds true for K(X) whi
h is larger than F2(X).Theorem 3. Ea
h of the following hyperspa
es of a normed spa
e Xhas Lifshits 
onstant 1: Fb(X), Fc(X), K(X), Kc(X), Kk(X) when endowedwith dH or dP.Proof. Fix 0 < r < 1/3 and some ve
tor v with ‖v‖ = 1. Put
P1 = {tv : t ∈ [r, 1]}, P2 = {tv : t ∈ [r, 1 − r]},
Q1 = {tv : t ∈ [0, 1]}, Q2 = {tv : t ∈ [2r, 1 − r]}.Then we have

{

e(P1, P2) = r, e(Q1, Q2) = 2r,

e(P1, Q2) = e(P2, Q2) = e(Q1, P1) = e(Q1, P2) = r,
(2)and 0 for the reverse ex
esses. Thus (regardless of the metri
 in the hyper-spa
e) the assumptions of Lemma 1 are ful�lled and the assertion follows.We remark that the proof of the above result given in [L2℄ for K(X),
Kc(X) and Kk(X) relied on the 
ompa
tness of the unit ball in the normedspa
e.3. Other metrizations. Instead of the Hausdor� or Pompeiu metri
 wenow 
onsider some of their variations. First, by analogy with the ℓp-produ
t,
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we de�ne the following distan
e between A,B ⊂ X:

dMp(A,B) = (e(A,B)p + e(B,A)p)1/p ,where p ∈ [1,∞). Of 
ourse dM1 = dP.Theorem 4. Ea
h of the hyperspa
es Fb(X), Fc(X), K(X), Kc(X),
Kk(X) of a normed spa
e X endowed with dMp has Lifshits 
onstant 1.Proof. The argument for Theorem 3 
an be repeated here. Indeed,

Q2 ⊂ P2 ⊂ P1 ⊂ Q1(3)for the sets de�ned there, so one only has to observe that
dMp(A,B) = dH(A,B)(4)whenever A ⊂ B ⊂ X.Theorem 5. Let (X, d) be a metri
 spa
e 
ontaining four points x0, x1,

x2, x3 whi
h satisfy d(xi, xi+1) = r, i = 0, 1, 2, d(xi, xi+2) = 2r, i = 0, 1,
d(x0, x3) = 3r for some r > 0. Then κ(F2(X), dMp) = 1 = κ(K(X), dMp).Proof. Put Q1 = {x0, x1, x2, x3}, Q2 = {x2, x3}, P1 = {x1, x2, x3}, P2 =
{x1, x2}. Then (2) and (3) hold for our sets. Hen
e by (4) we obtain thesame 
on
lusion as in Theorem 3.The above argument is also valid for dH, but involves slightly strongergeometri
 assumptions on X than those in Theorem 2.Now, as suggested by [KST℄, we introdu
e the ψ-distan
e between
A,B ⊂ X as

dψ(A,B) = ψ(e(A,B), e(B,A)),where ψ : [0,∞) × [0,∞) → [0,∞) is any fun
tion making dψ a metri
 in
Fb(X). In parti
ular ψ(α, β) = (αp + βp)1/p gives dψ = dMp .If ψ(α, 0) = α = ψ(0, α), then the reasoning from Theorem 4 is also validfor dψ. Therefore hyperspa
es metrized with dψ turn out to have Lifshits
onstant 1.Let A,B ⊂ X. The spread of the set A over B is

s(A,B) = inf{sup
a∈A

d(a, f(a)) : f : A→ B is 
ontinuous}.The Borsuk distan
e of 
ontinuity between A and B is
dB(A,B) = max{s(A,B), s(B,A)}.One 
an des
ribe the ex
ess fun
tional e in an analogous way to s, namelyby omitting the requirement of 
ontinuity. In parti
ular s(A,B) ≥ e(B,A)and dB ≥ dH. More details on the Borsuk metri
 
an be found e.g. in [B1℄,[B2℄, [G℄ and [M℄ (the last two works are devoted to the appli
ations of theBorsuk metri
 in the �xed point theory of multivalued mappings).
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Sin
e dB 
oin
ides with dH on the family of �nite sets, we immediatelysee that under the hypotheses of either Theorem 2 or 5, κ(F2(X), dB) = 1

= κ(K(X), dB).Let X be a normed spa
e and v ∈ X a ve
tor with ‖v‖ = 1. We put
I = {tv : t ∈ [a1, a2]}, J = {tv : t ∈ [b1, b2]},where a1 < a2 and b1 < b2 are reals. Then, as is well known, dH(I, J) =

max{|a1 − b1|, |a2 − b2|}. Moreover,
dB(I, J) = dH(I, J).(5)To see this, simply take the a�ne map f : I → J given by

f(tv) = (αt+ β) · v, α =
b2 − b1
a2 − a1

, β = b1 − αa1and 
al
ulate
s(I, J) ≤ sup

a∈I
‖a− f(a)‖ = max{|a1 − b1|, |a2 − b2|}.Finally, by (5) and the proof of Theorem 3, we �nd that κ(Kc(X), dB) =

1 = κ(Kk(X), dB).4. Final remarks. The following question (asked by L. Górniewi
z andJ. Andres) arises: Are there any �natural� hyperspa
es with the Lifshits 
on-stant stri
tly greater than 1? As we argued at the beginning, su
h spa
es
ould be interesting for �xed point theory, espe
ially the theory of iteratedfun
tion systems. We do not know a satisfa
tory answer to this question. Of
ourse the family of singletons F1(X) = {{x} : x ∈ X} under any of themetri
s above 
onsidered here is isometri
 to X, so κ(F1(X)) = κ(X). Weprovide an example of a hyperspa
e di�erent from F1(X).
Example. Let ε > 0 and H = {[a, a+ ε] ⊂ [0, 1] : a ∈ [0, 1 − ε]}. Then

κ(H, dH) = 2. Indeed, H is isometri
 to [0, 1 − ε] and κ([0, 1 − ε]) = 2.
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