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GENERAL TOPOLOGY

On the Lifshits Constant for Hyperspaces
by
K. LESNIAK

Presented by Czestaw BESSAGA

Summary. The Lifshits theorem states that any k-uniformly Lipschitz map with a
bounded orbit on a complete metric space X has a fixed point provided k < »(X) where
#(X) is the so-called Lifshits constant of X. For many spaces we have »(X) > 1. It is
interesting whether we can use the Lifshits theorem in the theory of iterated function
systems. Therefore we investigate the value of the Lifshits constant for several classes of
hyperspaces.

1. Preliminaries. The standard method for showing that an iterated
function system admits a unique invariant set makes use of the Banach
contraction principle applied to the hyperspace (see [Hu]). But this method
fails for noncontractive systems. Therefore one looks for other fixed point
principles ([H], [Ha], [E], [LM], [L1], [O]). In [AG] the authors propose to use
the Lifshits fixed point theorem for this purpose. This leads to the problem
of calculation of the Lifshits constant for hyperspaces. In this article we
investigate the Lifshits constant for several classes of hyperspaces, improving
and extending our earlier results from [L2].

Let (X, d) be a metric space. We denote by D(x,r) the closed r-ball with
center at x, and by diam A the diameter of A C X. Let ¢ > 1. We shall say
that balls are c-reqular in X if

(1) Vk<cednae(0,)Ve,ye XVr>0 [dz,y)>(1—-nr=3z€X
D(x,(14+n)r) N D(y, k(1 +n)r) C D(z,ar)].
Set
#(X) = sup{c > 1: balls are c-regular}.
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Then »(X) is called the Lifshits constant (or the Lifshits characteristic) of X.
Below we recall the Lifshits theorem.

THEOREM 1. Let (X,d) be a complete metric space. Let f: X — X be
a k-uniformly Lipschitz map:

Ve,y e X Vn e N d[f"(z), ["(y)] < kd(z,y),

where k < »(X) and f™ stands for the n-fold composition. If there exists xg
such that the orbit {f™(zo) : n € N} is bounded, then f has a fized point.

This theorem is nontrivial because for many spaces we have »(X) > 1;
e.g. if X is a Hilbert space then »(X) = /2. More details on the Lifshits
constant can be found in [GK], [AT], [LF]. Some interesting modifications of
this geometric constant are given in [WW].

For the rest of the paper the following technical lemma will play a crucial
role.

LEMMA 1. Let (X,d) be a metric space and let p1,p2,q1,q2 € X have
the following distances: d(p1,p2) = d(gi,p;) =7, 4,j = 1,2, d(q1,q2) = 2r.
Then »(X) = 1.

Proof. Put in (1) n =0, k =1, x = p1, y = p2. If D(p1,7) N D(p2,7)
C D(z,ar) for some z € X, a € (0,1), then diam[D(p1,7) N D(p2,7)]
< diam D(z,ar) < 2ar < 2r. On the other hand, since q1,q2 € D(p1,r)
N D(pa,r), we get diam[D(p1,r) N D(pa,r)] > 2r. This contradiction shows
that balls are never c-regular for any choice of ¢ > k> 1.

2. Hyperspaces with Hausdorff and Pompeiu metrics. We denote
by F2(X) the family of all nonempty subsets of X with at most two elements,
Fp(X) the family of all nonempty closed bounded subsets of X, F.(X) the
family of all nonempty closed bounded connected subsets of X, Fj(X) the
family of all nonempty closed bounded convex subsets of X, K(X) the family
of all nonempty compact subsets of X, IC.(X) the family of all nonempty
compact connected subsets of X, and /(X)) the family of all nonempty com-
pact convex subsets of X. The family F2(X) is also referred to as the 2-fold
symmetric product of X. A topologized family of sets is called a hyperspace.

Let A, B C X. The excess of the set A over B is

A B) = inf d(a,b).
e(A, B) sup inf (a,b)
The Hausdorff distance between A and B is
d(A, B) = max{e(A, B), e(B, A)},

and the Pompeiu distance is

dp(A, B) = e(A, B) + e(B, A).
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Recall that Fp(X) equipped with either dy or dp is a metric space. The
geometric theory of hyperspaces is presented in [IN].

THEOREM 2. Let X be a metric space containing at least three points
xo,x1,x2 which satisfy 0 < d(xg,x1) = d(z1,22) = %d(l‘o,l‘g). Then
#(Fa(X),dy) = 1 = x(Fa(X),dp).

Proof. Set r = d(zo,x1). In the case of the Hausdorff metric dy take
Py ={x1}, P, ={x1, 22}, Q1 = {x0, 22}, Q2 = {z2}. Then
e(Pr, 2) =0, e(P, P1) =15 e(Q1,Q2) = 2r, e(Q2,Q1) = 0;
e(Qr, P1) =7 =e(P1,Q1); (P, Q2) =1, e(Q2, P2) = 0;
e(Qr, P2) =1 = e(P2,Q1); e(Qz2, P1) =7 =e(P1,Q2).
Therefore we can use Lemma 1.
In the case of the Pompeiu metric dp by taking P, = {x1}, P» =
{zo, 1,22}, Q1 = {x0, 21}, Q2 = {x1, 22} We get
e(P1, 2) =0, e(P, P1) =715 e(Q1,Q2) =7 =e(Q2,Q1);
e(Qu, P1) =r,e(P1,Q1) =0; e(/%,Q2) =1, e(Q2, 2) =0;
e(Q1, P2) =0, e(P2, Q1) =75 e(Qa, P1) =1, e(P1,Q2) =0.
Again Lemma 1 applies. =

The above also holds true for (X)) which is larger than F5(X).

THEOREM 3. FEach of the following hyperspaces of a normed space X
has Lifshits constant 1: Fyp(X), Fe(X), K(X), K(X), Ki(X) when endowed
with dg or dp.

Proof. Fix 0 < r < 1/3 and some vector v with |Jv|| = 1. Put
P={tv:terl]}, Pr={tv:te|rl-r]},
Q1 ={tv:te€[0,1]}, Qa={tv:te2r,1—r]}.
Then we have
2) {e(Pl,Pz) =7, e(Q1,Q2) =2r,
e(P1,Q2) = e(P2, Q2) = e(Q1, P1) = e(Q1, ) =,
and 0 for the reverse excesses. Thus (regardless of the metric in the hyper-

space) the assumptions of Lemma 1 are fulfilled and the assertion follows. m

We remark that the proof of the above result given in [L2] for IC(X),
Kc(X) and Kg(X) relied on the compactness of the unit ball in the normed
space.

3. Other metrizations. Instead of the Hausdorff or Pompeiu metric we
now consider some of their variations. First, by analogy with the ¢P-product,
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we define the following distance between A, B C X:
due(A, B) = (e(A, B)? + e(B, A7,
where p € [1,00). Of course dy;1 = dp.

THEOREM 4. Each of the hyperspaces Fp(X), Fe(X), K(X), Ke(X),
Kr(X) of a normed space X endowed with dyre has Lifshits constant 1.

Proof. The argument for Theorem 3 can be repeated here. Indeed,

(3) QQCPQCP1CQ1
for the sets defined there, so one only has to observe that
(4) de(AvB) = dH(A’ B)

whenever AC BC X. m

THEOREM 5. Let (X,d) be a metric space containing four points xg,x1,
xo, w3 which satisfy d(x;,xit1) = r, i = 0,1,2, d(z;,xi42) = 2r, i = 0,1,
d(xo,x3) = 3r for some r > 0. Then 3(F2(X),dyw) =1 = »2(K(X),dpr).

Proof. Put Q1 = {0, x1, 22,23}, Q2 = {w2, 23}, P1 = {x1, 20,23}, P> =
{z1,22}. Then (2) and (3) hold for our sets. Hence by (4) we obtain the
same conclusion as in Theorem 3. =

The above argument is also valid for dy, but involves slightly stronger
geometric assumptions on X than those in Theorem 2.

Now, as suggested by [KST]|, we introduce the w-distance between
A, BC X as

dﬂJ(Av B) = ¢(€(Av B): 6<B7 A))a

where 1) : [0,00) x [0,00) — [0,00) is any function making d, a metric in
Fp(X). In particular ¢(a, 8) = (a? + 3P)'/P gives dy = dpe.

If (a,0) = a = (0, ), then the reasoning from Theorem 4 is also valid
for d,. Therefore hyperspaces metrized with dy turn out to have Lifshits

constant 1.
Let A, B C X. The spread of the set A over B is

s(A, B) = inf{supd(a, f(a)) : f: A— B is continuous}.
acA

The Borsuk distance of continuity between A and B is
dp(A, B) = max{s(A, B),s(B,A)}.

One can describe the excess functional e in an analogous way to s, namely
by omitting the requirement of continuity. In particular s(A, B) > e(B, A)
and dp > dy. More details on the Borsuk metric can be found e.g. in [B1],
[B2], [G] and [M] (the last two works are devoted to the applications of the
Borsuk metric in the fixed point theory of multivalued mappings).



Lifshits Constant for Hyperspaces 159

Since dp coincides with di; on the family of finite sets, we immediately
see that under the hypotheses of either Theorem 2 or 5, »(F2(X),dp) = 1
= #(K(X), dp).

Let X be a normed space and v € X a vector with ||v|| = 1. We put

IZ{tUZtE [al,ag]}, JZ{tU:tE [bl,bQ]},
where a1 < ag and b; < by are reals. Then, as is well known, dy(I,J) =
max{|a; — b1|,|az — b2|}. Moreover,
To see this, simply take the affine map f : I — J given by
by — by

f(tv) = (at+ ) - v, a:a2_a1

,B=bi—aa

and calculate

s(I,J) < suII) |la — f(a)| = max{|a1 — b1], |ag — ba|}.
ac

Finally, by (5) and the proof of Theorem 3, we find that »(K.(X),dp) =
1 = 2e(Ky(X), dp)

4. Final remarks. The following question (asked by L. Gorniewicz and
J. Andres) arises: Are there any “natural” hyperspaces with the Lifshits con-
stant strictly greater than 17 As we argued at the beginning, such spaces
could be interesting for fixed point theory, especially the theory of iterated
function systems. We do not know a satisfactory answer to this question. Of
course the family of singletons F1(X) = {{z} : x € X} under any of the
metrics above considered here is isometric to X, so s»(Fi(X)) = »#(X). We
provide an example of a hyperspace different from F;(X).

EXAMPLE. Let ¢ > 0 and H = {[a,a+¢] C [0,1] : @ € [0,1 — ¢]}. Then
#(H,dn) = 2. Indeed, H is isometric to [0,1 — ] and »#([0,1 —¢]) = 2.
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