BULLETIN OF THE POLISH
ACADEMY OF SCIENCES
MATHEMATICS
Vol. 55, No. 2, 2007

ALGEBRAIC TOPOLOGY

Once More on the Lefschetz Fixed Point Theorem
by
Lech GORNIEWICZ and Mirostaw SLOSARSKI

Presented by Czestaw BESSAGA

Summary. An abstract version of the Lefschetz fixed point theorem is presented. Then
several generalizations of the classical Lefschetz fixed point theorem are obtained.

0. Introduction. In 1923 S. Lefschetz proved his famous theorem, now
known as the Lefschetz fixed point theorem. Originally, the theorem was
formulated for compact manifolds. Later, in 1928 H. Hopf gave a new proof
for self-mappings of polyhedra. In 1967, A. Granas extended the Lefschetz
fixed point theorem to the case of compact maps of absolute neighbourhood
retracts. Until now, it has been proved for compact absorbing contraction
and condensing mappings (see [4], [6], [7], [9], [10], [11], [13], [21]). In the
present paper some further generalizations of this theorem are given.

1. Preliminaries. We restrict our considerations to metric spaces. Fol-
lowing K. Borsuk [2] we define:

DEFINITION 1.1. A space X is called an absolute neighbourhood retract
(X € ANR) provided for every space Y and for every homeomorphism
h : X — Y such that h(X) is a closed subset of Y there exists an open
neighbourhood U of h(X) in Y and a continuous map (called a retraction)
r: U — h(X) such that r(u) = u for every u € h(X), i.e. h(X) is a retract
of U; X is called an absolute retract (X € AR) provided the above holds
true for U =Y, i.e. h(X) is a retract of Y.

In other words, X € ANR (X € AR) if and only if X has the neighbour-
hood extension property (resp. extension property) (cf. [2], [9]).
To understand better how large the classes of ANR and AR are, we recall:
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ProrosITION 1.2 ([2], [9]).

(1) X € ANR if and only if there exists a normed space E and an open
subset W of E such that X is homeomorphic to a retract of W

(2) X € AR if and only if there exists a normed space E and a convex
subset W of E such that X is homeomorphic to a retract of W.

In particular, any open subset in a normed space or any finite polyhedron
is an ANR; respectively any convex subset of an arbitrary normed space is
an AR. Note that any AR is contractible and any ANR is locally contractible.

We shall consider the category of pairs of metric spaces and continuous
mappings. By a pair of spaces (X, Xy) we understand a pair consisting of
a metric space X and a subset Xy C X. A pair of the form (X, () will
be identified with X. By a map f : (X, Xo) — (Y,Yy) we understand a
continuous map from X to Y such that f(Xy) C Yy. We then write fx :
X — Y and fx, : Xo — Y for the mappings induced by f.

Let H be the Cech homology functor with compact carriers ([1], [7]) and
coeflicients in the field Q of rational numbers, from the category of all pairs
of spaces and all maps between such pairs, to the category of graded vector
spaces over and linear maps of degree zero. Thus

H(X, Xo) = {Hy(X, Xo)}

is a graded vector space, Hy(X, X() being the g-dimensional Cech homol-
ogy space with compact carriers and rational coefficients. For a map f :
(X,Xo) — (Y.Yy), H(f) is the induced linear map f, = {f.;}, where
feq : Hy(X, Xo) — Hy(Y, Y0).

A nonempty space X is called acyclic provided:

(i) Hy(X)=0forall ¢ > 1,

(i) Ho(X) =~ Q.

Let w : E — E be an endomorphism of an arbitrary vector space. Define
N(u) ={z € E : u"(x) = 0 for some n}, where u” is the nth iterate of u,
and set E = E/N(u). As u(N(u)) C N(u), we have the induced endomor-
phism @ : E — E defined by u([z]) = [u(z)]. We call u admissible provided
dim E < oo.

Let u = {uy} : E — E be an endomorphism of degree zero of a graded
vector space E = {E;}. We call u a Leray endomorphism if

(i) all uy are admissible,
(ii) almost all E, are zero.

For such u, we define the (generalized) Lefschetz number A(u) of u by putting

Au) =Y (=1)"tx (),

q
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where tr is the ordinary trace (cf. [7] or [9]). The following important prop-
erty of the Leray endomorphism is a consequence of the well-known formula
tr(uowv) = tr(v o u) for the trace.

PROPOSITION 1.3. Assume that, in the category of graded vector spaces,
the following diagram commutes:

El El/
o ‘ \ ‘ u!’
E/ h E//

Then, if u' or u” is a Leray endomorphism, so is the other; and, in that
case, A(u') = A(u").

An endomorphism w : F — FE of a graded vector space E is called weakly
nilpotent if for every ¢ > 0 and every = € E,, there exists an integer n such
that ug(x) = 0. Since, for a weakly nilpotent endomorphism v : £ — E, we
have N(u) = E, we get:

PROPOSITION 1.4. Ifu : E — FE is a weakly nilpotent endomorphism,
then A(u) = 0.

Let f : (X,Xo) — (X,Xo) be such that f, : H(X,Xo) — H(X,Xo)
is a Leray endomorphism. Then we define the Lefschetz number A(f) of f
by putting A(f) = A(f«). Clearly, if f and g are homotopic, then A(f) is
defined if A(g) is; and, in this case, A(f) = A(g).

Observe that if X is an acyclic space, or, in particular, contractible, then
for every f : X — X the endomorphism f, : H(X) — H(X) is a Leray
endomorphism and A(f,) = 1.

Consequently, if X € AR, or in particular if X is a convex subset in
a normed space, then for every continuous map f : X — X the Lefschetz
number A(f) = A(fs) is 1.

We have the following lemma (see [3], [5], [7])-

LEMMA 1.5. Let f : (X, Xo) — (X, Xo) be a map of pairs. If two of
the endomorphisms f. : H(X, X)) — H(X,Xy), (fx)« : H(X) — H(X),
(fxo)x : H(Xo) — H(Xo) are Leray endomorphisms, then so is the third; in
that case,

A(f) = Afx) — Afxo)-
We shall also use the following proposition:
PROPOSITION 1.6. Assume that for a mapping f : X — X the Lefschetz

number A(f) is defined and let p be a prime number. Then A(fP) is defined
and A(f) = A(fP) mod p.

For the proof see [12] or [9].
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2. Lefschetz mappings. It is convenient to introduce the following
notion.

DEFINITION 2.1. A continuous map f : X — X is called a Lefschetz map
provided the generalized Lefschetz number A(f) is defined and A(f) # 0
implies that the set Fix(f) = {zr € X : f(z) = x} is nonempty.

In 1969, A. Granas [8] (see also [4], [14]) proved:

THEOREM 2.2. Let X € ANR and let f : X — X be a continuous and
compact map (i.e., f(X) is a compact set). Then f is a Lefschetz map.

We shall need the Kuratowski measure of noncompactness (see [11], [7]).
Let X be a complete metric space and A be a bounded subset of X. We let

v(A) = inf{r > 0 : there exists a finite covering of A

by subsets of diameter at most r}.

Then «(A) is called the measure of noncompactness of A.

For amap f: X — X, a compact subset A C X is called an attractor
provided for any open neighbourhood U of A in X and for every x € X
there exists n = n, such that f"(z) € U. In what follows we shall denote
the family of mappings X — X with compact attractor by CA(X).

Note that if f: X — X has a compact attractor A, then Fix(f) C A.

DEFINITION 2.3. Let X be a complete metric space and k € [0, 1). A con-
tinuous mapping f : X — X is called a condensing (resp. k-set contrac-

tion) map provided that if A C X and y(A4) # 0, then v(f(4)) < v(4)
(resp. ¥(f(A4)) < kv(A)).

Of course, any compact map is a k-set contraction map for each k € (0,1),
and a k-set contraction map is a condensing map.

THEOREM 2.4 ([1], [7]). Let U be an open subset of a Banach space E,
and f: U — U a condensing map which has a compact attractor. Then f is
a Lefschetz map.

For some generalization of Theorem 2.4 see Theorem 3.9 (cf. also [6], [7],
[11]).
DEFINITION 2.5. Let f : X — X be continuous and Xy a subset of X.

We shall say that Xy absorbs compact sets provided for any compact set
K C X there exists a natural number n = ng such that f"*(K) C Xo.

It is easy to prove the following:

PROPOSITION 2.6. Assume that f : X — X is a continuous map and
Xo is an open subset of X which absorbs points. If f(Xo) C Xo, then Xj
absorbs compact sets.
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Now we are able to prove a general version of the Lefschetz fixed point
theorem.

THEOREM 2.7 (General version of the Lefschetz fixed point theorem).
Let f : (X, Xo) — (X, Xo) be continuous. Assume that:

(1) fx,: Xo — Xo is a Lefschetz map,
(2) fo: H(X,Xo) — H(X, Xp) is a weakly nilpotent endomorphism.

Then fx is a Lefschetz map.

Proof. First, in view of Proposition 1.4, we have A(f) = 0. Consequently,
by Lemma 1.5, A(fx) is defined and A(fx) = A(fx,)-

Now A(fx) # 0 implies A(fx,) # 0 and by assumption Fix(fx,) # 0.
Finally, since Fix(fx,) C Fix(fx), our theorem is proved. =

REMARK 2.8 ([5], [7]). Observe that if Xy absorbs compact sets or Xg
is open and absorbs points then 2.7(2) is automatically satisfied.

We refer to [1], [4], [5], [9], [10], [13], [14] for different formulations of the
Lefschetz fixed point theorem.

3. Consequences and applications of Theorem 2.7. In what follows
all mappings are assumed to be continuous and all spaces considered are
metric.

Following [5] we recall the notion of compact absorbing contractions.

DEFINITION 3.1. A mapping f : X — X is called a compact absorbing
contraction (written f € CAC(X)) provided the following two conditions are
satisfied:

(1) there exists an open subset U of X such that f(U) C U and f(U) is
compact,
(2) the set U in (1) absorbs points.

First, we indicate how large the CAC class is. Evidently, any compact
map f: X — X is a CAC. In fact, the compact set f(X) is an attractor
of f and we can take U = X. More generally, a map f : X — X is called
eventually compact (written f € EC(X)) provided there exists a natural
number n such that f™: X — X is compact. Observe that f?(X) is then a
compact attractor for f. We shall say that amap f : X — X is asymptotically
compact provided that for each z € X the orbit {z, f(z),..., f"(x),...} is
relatively compact and the core

Cr= X
n=1

is nonempty compact.
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As observed in [7] or [9], any asymptotically compact map f: X — X
has a compact attractor A equal to Cf.
According to the above we can summarize:

PROPOSITION 3.2.

(1) Any compact map has a compact attractor.
(2) Any eventually compact map has a compact attractor.
(3) Any asymptotically compact map has a compact attractor.

So the class of mappings with compact attractors is quite large.

To explain the connection between mappings with compact attractors
and CACs we need one more notion.

A map f: X — X is called locally compact (LC) provided that for every
x € X there exists an open neighbourhood U, of z in X such that f(U,) is
compact.

We have:

PROPOSITION 3.3 ([5]-[7]). Any locally compact map with a compact at-
tractor is a CAC.

The above can be illustrated in the following:
CANLC c CAC c CA.
Let us mention the following first application of Theorem 2.7:

THEOREM 3.4 (cf. [5]). Let X € ANR and f: X — X be a CAC. Then
f is a Lefschetz map.

Proof. We choose an open subset U C X according to Definition 3.1.
Then f(U) C U and f(U) C U is compact. Therefore, in view of Theo-
rem 2.2, the map f : U — U, f(aj) = f(x), is a Lefschetz map. Now our
claim follows from Remark 2.8 and Theorem 2.7. =

Observe that Theorem 3.4 can be formulated in the following slightly
more general form:

THEOREM 3.5. Let f : X — X be a CAC. Assume that there exists an

ANR A C X such that f(U) C A, where U is chosen according to Defini-
tion 3.1. Then f is a Lefschetz map.

COROLLARY 3.6. If X € AR and f: X — X is a CAC, then Fix(f) # 0.
PROBLEM 3.7. Can one replace CAC by CA in Theorem 3.49

Now, we recall the Lefschetz fixed point theorem for condensing map-
pings.

DEFINITION 3.8. A complete, bounded metric space (X,d) is called a
special ANR (written X € ANRg) provided that there exists an open subset
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U of a Banach space E and two continuous mappings r : U — X and
5 : X — U such that:
(1) ros=idy,
(2) r and s are nonexpansive, i.e., y(r(B)) < v(B) and y(s(4)) < ~v(A)
for all bounded sets A and B.
We have the following;:

THEOREM 3.9 ([6]). Let X € ANR; and let f: X — X be a condensing
map. Then fis a Lefschetz map.

Let f,h: (X, Xo) — (X, Xo) be two given mappings.

DEFINITION 3.10. We shall say that fx : X — X is a generalized com-
pact absorbing contraction with respect to h (written fx € GCAC(X))
provided the following conditions are satisfied:

(1) fx,: Xo — Xo is a Lefschetz map,

(2) hy is an epimorphism or a monomorphism; moreover, if h, is an epi-
morphism then for every compact K C X there exists n = n(K) such
that f"(h(K)) C Xo, and if h, is a monomorphism then for every
compact K C X there exists n = n(K) such that h(f"(K)) C Xo
and f(h™"(Xo)) C h™!(Xo).

The following property is evident:

PROPOSITION 3.11. GCACId(x,XO)(X) = CAC(X) provided that Xg is
an open subset of X, X € ANR and fx, : Xo — Xo is a compact map.

Note that if X and Xy are convex subsets of a normed space, the con-
ditions 3.10(2) and 3.10(3) are satisfied automatically. The same holds true
if for example h is homotopic to the identity map of (X, Xy). The following
example shows that the class GCAC}(X) is larger than CAC(X).

ExXAMPLE 3.12. Let fr : R — R be defined by the formula

—2x —3/2 for x < —1,
fr(x) =< 1/2 for x € (—1,1),
20 —-3/2 forx > 1.
Let us consider the map f : (R,(—-1,1)) — (R, (-1,1)), f(z) = fr(z) for
every z € R, and h: (R,(—-1,1)) — (R,(—1,1)), h(z) = 0 for every =z € R.
It is easy to see that fr € GCAC,(R) but fr ¢ CAC(R).

Now we prove the following:

LEMMA 3.13. Let f: (X, Xo) — (X, Xo) be such that fx € GCACy(X)
with respect to h : (X, Xo) — (X, Xo). Then f. : H(X, Xo) — H(X, Xp) is

weakly nilpotent.
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Proof. Let h, be a monomorphism and let z € H(X, Xy). We have to
prove that there exists n = n(z) such that (f.)"(z) = 0. First observe that
(f<)™ = (f™)«. Since we consider homology with compact carriers, we can
assume that supp(z) C K, where K is a compact subset of X. By assumption
there exists n = n(K) such that h(f"(K)) C Xo; consequently, in view of
our assumption f(h~1(Xg)) € h~1(Xp), we have h(f"*P(K)) C X for every
p > 1. This implies that (ho f™).(z) = 0. But

0= (ho f")«(2) = (hxo (f"):)(2) = hu((f:)"(2)),

so (f+)"(2) = 0.

Now, assume that h, is an epimorphism and let z € H(X, X(). There
exists y € H(X, Xo) such that h.(y) = z and again we can assume that
supp(y) C Kj, where K is a compact subset of X. By assumption there
exists m = m(K;) such that f™(h(Ki)) C Xo. This implies that (f™ o
h)«(y) =0, and so

0= (f"oh)(y) = (™)« 0 hu)(y) = (f)" (ha(y)) = (f)"(2). =

Now from Lemma 3.13 and Theorem 2.7 we deduce the following gener-
alization of the Lefschetz fixed point theorem.

THEOREM 3.14. If fx € GCACp(X), then fis a Lefschetz map.

COROLLARY 3.15. If fx € GCACy(X) and X is an acyclic space (in
particular, if X € AR), then Fix(fx) # 0.

Corollary 3.15 generalizes the Schauder fixed point theorem. Some other
related results will be presented below.

DEFINITION 3.16. A map f: X — X is called an acyclically compact ab-

sorbing contraction (written f € ACAC(X)) provided there are two subsets
U and A of X such that:

(1) U is open and nonempty,

(2) f(U) C U and the contraction f; : U — U is compact,

(3) A is an acyclic set such that f(U) C A and U N A € ANR,
(4) there exists n = n(A) such that f*(A) C U.

First, we prove the following;:

PROPOSITION 3.17. Let U be an open subset of X. If X s a closed

convez subset of a Banach space and f : (X,U) — (X,U) is a map such that
fx € CAC(X), then fx € ACAC(X).

Proof. Tt is sufficient to observe that A = conv(f(U)) is a compact AR
as the closed convex hull of a compact set in a Banach space (cf. Mazur’s
lemma [1]), and A satisfies the assumptions of Definition 3.16. =
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It is easy to see that there are acyclically compact absorbing contractions
which are not compact absorbing contractions.

EXAMPLE 3.18. Let U = (—2,—1) U (—1,0) and f: (R,U) — (R,U) be
defined as follows:
x/3—1/6 for x <0,
flz) =
2¢ —1/6 for z >0,
and let A = (—4,0). It is easy to see that fg € ACAC(R) but fr ¢ CAC(R).
We prove:

THEOREM 3.19. If fx € ACAC(X), then Fix(fx) # 0.

Proof. By assumption there exists n = n(A) such that (fx)"(A) Cc U
and (fx)"*(A) C (fx)*(U) C A for all k > 1, where U is chosen according
to Definition 3.16. We can assume that n+k = p is a prime number for some
k > 1. We have the following commutative diagram:

i

UnA A
b 3 ‘5’
UnA——+ 4

in which f?, f¥, f4 are the appropriate contractions of f%.
By assumption, f} is a compact map and U N A € ANR, so A(f?) is
defined. By Proposition 1.3,

A(f) = A(f) = 1.
Now, Proposition 1.6 yields

A(f7) = A(f1) mod p,
where f; is the contraction of fx to U N A. By assumptions (see 3.16(2) and

3.16(3)), f1 is a compact map. Since A(f;) # 0, we have Fix(f1) # 0, and as
Fix(f1) C Fix(fx), the proof is complete. m

REMARK 3.20. Observe that the assertion of Theorem 3.19 is still true
if we assume only that U N A is a compact AANR (in the sense of Noguchi,
see [2] for details) instead of being an ANR.

REMARK 3.21. We note that all the results in this paper remain true if:

(1) we assume that all spaces are Hausdorff topological spaces and in
place of ANRs we consider retracts of open sets in Klee admissible
spaces (for details see [1]; cf. also [7]);

(2) we consider multivalued admissible mappings in place of single-valued
ones (cf. [1] or [7]).
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