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On
e More on the Lefs
hetz Fixed Point TheorembyLe
h GÓRNIEWICZ and Mirosªaw �LOSARSKIPresented by Czesªaw BESSAGA
Summary. An abstra
t version of the Lefs
hetz �xed point theorem is presented. Thenseveral generalizations of the 
lassi
al Lefs
hetz �xed point theorem are obtained.0. Introdu
tion. In 1923 S. Lefs
hetz proved his famous theorem, nowknown as the Lefs
hetz �xed point theorem. Originally, the theorem wasformulated for 
ompa
t manifolds. Later, in 1928 H. Hopf gave a new prooffor self-mappings of polyhedra. In 1967, A. Granas extended the Lefs
hetz�xed point theorem to the 
ase of 
ompa
t maps of absolute neighbourhoodretra
ts. Until now, it has been proved for 
ompa
t absorbing 
ontra
tionand 
ondensing mappings (see [4℄, [6℄, [7℄, [9℄, [10℄, [11℄, [13℄, [21℄). In thepresent paper some further generalizations of this theorem are given.1. Preliminaries. We restri
t our 
onsiderations to metri
 spa
es. Fol-lowing K. Borsuk [2℄ we de�ne:Definition 1.1. A spa
e X is 
alled an absolute neighbourhood retra
t(X ∈ ANR) provided for every spa
e Y and for every homeomorphism
h : X → Y su
h that h(X) is a 
losed subset of Y there exists an openneighbourhood U of h(X) in Y and a 
ontinuous map (
alled a retra
tion)
r : U → h(X) su
h that r(u) = u for every u ∈ h(X), i.e. h(X) is a retra
tof U ; X is 
alled an absolute retra
t (X ∈ AR) provided the above holdstrue for U = Y , i.e. h(X) is a retra
t of Y .In other words, X ∈ ANR (X ∈ AR) if and only if X has the neighbour-hood extension property (resp. extension property) (
f. [2℄, [9℄).To understand better how large the 
lasses of ANR and AR are, we re
all:2000 Mathemati
s Subje
t Classi�
ation: 55M20, 54H25, 55M15.Key words and phrases: Lefs
hetz number, �xed points, ANR, AR.[161℄ 
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Proposition 1.2 ([2℄, [9℄).(1) X ∈ ANR if and only if there exists a normed spa
e E and an opensubset W of E su
h that X is homeomorphi
 to a retra
t of W ;(2) X ∈ AR if and only if there exists a normed spa
e E and a 
onvexsubset W of E su
h that X is homeomorphi
 to a retra
t of W .In parti
ular, any open subset in a normed spa
e or any �nite polyhedronis an ANR; respe
tively any 
onvex subset of an arbitrary normed spa
e isan AR. Note that any AR is 
ontra
tible and any ANR is lo
ally 
ontra
tible.We shall 
onsider the 
ategory of pairs of metri
 spa
es and 
ontinuousmappings. By a pair of spa
es (X, X0) we understand a pair 
onsisting ofa metri
 spa
e X and a subset X0 ⊂ X. A pair of the form (X, ∅) willbe identi�ed with X. By a map f : (X, X0) → (Y, Y0) we understand a
ontinuous map from X to Y su
h that f(X0) ⊂ Y0. We then write fX :

X → Y and fX0 : X0 → Y0 for the mappings indu
ed by f .Let H be the �e
h homology fun
tor with 
ompa
t 
arriers ([1℄, [7℄) and
oe�
ients in the �eld Q of rational numbers, from the 
ategory of all pairsof spa
es and all maps between su
h pairs, to the 
ategory of graded ve
torspa
es over and linear maps of degree zero. Thus
H(X, X0) = {Hq(X, X0)}is a graded ve
tor spa
e, Hq(X, X0) being the q-dimensional �e
h homol-ogy spa
e with 
ompa
t 
arriers and rational 
oe�
ients. For a map f :

(X, X0) → (Y, Y0), H(f) is the indu
ed linear map f∗ = {f∗q}, where
f∗q : Hq(X, X0) → Hq(Y, Y0).A nonempty spa
e X is 
alled a
y
li
 provided:(i) Hq(X) = 0 for all q ≥ 1,(ii) H0(X) ≈ Q.Let u : E → E be an endomorphism of an arbitrary ve
tor spa
e. De�ne
N(u) = {x ∈ E : un(x) = 0 for some n}, where un is the nth iterate of u,and set Ẽ = E/N(u). As u(N(u)) ⊂ N(u), we have the indu
ed endomor-phism ũ : Ẽ → Ẽ de�ned by ũ([x]) = [u(x)]. We 
all u admissible provided
dim Ẽ < ∞.Let u = {uq} : E → E be an endomorphism of degree zero of a gradedve
tor spa
e E = {Eq}. We 
all u a Leray endomorphism if(i) all uq are admissible,(ii) almost all Ẽq are zero.For su
h u, we de�ne the (generalized) Lefs
hetz number Λ(u) of u by putting

Λ(u) =
∑

q

(−1)qtr(ũq),
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where tr is the ordinary tra
e (
f. [7℄ or [9℄). The following important prop-erty of the Leray endomorphism is a 
onsequen
e of the well-known formula
tr(u ◦ v) = tr(v ◦ u) for the tra
e.Proposition 1.3. Assume that , in the 
ategory of graded ve
tor spa
es,the following diagram 
ommutes:

E′ -u

E′′

6
u′′

E′′

Z
Z

Z
Z}

v

-E′

6
u′

u

Then, if u′ or u′′ is a Leray endomorphism, so is the other ; and , in that
ase, Λ(u′) = Λ(u′′).An endomorphism u : E → E of a graded ve
tor spa
e E is 
alled weaklynilpotent if for every q ≥ 0 and every x ∈ Eq, there exists an integer n su
hthat un
q (x) = 0. Sin
e, for a weakly nilpotent endomorphism u : E → E, wehave N(u) = E, we get:Proposition 1.4. If u : E → E is a weakly nilpotent endomorphism,then Λ(u) = 0.Let f : (X, X0) → (X, X0) be su
h that f∗ : H(X, X0) → H(X, X0)is a Leray endomorphism. Then we de�ne the Lefs
hetz number Λ(f) of fby putting Λ(f) = Λ(f∗). Clearly, if f and g are homotopi
, then Λ(f) isde�ned if Λ(g) is; and, in this 
ase, Λ(f) = Λ(g).Observe that if X is an a
y
li
 spa
e, or, in parti
ular, 
ontra
tible, thenfor every f : X → X the endomorphism f∗ : H(X) → H(X) is a Lerayendomorphism and Λ(f∗) = 1.Consequently, if X ∈ AR, or in parti
ular if X is a 
onvex subset ina normed spa
e, then for every 
ontinuous map f : X → X the Lefs
hetznumber Λ(f) = Λ(f∗) is 1.We have the following lemma (see [3℄, [5℄, [7℄).Lemma 1.5. Let f : (X, X0) → (X, X0) be a map of pairs. If two ofthe endomorphisms f∗ : H(X, X0) → H(X, X0), (fX)∗ : H(X) → H(X),

(fX0)∗ : H(X0) → H(X0) are Leray endomorphisms, then so is the third ; inthat 
ase,
Λ(f) = Λ(fX) − Λ(fX0).We shall also use the following proposition:Proposition 1.6. Assume that for a mapping f : X → X the Lefs
hetznumber Λ(f) is de�ned and let p be a prime number. Then Λ(fp) is de�nedand Λ(f) ≡ Λ(fp) mod p.For the proof see [12℄ or [9℄.
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2. Lefs
hetz mappings. It is 
onvenient to introdu
e the followingnotion.Definition 2.1. A 
ontinuous map f : X → X is 
alled a Lefs
hetz mapprovided the generalized Lefs
hetz number Λ(f) is de�ned and Λ(f) 6= 0implies that the set Fix(f) = {x ∈ X : f(x) = x} is nonempty.In 1969, A. Granas [8℄ (see also [4℄, [14℄) proved:Theorem 2.2. Let X ∈ ANR and let f : X → X be a 
ontinuous and
ompa
t map (i.e., f(X) is a 
ompa
t set). Then f is a Lefs
hetz map.We shall need the Kuratowski measure of non
ompa
tness (see [11℄, [7℄).Let X be a 
omplete metri
 spa
e and A be a bounded subset of X. We let
γ(A) = inf{r > 0 : there exists a �nite 
overing of Aby subsets of diameter at most r}.Then γ(A) is 
alled the measure of non
ompa
tness of A.For a map f : X → X, a 
ompa
t subset A ⊂ X is 
alled an attra
torprovided for any open neighbourhood U of A in X and for every x ∈ Xthere exists n = nx su
h that fn(x) ∈ U . In what follows we shall denotethe family of mappings X → X with 
ompa
t attra
tor by CA(X).Note that if f : X → X has a 
ompa
t attra
tor A, then Fix(f) ⊂ A.Definition 2.3. Let X be a 
omplete metri
 spa
e and k ∈ [0, 1). A 
on-tinuous mapping f : X → X is 
alled a 
ondensing (resp. k-set 
ontra
-tion) map provided that if A ⊂ X and γ(A) 6= 0, then γ(f(A)) < γ(A)

(resp. γ(f(A)) ≤ kγ(A)).Of 
ourse, any 
ompa
t map is a k-set 
ontra
tion map for ea
h k ∈ (0, 1),and a k-set 
ontra
tion map is a 
ondensing map.Theorem 2.4 ([1℄, [7℄). Let U be an open subset of a Bana
h spa
e E,and f : U → U a 
ondensing map whi
h has a 
ompa
t attra
tor. Then f isa Lefs
hetz map.For some generalization of Theorem 2.4 see Theorem 3.9 (
f. also [6℄, [7℄,[11℄).Definition 2.5. Let f : X → X be 
ontinuous and X0 a subset of X.We shall say that X0 absorbs 
ompa
t sets provided for any 
ompa
t set
K ⊂ X there exists a natural number n = nK su
h that fn(K) ⊂ X0.It is easy to prove the following:Proposition 2.6. Assume that f : X → X is a 
ontinuous map and
X0 is an open subset of X whi
h absorbs points. If f(X0) ⊂ X0, then X0absorbs 
ompa
t sets.
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Now we are able to prove a general version of the Lefs
hetz �xed pointtheorem.Theorem 2.7 (General version of the Lefs
hetz �xed point theorem).Let f : (X, X0) → (X, X0) be 
ontinuous. Assume that :(1) fX0 : X0 → X0 is a Lefs
hetz map,(2) f∗ : H(X, X0) → H(X, X0) is a weakly nilpotent endomorphism.Then fX is a Lefs
hetz map.Proof. First, in view of Proposition 1.4, we have Λ(f) = 0. Consequently,by Lemma 1.5, Λ(fX) is de�ned and Λ(fX) = Λ(fX0).Now Λ(fX) 6= 0 implies Λ(fX0) 6= 0 and by assumption Fix(fX0) 6= ∅.Finally, sin
e Fix(fX0) ⊂ Fix(fX), our theorem is proved.Remark 2.8 ([5℄, [7℄). Observe that if X0 absorbs 
ompa
t sets or X0is open and absorbs points then 2.7(2) is automati
ally satis�ed.We refer to [1℄, [4℄, [5℄, [9℄, [10℄, [13℄, [14℄ for di�erent formulations of theLefs
hetz �xed point theorem.3. Consequen
es and appli
ations of Theorem 2.7. In what followsall mappings are assumed to be 
ontinuous and all spa
es 
onsidered aremetri
.Following [5℄ we re
all the notion of 
ompa
t absorbing 
ontra
tions.Definition 3.1. A mapping f : X → X is 
alled a 
ompa
t absorbing
ontra
tion (written f ∈ CAC(X)) provided the following two 
onditions aresatis�ed:(1) there exists an open subset U of X su
h that f(U) ⊂ U and f(U) is
ompa
t,(2) the set U in (1) absorbs points.First, we indi
ate how large the CAC 
lass is. Evidently, any 
ompa
tmap f : X → X is a CAC. In fa
t, the 
ompa
t set f(X) is an attra
torof f and we 
an take U = X. More generally, a map f : X → X is 
alledeventually 
ompa
t (written f ∈ EC(X)) provided there exists a naturalnumber n su
h that fn : X → X is 
ompa
t. Observe that fn(X) is then a
ompa
t attra
tor for f . We shall say that a map f : X → X is asymptoti
ally
ompa
t provided that for ea
h x ∈ X the orbit {x, f(x), . . . , fn(x), . . .} isrelatively 
ompa
t and the 
ore

Cf =
∞⋂

n=1

fn(X)is nonempty 
ompa
t.
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As observed in [7℄ or [9℄, any asymptoti
ally 
ompa
t map f : X → Xhas a 
ompa
t attra
tor A equal to Cf .A

ording to the above we 
an summarize:Proposition 3.2.(1) Any 
ompa
t map has a 
ompa
t attra
tor.(2) Any eventually 
ompa
t map has a 
ompa
t attra
tor.(3) Any asymptoti
ally 
ompa
t map has a 
ompa
t attra
tor.So the 
lass of mappings with 
ompa
t attra
tors is quite large.To explain the 
onne
tion between mappings with 
ompa
t attra
torsand CACs we need one more notion.A map f : X → X is 
alled lo
ally 
ompa
t (LC) provided that for every

x ∈ X there exists an open neighbourhood Ux of x in X su
h that f(Ux) is
ompa
t.We have:Proposition 3.3 ([5℄�[7℄). Any lo
ally 
ompa
t map with a 
ompa
t at-tra
tor is a CAC.The above 
an be illustrated in the following:
CA ∩ LC ⊂ CAC ⊂ CA.Let us mention the following �rst appli
ation of Theorem 2.7:Theorem 3.4 (
f. [5℄). Let X ∈ ANR and f : X → X be a CAC. Then

f is a Lefs
hetz map.Proof. We 
hoose an open subset U ⊂ X a

ording to De�nition 3.1.Then f(U) ⊂ U and f(U) ⊂ U is 
ompa
t. Therefore, in view of Theo-rem 2.2, the map f̃ : U → U , f̃(x) = f(x), is a Lefs
hetz map. Now our
laim follows from Remark 2.8 and Theorem 2.7.Observe that Theorem 3.4 
an be formulated in the following slightlymore general form:Theorem 3.5. Let f : X → X be a CAC. Assume that there exists anANR A ⊂ X su
h that f(U) ⊂ A, where U is 
hosen a

ording to De�ni-tion 3.1. Then f is a Lefs
hetz map.Corollary 3.6. If X ∈ AR and f : X → X is a CAC , then Fix(f) 6= ∅.Problem 3.7. Can one repla
e CAC by CA in Theorem 3.4?Now, we re
all the Lefs
hetz �xed point theorem for 
ondensing map-pings.Definition 3.8. A 
omplete, bounded metri
 spa
e (X, d) is 
alled aspe
ial ANR (written X ∈ ANRs) provided that there exists an open subset
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U of a Bana
h spa
e E and two 
ontinuous mappings r : U → X and
s : X → U su
h that:(1) r ◦ s = idX ,(2) r and s are nonexpansive, i.e., γ(r(B)) ≤ γ(B) and γ(s(A)) ≤ γ(A)for all bounded sets A and B.We have the following:Theorem 3.9 ([6℄). Let X ∈ ANRs and let f : X → X be a 
ondensingmap. Then f is a Lefs
hetz map.Let f, h : (X, X0) → (X, X0) be two given mappings.Definition 3.10. We shall say that fX : X → X is a generalized 
om-pa
t absorbing 
ontra
tion with respe
t to h (written fX ∈ GCACh(X))provided the following 
onditions are satis�ed:(1) fX0 : X0 → X0 is a Lefs
hetz map,(2) h∗ is an epimorphism or a monomorphism; moreover, if h∗ is an epi-morphism then for every 
ompa
t K ⊂ X there exists n = n(K) su
hthat fn(h(K)) ⊂ X0, and if h∗ is a monomorphism then for every
ompa
t K ⊂ X there exists n = n(K) su
h that h(fn(K)) ⊂ X0and f(h−1(X0)) ⊂ h−1(X0).The following property is evident:Proposition 3.11. GCACId(X,X0)

(X) = CAC(X) provided that X0 isan open subset of X, X ∈ ANR and fX0 : X0 → X0 is a 
ompa
t map.Note that if X and X0 are 
onvex subsets of a normed spa
e, the 
on-ditions 3.10(2) and 3.10(3) are satis�ed automati
ally. The same holds trueif for example h is homotopi
 to the identity map of (X, X0). The followingexample shows that the 
lass GCACh(X) is larger than CAC(X).Example 3.12. Let fR : R → R be de�ned by the formula
fR(x) =





−2x − 3/2 for x ≤ −1,
1/2 for x ∈ (−1, 1),
2x − 3/2 for x ≥ 1.Let us 
onsider the map f : (R, (−1, 1)) → (R, (−1, 1)), f(x) = fR(x) forevery x ∈ R, and h : (R, (−1, 1)) → (R, (−1, 1)), h(x) = 0 for every x ∈ R.It is easy to see that fR ∈ GCACh(R) but fR /∈ CAC(R).Now we prove the following:Lemma 3.13. Let f : (X, X0) → (X, X0) be su
h that fX ∈ GCACh(X)with respe
t to h : (X, X0) → (X, X0). Then f∗ : H(X, X0) → H(X, X0) isweakly nilpotent.
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Proof. Let h∗ be a monomorphism and let z ∈ H(X, X0). We have toprove that there exists n = n(z) su
h that (f∗)

n(z) = 0. First observe that
(f∗)

n = (fn)∗. Sin
e we 
onsider homology with 
ompa
t 
arriers, we 
anassume that supp(z) ⊂ K, where K is a 
ompa
t subset of X. By assumptionthere exists n = n(K) su
h that h(fn(K)) ⊂ X0; 
onsequently, in view ofour assumption f(h−1(X0)) ⊂ h−1(X0), we have h(fn+p(K)) ⊂ X0 for every
p ≥ 1. This implies that (h ◦ fn)∗(z) = 0. But

0 = (h ◦ fn)∗(z) = (h∗ ◦ (fn)∗)(z) = h∗((f∗)
n(z)),so (f∗)

n(z) = 0.Now, assume that h∗ is an epimorphism and let z ∈ H(X, X0). Thereexists y ∈ H(X, X0) su
h that h∗(y) = z and again we 
an assume that
supp(y) ⊂ K1, where K1 is a 
ompa
t subset of X. By assumption thereexists m = m(K1) su
h that fm(h(K1)) ⊂ X0. This implies that (fm ◦
h)∗(y) = 0, and so

0 = (fm ◦ h)∗(y) = ((fm)∗ ◦ h∗)(y) = (f∗)
m(h∗(y)) = (f∗)

m(z).Now from Lemma 3.13 and Theorem 2.7 we dedu
e the following gener-alization of the Lefs
hetz �xed point theorem.Theorem 3.14. If fX ∈ GCACh(X), then f is a Lefs
hetz map.Corollary 3.15. If fX ∈ GCACh(X) and X is an a
y
li
 spa
e (inparti
ular , if X ∈ AR), then Fix(fX) 6= ∅.Corollary 3.15 generalizes the S
hauder �xed point theorem. Some otherrelated results will be presented below.Definition 3.16. A map f : X → X is 
alled an a
y
li
ally 
ompa
t ab-sorbing 
ontra
tion (written f ∈ ACAC(X)) provided there are two subsets
U and A of X su
h that:(1) U is open and nonempty,(2) f(U) ⊂ U and the 
ontra
tion fU : U → U is 
ompa
t,(3) A is an a
y
li
 set su
h that f(U) ⊂ A and U ∩ A ∈ ANR,(4) there exists n = n(A) su
h that fn(A) ⊂ U .First, we prove the following:Proposition 3.17. Let U be an open subset of X. If X is a 
losed
onvex subset of a Bana
h spa
e and f : (X, U) → (X, U) is a map su
h that
fX ∈ CAC(X), then fX ∈ ACAC(X).Proof. It is su�
ient to observe that A = conv(f(U)) is a 
ompa
t ARas the 
losed 
onvex hull of a 
ompa
t set in a Bana
h spa
e (
f. Mazur'slemma [1℄), and A satis�es the assumptions of De�nition 3.16.



Lefs
hetz Fixed Point Theorem 169
It is easy to see that there are a
y
li
ally 
ompa
t absorbing 
ontra
tionswhi
h are not 
ompa
t absorbing 
ontra
tions.Example 3.18. Let U = (−2,−1) ∪ (−1, 0) and f : (R, U) → (R, U) bede�ned as follows:

f(x) =

{
x/3 − 1/6 for x < 0,
2x − 1/6 for x ≥ 0,and let A = (−4, 0). It is easy to see that fR ∈ ACAC(R) but fR /∈ CAC(R).We prove:Theorem 3.19. If fX ∈ ACAC(X), then Fix(fX) 6= ∅.Proof. By assumption there exists n = n(A) su
h that (fX)n(A) ⊂ Uand (fX)n+k(A) ⊂ (fX)k(U) ⊂ A for all k ≥ 1, where U is 
hosen a

ordingto De�nition 3.16. We 
an assume that n+k = p is a prime number for some

k ≥ 1. We have the following 
ommutative diagram:
U ∩ A -i

A
6

f
p
2

A
Z

Z
Z

Z}
f

p
3

-U ∩ A

6
f

p
1

i

in whi
h fp
1 , fp

2 , fp
3 are the appropriate 
ontra
tions of fp

X .By assumption, fp
1 is a 
ompa
t map and U ∩ A ∈ ANR, so Λ(fp

1 ) isde�ned. By Proposition 1.3,
Λ(fp

1 ) = Λ(fp
2 ) = 1.Now, Proposition 1.6 yields

Λ(fp
1 ) ≡ Λ(f1) mod p,where f1 is the 
ontra
tion of fX to U ∩A. By assumptions (see 3.16(2) and3.16(3)), f1 is a 
ompa
t map. Sin
e Λ(f1) 6= 0, we have Fix(f1) 6= ∅, and as

Fix(f1) ⊂ Fix(fX), the proof is 
omplete.Remark 3.20. Observe that the assertion of Theorem 3.19 is still trueif we assume only that U ∩A is a 
ompa
t AANR (in the sense of Nogu
hi,see [2℄ for details) instead of being an ANR.Remark 3.21. We note that all the results in this paper remain true if:(1) we assume that all spa
es are Hausdor� topologi
al spa
es and inpla
e of ANRs we 
onsider retra
ts of open sets in Klee admissiblespa
es (for details see [1℄; 
f. also [7℄);(2) we 
onsider multivalued admissible mappings in pla
e of single-valuedones (
f. [1℄ or [7℄).



170 L. Górniewi
z and M. �losarski
Referen
es[1℄ J. Andres and L. Górniewi
z, Topologi
al Prin
iples for Boundary Value Problems,Kluwer, 2003.[2℄ K. Borsuk, Theory of Retra
ts, PWN, Warszawa 1966.[3℄ C. Bowszy
, Fixed point theorem for the pairs of spa
es, Bull. A
ad. Polon. S
i. 16(1968), 845�851.[4℄ R. F. Brown, The Lefs
hetz Fixed Point Theorem, S
ott & Foresman, Glenview, IL,1971.[5℄ G. Fournier, Généralisations du théorème de Lefs
hetz pour des espa
es non-
ompa
ts I�III; Bull. A
ad. Polon S
i. 23 (1975), 693�699; 701�706; 707�711.[6℄ L. Górniewi
z, On the Lefs
hetz �xed point theorem, Math. Slova
a 52 (2002), 221�233.[7℄ �, On the Lefs
hetz �xed point theorem, in: Handbook of Topologi
al Fixed PointTheory, Springer, 2005, 43�82.[8℄ A. Granas, Generalizing the Hopf�Lefs
hetz �xed point theorem for non-
ompa
tANRs, in: Symposium on In�nite Dimensional Topology (Baton-Rouge, 1967), Ann.of Math. Stud. 69, Prin
eton Univ. Press, 1972, 119�130.[9℄ A. Granas and J. Dugundji, Fixed Point Theory, Springer, 2003.[10℄ W. Kryszewski, The Lefs
hetz type theorem for a 
lass of non
ompa
t mappings,Rend. Cir
. Mat. Palermo (2) Suppl. 14 (1987), 365�384.[11℄ R. Nussbaum, Generalizing the �xed-point index, Math. Ann. 228 (1979), 259�278.[12℄ H. O. Peitgen, On the Lefs
hetz number for iterates of 
ontinuous mappings, Pro
.Amer. Math. So
. 54 (1976), 441�444.[13℄ R. Srzedni
ki, A generalization of the Lefs
hetz �xed point theorem and dete
tion of
haos, ibid. 128 (1999), 1231�1239.[14℄ R. B. Thompson, A uni�ed approa
h to lo
al and global �xed point indi
es, Adv.Math. 3 (1969), 1�71.Le
h Górniewi
zS
hauder Center for Nonlinear StudiesNi
olaus Coperni
us UniversityChopina 12/1887-100 Toru«, PolandE-mail: gorn�mat.uni.torun.pl

Mirosªaw �losarskiTe
hni
al University of Koszalin�niade
ki
h 275-453 Koszalin, PolandE-mail: slomir�wp.pl
Re
eived De
ember 20, 2006;re
eived in �nal form April 24, 2007 (7575)


