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PROBABILITY THEORY AND STOCHASTIC PROCESSES

Euler's Approximations of Weak Solutions of Re�e
tingSDEs with Dis
ontinuous Coe�
ientsbyAlina SEMRAUPresented by Jerzy ZABCZYK
Summary. We study 
onvergen
e in law for the Euler and Euler�Peano s
hemes forsto
hasti
 di�erential equations re�e
ting on the boundary of a general 
onvex domain.We assume that the 
oe�
ients are measurable and 
ontinuous almost everywhere withrespe
t to the Lebesgue measure. The proofs are based on new estimates of Krylov's typefor the approximations 
onsidered.1. Introdu
tion. Consider a d-dimensional sto
hasti
 di�erential equa-tion (SDE) on a 
onvex domain D with re�e
ting boundary 
ondition(1.1) Xt = X0 +

t\
0

σ(Xs) dWs +

t\
0

b(Xs) ds + Kt, t ∈ R
+.Here X0 = x0 ∈ D = D∪∂D, X is a re�e
ting pro
ess on D, K is a boundedvariation pro
ess with variation |K| in
reasing only when Xt ∈ ∂D, W is a

d-dimensional standard Wiener pro
ess and σ : D → R
d⊗R

d and b : D → R
dare measurable fun
tions 
ontinuous almost everywhere with respe
t to theLebesgue measure, i.e.(1.2) l(Dσσ∗) = 0, l(Db) = 0,where Dσσ∗ , Db are the sets of dis
ontinuity points of σσ∗ and b respe
tively.We assume that σ and b satisfy two additional 
onditions:

‖σσ∗(x)‖ + |b(x)|2 ≤ L(1 + |x|2), x ∈ R
d,(1.3)

(σσ∗(y)x, x) ≥ λ|x|2, x, y ∈ R
d,(1.4)for some 
onstants L, λ > 0.2000 Mathemati
s Subje
t Classi�
ation: 60H20, 60H99, 60F17.Key words and phrases: sto
hasti
 di�erential equation, re�e
ting boundary 
ondition,Skorokhod problem. [171℄ 
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172 A. Semrau
In this paper we investigate two approximations of X, dis
rete {Xn} and
ontinuous {Xn}, de�ned to be the solutions of the SDEs with re�e
tingboundary 
onditions of the form(1.5) Xn

t = X0 +

t\
0

σ(Xn
s−) dW ̺n

s +

t\
0

b(Xn
s−) d̺n

s + Kn
t , t ∈ R

+,and(1.6) Xn
t = X0 +

t\
0

σ(Xn,̺n

s− ) dWs +

t\
0

b(Xn,̺n

s− ) ds + Kn
t , t ∈ R

+,
respe
tively, where ̺n

t = max{k/n : k ∈ N ∪ {0}, k/n ≤ t} and W ̺n

t is thedis
retization of W , i.e. W ̺n

t = Wk/n for t ∈ [k/n, (k + 1)/n), k ∈ N ∪ {0},
n ∈ N. Sin
e in the 
ase D = R

d the pro
esses {Xn}, {Xn} are the 
lassi
alEuler and Euler�Peano approximations to the equation without re�e
tingboundary, we 
all them the Euler and Euler�Peano approximations to (1.1).Su
h approximations have been 
onsidered before when the 
oe�
ients σ, b of(1.1) are 
ontinuous and the SDE (1.1) has the pathwise uniqueness property(see e.g. Sªomi«ski (1994, 2001)). In this paper we omit the assumption ofthe 
ontinuity of σ, b. We give two new theorems 
on
erning 
onvergen
e inlaw of {Xn} and {Xn} to a solution of (1.1) in whi
h the 
oe�
ients satisfythe 
onditions (1.2)�(1.4) and under the assumption that (1.1) has a uniqueweak solution.Conditions ensuring weak uniqueness for (1.1) in the 
ase of dis
ontinuous
oe�
ients σ, b were 
onsidered in Stroo
k and Varadhan (1971) and S
hmidt(1989). In the latter paper it is shown that if d = 1 and b ≡ 0, then (1.1) hasa weak solution on D = [r1, r2] for every starting point x0 ∈ D i� the set Mof all x ∈ D su
h that TD∩Ux
σ−2(y) dy = ∞ for every open neighbourhood

Ux of x is 
ontained in the set N of zeros of σ. Therefore, if σ is merelybounded and measurable, some additional assumptions on boundedness of
(σσ∗)−1 are indispensable. S
hmidt also proved that in the above situationthe solution of (1.1) is unique if N ⊆ M . In the multidimensional 
ase, fromStroo
k and Varadhan (1971) we know that a su�
ient 
ondition for theuniqueness of a weak solution of (1.1) is that σσ∗ is bounded, 
ontinuousand uniformly ellipti
, b is bounded measurable and ∂D is regular. Underthese assumptions the uniqueness 
an be shown with the use of the Girsanovtheorem.In Yan (2002) a similar problem is 
onsidered. In the 
ase of nonre�e
tingSDEs Yan shows that the 
onvergen
e of the Euler�Peano s
heme to thesolution of (1.1) holds as long as a weak solution exists and is unique. Heassumes that σ and b are 
ontinuous almost everywhere with respe
t tothe Lebesgue measure and have at most linear growth. However, sin
e he
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uses the lo
al time te
hnique in his proofs, the main results are only one-dimensional. In our paper, the main tool is a version of the multidimensionalKrylov inequality.Let us now introdu
e some de�nitions and notations. D(R+, Rd) is thespa
e of all mappings x : R

+ → R
d whi
h are right 
ontinuous and admitleft-hand limits, with the Skorokhod topology J1. Pro
esses we 
onsider havetraje
tories in D(R+, Rd). For a given pro
ess X we write ∆Xt for Xt −Xt−and we denote by X̺n the dis
retization of X, i.e. X̺n

t = Xk/n for t ∈

[k/n, (k+1)/n), k ∈ N∪{0}, n ∈ N. If X = (X1, . . . , Xd) is a lo
al martingalethen [X]t stands for ∑d
i=1[X

i]t, where [X i] is the quadrati
 variation pro
essof X i, i = 1, . . . , d. If K = (K1, . . . , Kd) is a pro
ess with lo
ally �nitevariation then |K|t =
∑d

i=1 |K
i|t, where |Ki|t is the total variation of Kion [0, t]. Lp(Q), p ≥ 1, is the usual Lp-spa
e with the Lebesgue measure lon Q. R

d⊗R
d is the spa
e of d×d-matri
es with the norm ‖σ‖ = (trσσ∗)1/2and σ∗ is the matrix transpose to σ. We write Kd

R = {x ∈ R
d : |x| ≤ R},where | · | denotes the usual Eu
lidean norm on R

d. Finally, �→D� and �→P �denote 
onvergen
e in law and in probability respe
tively.2. The Euler s
heme. Let D be a 
onvex domain in R
d. De�ne theset Nx of inward normal unit ve
tors at x ∈ ∂D by

Nx =
{
n ∈ R

d : |n| = 1,
∧

y∈D

〈y − x, n〉 ≥ 0
}

.

Let (Ω,F , P ) be a probability spa
e and (Ft)t∈R+ be a �ltration on (Ω,F , P )satisfying the usual 
onditions. Let Y be an (Ft)-adapted semimartingalewith initial value in D, i.e.
Yt = Y0 + Mt + At, t ∈ R

+,where Y0 ∈ D, M is an (Ft)-adapted lo
al martingale, A is an (Ft)-adaptedpro
ess with bounded variation, M0 = A0 = 0. Re
all that a pair (X, K) of
(Ft)-adapted pro
esses is 
alled a solution to the Skorokhod problem asso
i-ated with Y if:(i) Xt = Yt + Kt, t ∈ R

+,(ii) X is D-valued,(iii) K is a pro
ess with lo
ally bounded variation su
h that K0 = 0 and
Kt =

t\
0

ns d|K|s, |K|t =

t\
0

1{Xs∈∂D} d|K|s, t ∈ R
+,where ns ∈ NXs

if Xs ∈ ∂D.Re
all also that the SDE (1.1) is said to have a weak solution if thereexists a �ltered probability spa
e (Ω,F , (F t), P ), an (F t)-adapted Wiener



174 A. Semrau
pro
ess W and a pair of (F t)-adapted pro
esses (X, K) su
h that (X, K) isa solution of the Skorokhod problem asso
iated with

Y t = X0 +

t\
0

σ(Xs) dW s +

t\
0

b(Xs) ds.If for any two weak solutions (X, K, W ), (Ω,F , (Ft), P ) and (X, K, W ),
(Ω,F , (F t), P ) with the same initial distribution, the laws of (X, K) and
(X, K) are the same then we say that weak uniqueness holds for (1.1).Let (F̺n

t ) denote the dis
retization of (Ft), i.e. F̺n

t = Fk/n for t ∈
[k/n, (k + 1)/n), k ∈ N ∪ {0}, n ∈ N. We say that the SDE (1.5) has astrong solution if there exists a pair (Xn, Kn) of (F

̺n

t )-adapted pro
essessu
h that (Xn, Kn) is a solution of the Skorokhod problem asso
iated with(2.1) Y n
t = X0 +

t\
0

σ(Xn
s−) dW ̺n

s +

t\
0

b(Xn
s−) d̺n

s .It is easy to prove that a solution Xn of (1.5) is given by the re
urrentformula
Xn

0 = X0,

Xn
(k+1)/n = Π

(
Xn

k/n + b(Xn
k/n)

1

n
+ σ(Xn

k/n)(W(k+1)/n − Wk/n)

)

and Xn
t = Xn

k/n for t ∈ [k/n, (k + 1)/n), k ∈ N ∪ {0}, n ∈ N, where Π(x)is a proje
tion of x on D.We 
an now formulate our main result.Theorem 2.1. Let {(Xn, Kn)}n∈N be a sequen
e of solutions of (1.5)with 
oe�
ients σ, b satisfying (1.2)�(1.4). If (1.1) has a unique weak solution
(X, K) then (Xn, Kn)→D(X, K).Proof. Our proof starts with the observation that {supt≤T |Xn

t |}n∈N and
{|Kn|T}n∈N are bounded in probability, i.e.

lim
R→∞

lim sup
n→∞

P (sup
t≤T

|Xn
t | ≥ R) = 0, T ∈ R

+,

lim
R→∞

lim sup
n→∞

P (|Kn|T ≥ R) = 0, T ∈ R
+.Sin
e the pair (Xn, Kn) is a solution of the Skorokhod problem asso
iatedwith Y n given by the formula (2.1), due to Corollary 2.6 in Sªomi«ski (2001),for every p ∈ N and every q ∈ R

+,
sup
n∈N

E sup
t≤q

|Xn
t |

2p < ∞, sup
n∈N

E|Kn|pq < ∞,(2.2)whi
h in parti
ular implies boundedness in probability of our sequen
es.
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Now we prove that {(Xn, Kn, W ̺n

)}n∈N is tight in D(R+, R3d). We usethe 
riterion given by Aldous (1978). Let {γn}n∈N be a sequen
e of (F̺n

t )stopping times and let {δn}n∈N be a sequen
e of positive 
onstants su
h that
δn ↓ 0 and γn + δn ≤ q, n ∈ N, q ∈ R

+. By Corollary 1 in Sªomi«ski (1994),(1.3) and (2.2),
E|Xn

γn+δn
− Xn

γn
|2 ≤ C1E

([ ·\
0

σ(Xn
s−) dW ̺n

s

]γn+δn

γn

+
∣∣∣
γn+δn\

γn

b(Xn
s−) d̺n

s

∣∣∣
2

γn

)

≤ C2E
(γn+δn\

γn

trσσ∗(Xn
s−) d̺n

s +

γn+δn\
γn

|b(Xn
s−)|2 d̺n

s

)

≤ LC2(d + 1)E

γn+δn\
γn

(1 + sup
u≤s

|Xn
u|

2) ds

= LC3(d + 1)δn −−−→
n→∞

0.Using again Corollary 1 in Sªomi«ski (1994), (1.3) and (2.2) we obtain thesame estimate for E|Kn
γn+δn

− Kn
γn
|2, and 
onsequently, the 
onvergen
e

E|Kn
γn+δn

− Kn
γn
|2 −−−→

n→∞
0.Sin
e W ̺n

→D W , it follows that the sequen
e {(Xn, Kn, W ̺n

)}n∈N is tightinD(R+, R3d). Therefore, there exists a subsequen
e (n′) ⊂ (n) and pro
esses
X, K, W su
h that(2.3) (Xn′

, Kn′

, W ̺n
′

) −→
D

(X, K, W )in D(R+, R3d), where W is a Wiener pro
ess with respe
t to the natural�ltration FX,K,W . By the standard argument, in order to �nish the proof itis su�
ient to show that (X, K) is a solution of the SDE
Xt = X0 +

t\
0

σ(Xs) dW s +

t\
0

b(Xs) ds + Kt, t ∈ R
+.(2.4)

Now we prove an inequality of Krylov's type for {Xn}n∈N, whi
h is our
ru
ial tool.Lemma 2.2. Let τR
n = inf{t : |Xn

t | > R}, R ∈ R
+, n ∈ N. Then for allbounded measurable fun
tions f : D → R

+ su
h that l(Df ) = 0,
lim sup

n→∞
E

T∧τR
n\

0

f(Xn
s−) ds ≤ C‖f‖Ld(Kd

R
∩D),(2.5)where C is a 
onstant depending only on d, T, R and λ.
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Proof. For every n ∈ N set

Ŷ n
t = X0 +

t\
0

σ(Xn
s−) dWs +

t\
0

b(Xn
s−) dsand let (X̂n, K̂n) be a solution of the Skorokhod problem asso
iated with Ŷ n.In view of Corollary 2.6 in Sªomi«ski (2001), for every p ∈ N and every

q ∈ R
+,

sup
n∈N

E|K̂n|pq < ∞.(2.6)Let ωW (δ, g) denote the modulus of 
ontinuity of W . By S
hwarz's inequality,Lemma A.4 in Sªomi«ski (2001), (1.3) and (2.2),
E sup

t≤q
|Ŷ n

t − Y n
t |

2 = E sup
t≤q

|σ(Xn
̺n

t
−)(Wt − W̺n

t
) + b(Xn

̺n
t
−)(t − ̺n

t )|2

≤ 2

{
d(E sup

t≤q
‖σσ∗(Xn

t−)‖2)1/2(E{ωW (1/n, q)}4)1/2

+

(
1

n

)2

E sup
t≤q

|b(Xn
t−)|2

}

≤ C1

{
lnn

n
(E sup

t≤q
(1 + |Xn

t−|
4))1/2 +

(
1

n

)2

E sup
t≤q

(1 + |Xn
t−|

2)

}

≤ C2
lnn

n
.Applying Lemma 2.2 in Tanaka (1979) we 
on
lude that

sup
t≤q

|X̂n
t − Xn

t |
2 ≤ sup

t≤q
|Ŷ n

t − Y n
t |

2 + 4 sup
t≤q

|Ŷ n
t − Y n

t |(|K̂
n|q − |Kn|q).Hen
e and by S
hwarz's inequality,

E sup
t≤q

|X̂n
t − Xn

t |
2 ≤ C3{E sup

t≤q
|Ŷ n

t − Y n
t |

2

+ (E sup
t≤q

|Ŷ n
t − Y n

t |
2)1/2(E|K̂n|2q + E|Kn|2q)

1/2}.Using now (2.2), (2.6) and the above estimate of E supt≤q |Ŷ
n
t −Y n

t |
2 we get

E sup
t≤q

|X̂n
t − Xn

t |
2 ≤ C4

(
lnn

n

)1/2

.(2.7)By the assumption made at the beginning of the proof, X̂n is of the form
X̂n

t = X0 + Ân
t + M̂n

t + K̂n
t ,where Ân

t =
Tt
0 b(Xn

s−) ds and M̂n
t =

Tt
0 σ(Xn

s−) dWs. For every n ∈ N let
τ̂R′

n = inf{t : |X̂n
t | > R′}, where R′ ∈ R

+ and R′ > R. A

ording to (2.7),
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we have

lim
n→∞

P (τR
n > τ̂R′

n ) = 0.It is easy to note that E|Ân|T∧τ̂R′

n

< ∞ for every n ∈ N. From (2.6) we alsoobtain E|K̂n|T∧τ̂R′

n

< ∞ for every n ∈ N. Moreover, by (1.4), the matrix Qde�ned as
Qt =

(
(σσ∗)ij(Xn

t−) dt

trσσ∗(Xn
t−) dt

)

i,j=1,...,dis uniformly ellipti
. All the assumptions of Theorem 6(i) in Melnikov (1983)are satis�ed, so there exists a 
onstant C5 depending only on d, T, R and λsu
h that
E

T∧τ̂R
′

n\
0

f(X̂n
s ) d〈M̂n〉s ≤ C5‖f‖Ld(Kd

R′
∩D).On the other hand,

E

T∧τ̂R
′

n\
0

f(X̂n
s ) ds ≤ (dλ)−1E

T∧τ̂R
′

n\
0

f(X̂n
s )trσσ∗(Xn

s−) ds

= (dλ)−1E

T∧τ̂R
′

n\
0

f(X̂n
s ) d〈M̂n〉s,so for all measurable fun
tions f : D → R

+ and for every n ∈ N,
E

T∧τ̂R
′

n\
0

f(X̂n
s ) ds ≤ C‖f‖Ld(Kd

R′
∩D),(2.8)where C is a 
onstant depending only on d, T , R′ and λ.We are now able to show that

lim sup
n→∞

E

T∧τR
n\

0

f(X̂n
s ) ds ≤ C‖f‖Ld(Kd

R
∩D).(2.9)

Indeed, from the property of τ̂R′

n and (2.8),
lim sup

n→∞
E

T∧τR
n\

0

f(X̂n
s ) ds ≤ lim sup

n→∞
E

T∧τ̂R
′

n\
0

f(X̂n
s ) ds1(τR

n ≤τ̂R′

n )

+ lim sup
n→∞

E

T∧τR
n\

0

f(X̂n
s ) ds1(τR

n >τ̂R′

n )
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≤ lim sup

n→∞
E

T∧τ̂R
′

n\
0

f(X̂n
s ) ds + C6 lim sup

n→∞
P (τR

n > τ̂R′

n ) ≤ C‖f‖Ld(Kd

R′
∩D).Letting R′ ↓ R yields (2.9).Next, we show that for every 
ontinuous fun
tion f : D → R

+,
lim sup

n→∞
E

∣∣∣
T∧τR

n\
0

f(X̂n
s−) ds −

T∧τR
n\

0

f(Xn
s−) ds

∣∣∣ = 0.(2.10)
Let M := supx∈Kd

R
∩D |f(x)| < ∞. Sin
e f is uniformly 
ontinuous on Kd

R∩D,for every ε > 0 there exists δ > 0 su
h that |f(x)−f(x′)| < ε if x, x′ ∈ Kd
R∩Dand |x − x′| < δ. Therefore, by Chebyshev's inequality,

E
∣∣∣
T∧τR

n\
0

(f(X̂n
s−) − f(Xn

s−)) ds
∣∣∣

≤ E

T∧τR
n\

0

|f(X̂n
s−) − f(Xn

s−)|1
(|X̂n

s−
−Xn

s−
|<δ)

ds

+ E

T∧τR
n\

0

(f(X̂n
s−) − f(Xn

s−))1
(|X̂n

s−
−Xn

s−
|≥δ)

ds

≤ εT + 2MT P ( sup
s≤T∧τR

n

|X̂n
s− − Xn

s−| ≥ δ)

≤ εT + 2MTδ−2 E sup
t≤T∧τR

n

|X̂n
t − Xn

t |
2.Using (2.7) and letting ε → 0 we obtain (2.10). Hen
e, by (2.9), it followsthat the inequality (2.5) is true for every 
ontinuous fun
tion f : D → R

+.Now let f be an arbitrary nonnegative bounded fun
tion su
h that l(Df )
= 0. Sin
e f is Riemann integrable, for every ε > 0 there exists a 
ontinuousfun
tion f+

ε su
h that f ≤ f+
ε and\

Kd

R
∩D

(f+
ε (x) − f(x)) dx < ε.

Sin
e for f+
ε the inequality (2.5) is true,

lim sup
n→∞

E

T∧τR
n\

0

f(Xn
s−) ds ≤ lim sup

n→∞
E

T∧τR
n\

0

f+
ε (Xn

s−) ds

≤ C‖f+
ε ‖Ld(Kd

R
∩D) ≤ C‖f‖Ld(Kd

R
∩D) + C7ε

1/d.Letting ε → 0 
ompletes the proof of the lemma.
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The remaining part of the proof 
onsists in a modi�
ation of the proofof Theorem 2.2 from Rozkosz and Sªomi«ski (1997). For every n ∈ N let

τR
n = inf{t ∈ R

+ : |Xn
t | ≥ R or |Xn

t−| ≥ R} and τR = inf{t ∈ R
+ : |Xt| ≥ Ror |Xt−| ≥ R}, R ∈ R

+. In view of (2.3) and Proposition VI.2.12 from Ja
odand Shiryaev (2003), there exists a sequen
e {Rk}k∈N with Rk ↑ ∞ su
h thatfor every k ∈ N,(2.11) (τRk

n′ , Xn′,τ
Rk

n′ , Kn′,τ
Rk

n′ , W ̺n
′

,τ
Rk

n′ ) −→
D

(τRk , XτRk , KτRk , W τRk )in R ×D(R+, R3d).Using molli�
ation we 
an 
onstru
t sequen
es {bi}i∈N and {σi}i∈N of
ontinuous fun
tions σi : D → R
d ⊗ R

d, bi : D → R
d su
h that ‖σiσ

∗
i (x)‖ +

|bi(x)|2 ≤ K(1 + |x|2), x ∈ R
d, and σk,j

i → σk,j and bl
i → bl in Ld(K),

k, j, l = 1, . . . , d, for every 
ompa
t subset K ⊂ D. By (2.3) and Theo-rem 2.6 of Jakubowski, Mémin and Pages (1989), it follows that for every
i ∈ N, k ∈ N,
(2.12)

(
τRk

n′ , Xn′,τ
Rk

n′ ,

·∧τ
Rk

n′\
0

σi(X
n′

s−) dW ̺n
′

s
s ,

·∧τ
Rk

n′\
0

bi(X
n′

s−) d̺n′

s , Kn′,τ
Rk

n′

)

−→
D

(
τRk , XτRk ,

·∧τRk\
0

σi(Xs) dW s,

·∧τRk\
0

bi(Xs) ds, KτRk )

in R ×D(R+, R4d).On the other hand, by Lemma 2.2 and the Lebesgue dominated 
onver-gen
e theorem, for every k ∈ N and every T ∈ R
+,

lim
i→∞

lim sup
n′→∞

E
[ .\
0

(σi − σ)(Xn′

s−) dW ̺n
′

s

]

T∧τ
Rk

n′

= lim
i→∞

lim sup
n′→∞

E

T∧τ
Rk

n′\
0

tr(σi − σ)(σi − σ)∗(Xn′

s−) d̺n′

s

≤ lim
i→∞

lim sup
n′→∞

E

T∧τ
Rk

n′\
0

‖(σi − σ)(σi − σ)∗(Xn′

s−)‖2 ds

≤ C lim
i→∞

∥∥‖(σi − σ)(σi − σ)∗‖2
∥∥

Ld(Kd

Rk
∩D)

= 0.Similarly,
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lim
i→∞

lim sup
n′→∞

E
∣∣∣

.\
0

(bi − b)(Xn′

s−) d̺n′

s

∣∣∣
T∧τ

Rk

n′

≤ d1/2 lim
i→∞

lim sup
n′→∞

E

T∧τ
Rk

n′\
0

|(bi − b)(Xn′

s−)| ds

≤ d1/2C lim
i→∞

‖ |bi − b| ‖Ld(Kd

Rk
∩D) = 0.Boundedness in probability of {supt≤T |Xn

t |}n∈N implies that for every T in
R

+ we have limk→∞ lim supn′→∞ P (τRk

n′ ≤ T ) = 0. Hen
e, for every ε > 0,
(2.13) lim

i→∞
lim sup
n′→∞

P
(
sup
t≤T

∣∣∣
t\
0

σi(X
n′

s−) dW ̺n
′

s −
t\
0

σ(Xn′

s−) dW ̺n
′

s

∣∣∣ ≥ ε
)

= 0and(2.14) lim
i→∞

lim sup
n′→∞

P
(
sup
t≤T

∣∣∣
t\
0

bi(X
n′

s−) d̺n′

s −
t\
0

b(Xn′

s−) d̺n′

s

∣∣∣ ≥ ε
)

= 0.

Now we show that Krylov's inequality is also true for X. First assumethat f is 
ontinuous. By (2.11) and Theorem 2.6 of Jakubowski, Mémin andPages (1989),
·∧τ

Rk

n′\
0

f(Xn′

s−) ds−→
D

·∧τRk\
0

f(Xs) ds in D(R+, Rd).

Therefore, by Lemma 2.2 and Fatou's lemma, for every k ∈ N and T ∈ R
+,

E

T∧τRk\
0

f(Xs) ds ≤ lim inf
n′→∞

E

T∧τ
Rk

n′\
0

f(Xn′

s−) ds ≤ C‖f‖Ld(Kd

R
∩D).The proof of this inequality for all nonnegative measurable fun
tions f isnow standard (see e.g. Krylov (1982)).By the above, in mu
h the same way as for Xn′ and W ̺n

′

, we show thatfor every T ∈ R
+,

lim
i→∞

E
〈 .\

0

(σi − σ)(Xs) dW s

〉

T∧τRk

= 0

and
lim
i→∞

E
∣∣∣
.\
0

(bi − b)(X) ds
∣∣∣
T∧τRk

= 0.
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Sin
e τRk ↑ ∞ P -a.s., for every ε > 0,

lim
i→∞

P
(
sup
t≤T

∣∣∣
t\
0

σi(Xs) dW s −
t\
0

σ(Xs) dW s

∣∣∣ ≥ ε
)

= 0(2.15)and
lim
i→∞

P
(
sup
t≤T

∣∣∣
t\
0

bi(Xs) ds −
t\
0

b(Xs) ds
∣∣∣ ≥ ε

)
= 0.(2.16)By (2.12)�(2.16) and Theorem 3.2 from Billingsley (1999),

(
Xn′

,

.\
0

σ(Xn′

s−) dW ̺n
′

s
s ,

.\
0

b(Xn′

s−) d̺n′

s , Kn′

)

−→
D

(
X,

.\
0

σ(Xs) dW s,

.\
0

b(Xs) ds, K
)

in D(R+, R4d). Finally, by the 
ontinuous mapping theorem, (X, K) is asolution of the SDE (2.4), whi
h 
ompletes the proof.3. The Euler�Peano s
heme. Let us now 
onsider a 
ontinuous ap-proximation {Xn} of X de�ned as the solutions of the SDEs (1.6). For thatapproximation one 
an obtain a similar result to that for {Xn}. We des
ribeit in the following theorem.Theorem 3.1. Let {(Xn, Kn)}n∈N be a sequen
e of solutions of (1.6)with 
oe�
ients σ, b satisfying (1.2)�(1.4). If (1.1) has a unique weak solution
(X, K) then (Xn, Kn) →D (X, K).The proof of this theorem is quite similar to that of Theorem 2.1 be
auseLemma 2.2 holds true with Xn repla
ed by Xn,̺n .The result given in Theorem 3.1 is quite satisfa
tory from the theoreti-
al standpoint. However, if we are interested in numeri
al simulation thereappears a problem�not always 
an one give a simple simulating s
heme ofa solution of (1.6). In the 
ase D = R

d−1 × R
+ an e�
ient method of su
hsimulation was given by Lépingle (1995).A
knowledgements. I would like to thank Professor Leszek Sªomi«skifor suggesting the problem and for many stimulating 
onversations.
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