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Summary. We study convergence in law for the FEuler and Euler—Peano schemes for
stochastic differential equations reflecting on the boundary of a general convex domain.
We assume that the coefficients are measurable and continuous almost everywhere with
respect to the Lebesgue measure. The proofs are based on new estimates of Krylov’s type
for the approximations considered.

1. Introduction. Consider a d-dimensional stochastic differential equa-
tion (SDE) on a convex domain D with reflecting boundary condition

t t
(1.1) Xy = Xo+ | o(Xo)aW, + |b(X,)ds + Ky, t€RT.
0 0

Here Xg = 29 € D = DUOD, X is a reflecting process on D, K is a bounded
variation process with variation |K| increasing only when X; € 9D, W is a
d-dimensional standard Wiener process and o : D — R®@R% and b : D — R
are measurable functions continuous almost everywhere with respect to the
Lebesgue measure, i.e.

(12) l(DJU*) = 07 l(Db) = O’
where D+, Dy are the sets of discontinuity points of co* and b respectively.
We assume that o and b satisfy two additional conditions:

(1.3) loo* (@)l + |b(z)|* < LA + [2f*), = €RY,
(1.4) (oo™ (y)a,x) = Nal?, @,y € R,

for some constants L, A > 0.
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In this paper we investigate two approximations of X, discrete {X"} and
continuous {X"}, defined to be the solutions of the SDEs with reflecting
boundary conditions of the form
t

t
(1.5) X7 =Xo+|o(X7)awe" + \b(X7 ) do! + K},  teRY,
0 0
and
t t
(1.6) XP'=Xo+ | o(XD) dW, + {b(X1¢" ) ds + K, teRT,
0 0

respectively, where o' = max{k/n : k € NU{0}, k/n < t} and W¢" is the
discretization of W, i.e. W& = Wi for t € [k/n,(k+1)/n), k € NU{0},
n € N. Since in the case D = R? the processes { X"}, {X"} are the classical
Euler and Euler-Peano approximations to the equation without reflecting
boundary, we call them the Fuler and Euler—Peano approzimations to (1.1).
Such approximations have been considered before when the coefficients o, b of
(1.1) are continuous and the SDE (1.1) has the pathwise uniqueness property
(see e.g. Stominiski (1994, 2001)). In this paper we omit the assumption of
the continuity of o, b. We give two new theorems concerning convergence in
law of {X"} and {X™} to a solution of (1.1) in which the coefficients satisfy
the conditions (1.2)—(1.4) and under the assumption that (1.1) has a unique
weak solution.

Conditions ensuring weak uniqueness for (1.1) in the case of discontinuous
coefficients o, b were considered in Stroock and Varadhan (1971) and Schmidt
(1989). In the latter paper it is shown that if d = 1 and b = 0, then (1.1) has
a weak solution on D = [r1, 9] for every starting point z¢ € D iff the set M
of all z € D such that SEmUz 0~2(y) dy = oo for every open neighbourhood
U, of x is contained in the set N of zeros of o. Therefore, if o is merely
bounded and measurable, some additional assumptions on boundedness of
(00*)~1 are indispensable. Schmidt also proved that in the above situation
the solution of (1.1) is unique if N C M. In the multidimensional case, from
Stroock and Varadhan (1971) we know that a sufficient condition for the
uniqueness of a weak solution of (1.1) is that oo™ is bounded, continuous
and uniformly elliptic, b is bounded measurable and 9D is regular. Under
these assumptions the uniqueness can be shown with the use of the Girsanov
theorem.

In Yan (2002) a similar problem is considered. In the case of nonreflecting
SDEs Yan shows that the convergence of the Euler—Peano scheme to the
solution of (1.1) holds as long as a weak solution exists and is unique. He
assumes that o and b are continuous almost everywhere with respect to
the Lebesgue measure and have at most linear growth. However, since he
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uses the local time technique in his proofs, the main results are only one-
dimensional. In our paper, the main tool is a version of the multidimensional
Krylov inequality.

Let us now introduce some definitions and notations. D(R*,R%) is the
space of all mappings = : Rt — R? which are right continuous and admit
left-hand limits, with the Skorokhod topology J;. Processes we consider have
trajectories in D(RT, R?). For a given process X we write AX; for X; — X;_
and we denote by X¢" the discretization of X, i.e. thn = Xy for t €
[k/n, (k+1)/n), k € NU{0},n € N.If X = (X!,..., X9)is alocal martingale
then [X]; stands for >>% | [X?];, where [X7] is the quadratic variation process
of X?,i=1,....d. f K = (K',..., K% is a process with locally finite
variation then |K|; = Zle |K|¢, where |K'|; is the total variation of K*
on [0,t]. LP(Q), p > 1, is the usual LP-space with the Lebesgue measure [
on Q. RY@R? is the space of d x d-matrices with the norm ||| = (tr oo*)!/2
and o* is the matrix transpose to 0. We write K¢ = {z € R? : |z| < R},
where |-| denotes the usual Euclidean norm on R?. Finally, “—p” and “—p”
denote convergence in law and in probability respectively.

2. The Euler scheme. Let D be a convex domain in R?. Define the
set NV, of inward normal unit vectors at x € 9D by

Ny = {nERd: In| =1, /\(y—m,n) 20}.
yeD
Let (£2, F, P) be a probability space and (F;);cg+ be a filtration on (§2, F, P)
satisfying the usual conditions. Let Y be an (F;)-adapted semimartingale
with initial value in D, i.e.
}/t:}/O“‘Mt—FAt, tER+,

where Yy € D, M is an (F;)-adapted local martingale, A is an (F;)-adapted
process with bounded variation, My = Ag = 0. Recall that a pair (X, K) of
(Fi)-adapted processes is called a solution to the Skorokhod problem associ-

ated with Y if:

(1) Xt :Xt + Kt, te R+,
(ii) X is D-valued,
(iii) K is a process with locally bounded variation such that Ky = 0 and

t t
Ky =\n.d|Kls, |Kl;=\1{x.cop}dK|s, teRY,
0 0

where ns € Nx, if X; € 9D.

Recall also that the SDE (1.1) is said to have a weak solution if there
exists a filtered probability space ({2, F, (F¢), P), an (Fy)-adapted Wiener
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process W and a pair of (F;)-adapted processes (X, K) such that (X, K) is
a solution of the Skorokhod problem associated with

t t
Y, =Xo+ [ o(X,) dW, + | b(X,) ds.
0 0

any two weak solutions (X, K,W), (2, F,(F:),P) and (X,K,W),
,(Ft), P) with the same initial distribution, the laws of (X, K) and
) are the same then we say that weak uniqueness holds for (1.1).

Let (thn) denote the discretization of (F;), i.e. ]:tg” = Fpm for t €
[k/n,(k+1)/n), k€ NU{0}, n € N. We say that the SDE (1.5) has a
strong solution if there exists a pair (X", K™) of (F} )-adapted processes
such that (X", K™) is a solution of the Skorokhod problem associated with

¢ t
(2.1) V7= Xo+ | o(X7)dwe" + [b(X7) do?.

0 0
It is easy to prove that a solution X™ of (1.5) is given by the recurrent
formula

_8 = X07
Yn Yn 1 n
Xlkt1)/n = U( jm +0( k/n) + (X3 Wiy 1y/m — Wk/n))
and X' = XZ/ for t € [k/n,(k+1)/n), k € NU{0}, n € N, where II(z)

is a projection of z on D.
We can now formulate our main result.

THEOREM 2.1. Let {(X", K")}nen be a sequence of solutions of (1.5)
with coefficients o, b satisfying (1.2)-(1.4). If (1.1) has a unique weak solution
(X, K) then (X", K") —p(X, K).

Proof. Our proof starts with the observation that {sup;<y |X}|}nen and
{|K™|7}nen are bounded in probability, i.e.

hm lim sup P(sup X} >R)=0, TEecR",

R—oo p—oo

hm hmsupP(]K”]T>R)—0 T e RY.

R—oco p—oo

Since the pair (X", K™) is a solution of the Skorokhod problem associated
with Y given by the formula (2.1), due to Corollary 2.6 in Stominski (2001),
for every p € N and every q € R,

(2.2) sup E'sup | X}'|* < oo, supE|K"|p < 00,
neN  t<q neN

which in particular implies boundedness in probability of our sequences.
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Now we prove that {(X™, K™ W)}, cn is tight in D(R*,R3?). We use
the criterion given by Aldous (1978). Let {v,}nen be a sequence of (thn)
stopping times and let {d, } ,en be a sequence of positive constants such that
5p L 0and v, + 6, < g, n €N, ¢ € RT. By Corollary 1 in Stomiriski (1994),
(1.3) and (2.2),

“=n 12 : >n ] Ynton Tnton =n n 2
EIX? 5 — X7 | gCﬁE(Ba@X&def} +‘ | o(xr)der )
0 Tn " Tn
<GB( | troo' (Xl )dot+ | (X)) dot)
Tn Yn
Yn+0n
<LCy(d+1)E | (1+4sup|X7[?)ds
u<s
Tn -
= LC3(d+1)6, —— 0.

Using again Corollary 1 in Stominski (1994), (1.3) and (2.2) we obtain the
same estimate for E|K" ton K ]2 and consequently, the convergence

n—o0

Since W¢" —p W, it follows that the sequence {(X", K", W?")},cn is tight
in D(R*, R3%). Therefore, there exists a subsequence (n) C (n) and processes

X, K,W such that
(2.3) (X7, B, we) — (XK, W)

in D(R*T,R39), where W is a Wiener process with respect to the natural

filtration FXHKW By the standard argument, in order to finish the proof it
is sufficient to show that (X, K) is a solution of the SDE

t t
(2.4) Xi=Xo+|o(X,)dW, +(b(X,)ds + K;,  teRT

0 0

Now we prove an inequality of Krylov’s type for {X"},en, which is our
crucial tool.

LEMMA 2.2. Let 7f = inf{t : | ?| > R}, R € RY, n € N. Then for all
bounded measurable functions f: D — R such that I(Dy) = 0,
TATE
(2.5) limsup B | f(X7 )ds < C| Fllpacranpy:
n—oo 0

where C' is a constant depending only on d,T, R and .



176 A. Semrau

Proof. For every n € N set
t t
Y = Xo+ | o(X2 ) dW, + | b(XT ) ds
0 0
and let ()? n K ") be a solution of the Skorokhod problem associated with yn,
In view of Corollary 2.6 in Stominski (2001), for every p € N and every
g € RT,

(2.6) supE][A("H]’ < 0.
neN

Let wyy (9, g) denote the modulus of continuity of W. By Schwarz’s inequality,
Lemma A.4 in Stominski (2001), (1.3) and (2.2),

Esup|§}" = V{2 = Bsup lo(Xp ) (We = Wog) +b(Xgy )t~ )
=~q ~q

< 2{d(E sup loo™ (XF)I*) 2 (B{ww (1/n,a)} )"/

1\? -
+ (—) Esup|b(X?_)|2}
n t<q

Inn — 1 2 —
< cl{— (Esup(1+ [ X2 )2 + (—) Esup(1 + rX?_P)}
n t<q n t<q
Inn

< Cy —.
n

Applying Lemma 2.2 in Tanaka (1979) we conclude that
sup | X7 — X7[* < sup V)" = V7| + dsup [V = VP|([K"| — [K"]o).
t<q t<q t<q
Hence and by Schwarz’s inequality,
Esup| X} — X7 < Cy{Esup [V — V7P
t<q t<q
+ (Esup |V = Y71 2(E|K"; + B[E™[;)"/?}.
t<q
Using now (2.2), (2.6) and the above estimate of £ sup;, |1A/t" — Y72 we get
N = Inn\ 2
(2.7) Esup | X — X7]> < C’4<—> .
t<q n
By the assumption made at the beginning of the proof, X" is of the form
X = Xo+ A} + M + K7,
where A7 = SEAb()_(’;_) ds and M = SEO‘()_(?_) dWs. For every n € N let
7R —inf{t : | X}| > R'}, where R’ € RT and R’ > R. According to (2.7),

n
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we have
lim P(rf > 78y =o.
n—oo

It is easy to note that E|A"
obtain E|f€n|T/\?R’ < oo for every n € N. Moreover, by (1.4), the matrix @

defined as _
((00*)”()(?_) dt)
Qt = —
troo*(Xy )dt ), =1, 4

|ppsrr < 00 for every n € N. From (2.6) we also

n

is uniformly elliptic. All the assumptions of Theorem 6(i) in Melnikov (1983)
are satisfied, so there exists a constant Cs depending only on d, T, R and A
such that

TARE
E § (X2 dM"™)s < Os)\fll agiea, iy
0
On the other hand,
TARE TARE
E | f(XDds<(@N'E | f(XDtroo* (X7 )ds
0 0
TARE
= (@N'E | (XA,
0

so for all measurable functions f : D — RT and for every n € N,

TARE
(2.8) E S f(X¢)ds < C”f”Ld(K;;,mD)v
0

where C is a constant depending only on d, T, R’ and \.
We are now able to show that

TATE
(2.9) limsup £ S f(XE)ds < CHfHLd(Kng)-
n—oo 0

Indeed, from the property of ?f/ and (2.8),

TArE TARE
limsup £ S f(XI)ds < limsup E S f(XD)ds L rezrry
n—00 0 n—o0 0 nen
TATE
+ limsup F S F(X$)ds1 pozr)
n—oo noon

0
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TARE
< limsup F S F(X™) ds + Cglimsup P(rF > 71y < Cllfllacxa,npy-
n—oo 0 n—oo R/

Letting R’ | R yields (2.9).
Next, we show that for every continuous function f: D — R,
TATE TATE
(2.10) limsupE‘ S FX™ ) ds — S f(X? )ds| = 0.
oo 0 0

Let M := SUD,c 4D |f(x)| < oo. Since f is uniformly continuous on K4ND,

for every & > 0 there exists § > 0 such that | f(z)— f(2')| < eifz,2’ € K&ND
and |z — 2’| < 0. Therefore, by Chebyshev’s inequality,

T/\T,]f
E| | (F(R) - F(X)) ds|
0
TATE
<E S [FXSD) = FIX I gn _xn gy ds
0
TATE
+E S (f(XE) - f(X?—))l(p?g_f)?g_\zg) ds
0
<eT+2MTP( sup |X* — X" |>0)
s<TATE
<eT+2MT62E sup ]X'f — X712
t<TATR

Using (2.7) and letting ¢ — 0 we obtain (2.10). Hence, by (2.9), it follows
that the inequality (2.5) is true for every continuous function f: D — R*,

Now let f be an arbitrary nonnegative bounded function such that {(Dy)
= 0. Since f is Riemann integrable, for every € > 0 there exists a continuous
function fX such that f < ff and

S (fF(z) — f(x))dr < .
K¢nD

Since for f the inequality (2.5) is true,

TATE TATE
limsup £ S f(X? )ds <limsup E S (X)) ds

< C”f;_HLd(K%mD) < CHfHLd(Kj‘l%ﬂD) + C7€l/d.

Letting € — 0 completes the proof of the lemma. =
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The remaining part of the proof consists in a modification of the proof
of Theorem 2.2 from Rozkosz and Stomiriski (1997). For every n € N let

=inf{t e RT : | X?| > Ror |[X? | > R} and 7% = inf{t € RT : | X;| > R
or |X;_| > R}, R € Rt In view of (2.3) and Proposition VI.2.12 from Jacod
and Shiryaev (2003), there exists a sequence { Ry }xen with Ry 1 oo such that
for every k € N,

__ ,_R, __ ,_R o R _ _p
(2‘11) (Fﬁ%7)(n,7nﬁ7}(n,7nﬁ’vvp ’T”ﬁ)';;9(ka,)(TRk,l(TRk,VVTRk)
in R x D(RT, R3).

Using mollification we can construct sequences {b;}ien and {o;}ien of
continuous functions o; : D — R4 @ RY, b; : D — R? such that ||o;07 ()| +
bi(z)]? < K(1+ |z/?), * € R?, and Uf’J — gk and bt — b in LYK),
k,7,1 = 1,...,d, for every compact subset K C D. By (2.3) and Theo-
rem 2.6 of Jakubowski, Mémin and Pages (1989), it follows that for every
1€N,keN,

_Ry, _Ry,
'/\Tn/ '/\Tn,
— 1 =R e n' —_— ’ ) =R
@12) (7X@ aws | w(X ) det KM )
0 0
NTRE AR
— (P X a(X) AW, | 6K ds KT
0 0

in R x D(RT, R*).
On the other hand, by Lemma 2.2 and the Lebesgue dominated conver-
gence theorem, for every k € N and every T € R,

lim limsup E B (05 — 0)(X2) dWSQ",}

1—00

w0 T TAF
N
= lim limsup E S tr(o; — o) (os — o) (X7 ) do”
=00 n/ oo 0
TA ?R,k
< lim limsup F —o)(oi — o) (X™)|> ds
=00 1/ o0 B

<Chm H|| (0i —0)(oi =0.

” HLd K¢ LND)

Similarly,
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lim limsup F S(bl —b) (X ) do?

_Ry,
i—00 5/ oo 0 TAT ;

TAF R

n

< d"? lim limsup E S (b — b) (X )| ds
1—00 /o0 0
< d'2C Jim | b; = bl [l pagieg, oy = 0-
71— 00 Ry
Boundedness in probability of {sup,<r [X}'|}nen implies that for every T in
R* we have limy_, o limsup,,_, - P(fff“ < T) = 0. Hence, for every € > 0,

t t
(2.13) lim lim supP(sup ‘S oi (X7 ) dwe" — SO’()??/_) dwe" | > g) =0
1—00 /o0 t<T 0 0
and
t t
(2.14)  lim hmsupP(sup ’gbi()?g’_)dg’;' —\bo(x2)del'| > g) — 0.
170 p/—oo t<T 0 0

Now we show that Krylov’s inequality is also true for X. First assume
that f is continuous. By (2.11) and Theorem 2.6 of Jakubowski, Mémin and
Pages (1989),

~/\Ff,k AFRY
| f()_(;"_)ds? | f(Xods inDER"RY.
0 0

Therefore, by Lemma 2.2 and Fatou’s lemma, for every k € N and T € RT,

_Ry,
TAFRE T/\Tn,
E | f(X)ds<lminfE | f(XL)ds < C|lfllpagregay.
0 0

The proof of this inequality for all nonnegative measurable functions f is
now standard (see e.g. Krylov (1982)).

By the above, in much the same way as for X" and W¢" , we show that
for every T € RT,

Jim E<§)(Ji — 0)(X,) dWS>TARk =0

and

lim B (b — b)(X)ds

i—00 0 ’T/\?Rk

=0.
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Since 7% 1 0o P-a.s., for every € > 0,

t t
(2.15) lim P(sup ‘Sai()_(s) AW, —{o(X,) dW,| > 5) =0
1—00 t<T 1y 0
and
t t
(2.16) lim P(sup foi(Xs) ds — [6(X) ds( > 5) —0.
1—00 <1y 0

By (2.12)(2.16) and Theorem 3.2 from Billingsley (1999),

(X Jo(Xe) awes (X ) o', k™)
0 0 . .
— ()T, [0 (X0 dW,. [b(X,) ds,z?)
P 0 0
in D(RT,R*). Finally, by the continuous mapping theorem, (X, K) is a
solution of the SDE (2.4), which completes the proof. =

3. The Euler—Peano scheme. Let us now consider a continuous ap-
proximation {X"} of X defined as the solutions of the SDEs (1.6). For that
approximation one can obtain a similar result to that for {X"}. We describe
it in the following theorem.

THEOREM 3.1. Let {(X", K"™)}nen be a sequence of solutions of (1.6)
with coefficients o, b satisfying (1.2)—(1.4). If (1.1) has a unique weak solution
(X, K) then (X", K") —p (X, K).

The proof of this theorem is quite similar to that of Theorem 2.1 because
Lemma 2.2 holds true with X" replaced by X™¢".

The result given in Theorem 3.1 is quite satisfactory from the theoreti-
cal standpoint. However, if we are interested in numerical simulation there
appears a problem—not always can one give a simple simulating scheme of
a solution of (1.6). In the case D = R%~! x R* an efficient method of such
simulation was given by Lépingle (1995).
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