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Summary. We prove that—consistently—in the space w™ there are no P-sets with the
c-cc and any two fat P-sets with the ¢™-cc are coabsolute.

1. Introduction. A closed subset A C X of a topological space X is said
to be a P-set if the inclusion A C int (] R holds for any countable family R of
open neighborhoods of A. A point x € X is a P-point if the one-element set
{z} is a P-set. Here, we consider the case of X = w* = (|w|\w, the remainder
of the Stone-Cech compactification of w (= the nonnegative integers with
the discrete topology). Hence, we may assume that the family R mentioned
above consists of open-closed neighborhoods of A. The existence of P-points
follows e.g. from the continuum hypothesis (see [6]), but it is not provable
in set theory. In fact, Shelah constructed a model in which ¢ = wy and there
are no P-points (see [7]).

Let k be a cardinal. We say that a set A has the k-cc (the k (anti-)chain
condition) if every disjoint family of relatively open subsets of A has power
less than . In [3] a construction is presented of a model in which ¢ = w»
and there are no P-sets with the wj-cc in the remainder w* (see also [4] for
all the references). In this paper we strengthen this theorem by describing a
model in which ¢ = wy and there are no P-sets with the ¢-cc. Moreover, in
the constructed model any two fat (see below for the definition) P-sets with
the ¢T-cc are alike in the sense that they are coabsolute (i.e. their Gleason
spaces are homeomorphic).

The case of non-fat sets requires a different forcing and will be considered
elsewhere.
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2. Basic facts and definitions. If A, B are subsets of w then A C, B
means A\ B is finite. Closed subsets of w* can be identified with filters on w.
Indeed, any closed set in w* can be written as

({A\w:A€cF}

where F is a filter on w (A is the closure of A C w in fw]), and vice
versa. P-filters (filters corresponding to P-sets) are then characterized by
the following condition:

For every family {A; : i € w} C F there is an A € F such that
AC, A; foralli € w.

Equivalently, P-ideals I (ideals dual to P-filters) have the following property:
For every {B; :i € w} C I there is a B € I such that B; C, B for all

1€ w.
An ideal I (and its dual filter F') is called fat if it satisfies the following
condition:

If {B; : i € w} C I is such that lim; min B; = oo, then there is an
infinite Z C w such that | J;c, B; € I.

In [5] it is proved that every P-set having the c-cc is fat.

For the rest of this section let us fix a fat P-filter F' and its dual I.

The filter F' determines a forcing P = P(F) in the following way: Let
7 consist of all trees ¢t = (t,<;), which are suborderings of (w, <) whose
domains ¢ are infinite elements of I. Fix a tree ty order isomorphic to the
Cantor tree B (i.e. a full binary tree of height w). Moreover we can assume
that mintg = 0. So, B can be treated as the set of all finite zero-one se-
quences. Moreover we can assume that if h : {0,1}<% — (tg,<y,) is the
required isomorphism then the following condition holds:

If x1, x2 are different elements of B, length(z1 Nxz2) =1 and

w1(l) < x2(l) then h(zilgo,.13) < h(x2li04,..1)-
We define the relation which partially orders the family 7" as follows: (¢, <)
< (s, <) if and only if (s, <) is a subordering of (¢, <;) and each branch of
(t,<;) contains cofinally a (unique) branch of (s, <).

For any t € T and n € w let t) =\ {0,...,n} denote the subtree of ¢
obtained from ¢ by deleting the elements 0, ..., n.

Now define P = P(F') as the set of all pairs p = (tP, fP), where tP € T

and tP < t(()n) for some n and a tree tg, and fP: ¢ — {0,1}. The ordering
on P is defined as follows:

p<q = t* <t?and fP D fI.
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Thus, the sets of branching points of the trees are exactly the same. (In
fact, these points are precisely the branching points of the fixed tree tg.) It
follows that each branch of the tree tP is uniquely coded by a branch of #,
(and B).

To see how IP works, suppose that G C P is a generic filter. For any branch
b of ty in V let bP be the branch of ¥ which almost contains b cofinally; put
t¢ = Upec 27 ¢ = Upec /7 and be = Upeg 7. Clearly, t% is a tree (but
td ¢ 1), f¢:t% — {0,1} and b is a branch of t“ extending b. Define

Xy={icw:iecb®and fO()=1}.

By assumption, the sets ¢ belong to I and therefore the set (w\ t?) N A
is infinite, for each A € F' and p € P. It follows that the sets

EM ={peP:3i>nlic ANW and fP(i) = ]}

are dense for each A € F, n € w, ¢ = 0,1 and any branch b of ¢y (in V).
Hence, X, intersects infinitely each set A € F, and the complement b \ Xp
has the same property. In [3], it is proved that the countable product P¥(F) =
P(F) x P(F) x --- is always w-proper and w“-bounding (i.e. each function
f:w — w from V[G] is majorized by a function ¢ : w — w from V). Thus w;
is not collapsed and since distinct branches b” are almost disjoint we may
say that the forcing P adds uncountably many almost disjoint Gregorieff-
like sets Xj. In particular, the Suslin number of the set ({A\w : A € F}
determined by F' will be uncountable in V[G].

A similar notion of forcing is used in [3] to construct a model in which
there are no closed ccc P-sets (in w*). Since w; is not collapsed, to obtain an
uncountable family of relatively open subsets of () F' it is enough to add a
new element X3 for every branch bV of BY (i.e. every branch which belongs
to the ground model). Since, starting with ¢ = wj, we iterate the forcing
PY(F) wo times, in the resulting model we have ¢ = ws. So to ensure that
each closed P-set is c-cc we have to add new elements of the type X} for wo
(new) branches of B.

Note that since the set t does not belong to the ground model its char-
acteristic function is a new branch in the binary tree B.

3. Construction of the model. Let us fix a ground model V' in which
¢ = w1, 2% = wy and the diamond principle holds:

There is a sequence (T, : o < wp and cf(a) = wy) such that for every
Y C H(wz) the set {a < wa : cf(a) = w1 and Y N Hy = To} is
stationary.

Here, H(w2) denotes the family of all sets of hereditary power less than wo;
H(w2) = Uycw, Ho is a standard decomposition into a continuously in-
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creasing chain with card(H,) = w;. (As V we can take for example the
constructible universe.)

Define by induction a countable support iteration (P, : o < wg) as
follows:

e P, = Limg., Ps (limit with countable supports) for limit a,

o Poii =P, xP¥(T,) if cf(a) = wy and Py, IF “Ty, is a fat P-filter”,

e Po11 = P,*Q, in all remaining cases (Q,, is a P,-name of an arbitrary
forcing whose countable support iteration is proper and w“-bounding).

We can assume that P, C H(w2). In view of [7, Ch. V, Theorem 4.3] the
forcing Py, is proper and w“-bounding. Let G be a generic filter.

4. Main theorem. The model constructed in the previous section sat-
isfies the following.

THEOREM 1. In the model V|G| there are no P-sets with the c-cc.

Proof. Suppose the opposite and derive a contradiction. Thus, there is a
fat P-filter F' € V[G]. Clearly, we have

VI[G] E “c = (w2)V” and V[Gla] = “c=w” forall a < ws.
Set F, = FNV[G|a]. We claim that
The set C; = {a < ws : F, € V[G|a]} is an wi-cub

(i.e. unbounded and closed under limits of length w;). Choose a canonical
name F' C H(wg) of F consisting of some pairs (z,p) (in fact, canonical
names for pairs, which are elements of H(ws)), where z is a P,,,-name of a
subset of w and p € P,,. Denote by F(z) the set {p : (x,p) € F}). Since
card F'(x) is at most wy, the set

Cy ={a <wy:Vz[z e VP) o F(z) C P}

is easily seen to be an wj-cub. Plainly, the set F', = F' N (V(Pa) x Py) is a
P,-name and we have

FolGla] = FIG) N V[G]a] = Fa,

whence F, € V[G|a] for all o € Cs.

In addition we may assert that the F,’s are fat P-filters, because they
are so on an wi-cub subset of Cy. Indeed, if R = {A4; : i € w} C F,, then
there is an A € F such that A C, A; for all i € w. There is a 0 < wy
such that A € V[G|f] (cf. [7, Ch. V, 4.4]. Since there are at most ¢ = w;
countable subfamilies R of Fi, in V[G|a], there must be an ordinal o* € C
such that in V[G|a*] we can find some lower bounds A € F for all such R’s.
Now define inductively ap = a, agy1 = ag and @) = supg.y ag¢ for limit .
If 3 = supe.,, a¢, then g € C1 and Fg € VI[G|3] is a P-filter. Obviously,
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the set
Ci={B <wsy: Fsis a P-filter}

is wy-closed, which proves that Cf is an w;-cub.

In a similar way we show that Fj is fat on an wi-cub subset C C7, which
proves the claim.

A standard reasoning also shows that the set

Cs={a<wy:FNH,=F,}
is an wi-cub. Hence, C' = C1N(C} is also an wi-cub. By the diamond principle
applied to Y = F' C H(ws) there is an o < ws, with cf(a) = w;y such that
T, is a P,-name of the fat P-filter F,,. By the definition of the iteration we
force with P¥(F,) at stage a, i.e. Pop1 = Py x PY(F4).

To finish the proof fix a p € P,,. Then the ath term p(«) can be written
as p(a) = (pp(a) : n € w). Let b be a branch in the binary tree B (in
V[Gla]) and denote by b5, the corresponding branch in ¢$, = Upea thas
where p|q IF“p(a) = (th o, fh )" Define

Xna() = {k e by, fia(k) =1}
Note that for any £ > a with cf(§) = wy, tm’£ = Upec th m.é

new branch in the binary tree and thus a new branch bné in the tree tﬁa.

determines a

Indeed, we can identify the set tg§ with its characterictic function. Such

a function is just a (new) branch in the binary tree, say b. Let bnm§ be the
corresponding branch of the tree tg{ o (Of course, this branch does not belong
to the model V[G|a].) Define

Xm@—{kebmvf £ (k) =1}

(Note that the sets X;& ¢ for a < & and m € w form a family of ¢ almost
disjoint Gregorieff-like sets centered with F,.)
Actually, what we will use is

LEMMA 1. Assume that (§; : i € w) € V is a sequence of ordinals greater
then or equal to «, of cofinality wy. Let (n; : i € w) € V[G|a] and (m; :
i € w) € V[G|sup&;] be sequences of natural numbers (the first one is injec-
tive). Suppose that a sequence (b; : i € w) of branches of the binary tree B
and a function g : w — w belong to V[G|a]. Denote by X; the set Xy, ,(bi)

if & = a, and an[f otherwise. Then the set
ﬂ[(w \ X;) U[0,9(i))] is in the ideal I, (dual to Fy).
€W
Proof. The proof consists of two cases:

CASE 1. Suppose that & = « for all 4 € w. It is enough to show that the
assertion of the lemma holds for V' and the forcing P“(F,). So suppose that
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F is a fat P-filter in V. For a given p = ((tn, fn) : n € w) there is a set B
and integers k; € w such that

tn;, \ [0,ki) C B foralliecw.

We may assume that g(i) < k; < kit1 and y; = [ki,kit1) \ B # 0 for
all 7. Extend each t,, by adding to the branch b; all elements of y; and put
fn; (k) =1 for k € y;. Then ¢ obtained in this way forces that

[(w\ X3) U[0,9(2)] Ny =0,
and hence
[MW\&MWM@HHUM:Q

But Uiew Yi = [kmg,00) \ B and thus
ql- m(w \ X;)U[0,g(i)) C. B,

€W
which proves the first case.

CASE 2. Suppose that there are §; > a. Without losing generality we
can treat V[G|a] as a ground model. Define y; as above. Then first of all, for
all i € {j : & = o}, extend conditions (t,,, fn;) by adding new elements to
the trees ,, o, in the way described above.

Let & > a. By definition, ¢,, < t(()m) for some m € w. (In fact, ¢,, <
t(()m) (&, n;), since the choice of the tree to depends on an ideal I(&;,n;) con-
sidered at stage & and for the index n;. We can assume that if I(£;,n;) C
I(fg,ng) for some £ < & or & = & and n; < ng, then to(fl,nl) -
to(£2,n2).) We choose a finite sequence of pairwise comparable conditions
p=po>p1 > - > pr which forces all properties listed below. To simplify
notation we will write h;, 27, y; etc. instead of their canonical names.

For a fixed isomorphism h; : B — ¢y denote by ¢; the images h;(x;), where
x; is a sequence of length [ and range {1}. Put

ci =i, where Ih={l:c €ty,}.

Thus ¢; is the least branching point of ¢,, which belongs to the branch

ui = Urey, hiz1)-
We extend t,,, as follows: For all » € y; and r < ¢; we put r <t,, C There
exists the least [; € w such that
i\ {0,1,...,¢} C e, ap) Nw.
Thus we add all elements of y; to the branch corresponding to u; and put

frn;(r) = 1 for each of them. Moreover extend the condition p(&)(m;) =
(tm, &5 fmie:) in such a way that

p‘& I “{O, 1, c.. ,lz‘} (- tmi,&'”
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The condition p, obtained in this way forces the same as the ¢ defined in
Case 1. So Lemma 1 is proved.

Now, we can finish the proof of Theorem 1. From the ¢-cc assumption it
follows that for every ¢ € w there is an 1; < wg such that w\ ng[f € F for
all £ > n; with cf(§) = wi and m; € w. Let wy > & > n; with cf (&) = wy
and m; € w.

Since F'is a P-set, there is an A € F' and a function g : w — w such that

A\[0,9(7)) Cw)\ X}Z’a& for each i € w,

which implies (7,.,, (W\ X5 U0, g(i)) € F,. Since P, is bounding we may
assume that g € V. This contradicts Lemma 1 and the proof is finished. =

5. Structure of a fat P-set. The coabsoluteness assertion follows easily
from the following theorem, which clarifies the structure of any fat P-set.

THEOREM 2. In the model VP2 [G| every fat P-set F' has a m-base tree
of height w, each vertex of which splits into ¢ elements.

Proof. Let I denote also the corresponding filter. Keeping the notation
from the preceding proof we use the sets X“iy to construct a dense tree in the
factor algebra P(w)/F. Fix an enumeration of the branches of the binary
tree {b, : v < wy}. Denote by Xi the set Xmi’& if b, is the characteristic
function of the tree tG ¢ (&> a) and the set X o(by) if by belongs to the
model V[G|a]. Notice ﬁrst that for a given p051t1ve element a=[A] >0
from P(w)/F, there is an ¢ € w such that

a- xfy >0 for ¢-many ~,

where 3717 =[X ?y] denotes the equivalence class mod F' of elements determined

by the branch b, in the tree tfa
Indeed, suppose the opposite, i.e. for each i € w there is a §; such that
AﬂXfY el for every v > (3;.

Let v > sup,¢,, 3; with cf() = w;1. We then have
A\ B; gw\X;' for all i € w,

where the B;’s belong to I. Since [ is a P-ideal there is a set B € I such
that B; C, B for all i € w and hence

A\B C ((w\ X3) U0, 9(d)),
1EW
where g may be assumed to be in V, as the forcing is bounding. Now,

Lemma 1 implies that A\ B and hence A are in I, which contradicts the
positivity of a = [A].
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Clearly, deleting “small” sets (i.e. those from I) and renumbering we may
assume that we are given a matrix

Mz{xi:iéwand’y<c}

such that every element a;?y is positive in P(w)/F and each positive element
a > O intersects ¢ elements :cif in some row ¢ (depending on a). Obviously,
each row in M is an antichain. Finally, note that any positive a > O splits
into ¢ elements. To see this, we check that the filter

Fo={XCuw:[a<[X]}={XCw:A\X €I}

is a fat P-filter, as F' is, and then apply Theorem 1 to convince ourselves
that the algebra P(w)/F, has an antichain of power c.

Now, define a tree T as follows. Extend, if necessary, the first row {xg :
v < ¢} to a maximal antichain Ty = {yg (B <c}.

Assume that the levels Ty,...,T,,_1 are already defined so that each
T, = {y’ﬂ : B < ¢} is a maximal antichain. Extend each of the antichains

{yg_l Nzl :y < ¢} \ {O} to a maximal Tf. By the remark above we may

assert that Tf always has ¢ elements. Let T}, = Uﬁ<ch. Clearly, in the
resulting tree T = J, o, Tn each vertex splits into ¢ elements and every
positive a > O intersects ¢ elements of some level T;,. Hence, to each a > O
we may assign an element y, € T such that a-y, > O and y, # y, whenever
a # b, as in [1]. Replace any such y, by a -y, if y, —a > O, and the same for
all y < y,. Clearly, the tree T' so modified becomes additionally a 7-base.

6. Final remarks. From Theorem 2 it follows immediately that for
any two fat P-filters F; and Fy in V[G] the Boolean algebras P(w)/F; and
P(w)/F» have order isomorphic dense subsets. This, in turn, implies that the
completions of P(w)/F; and P(w)/F;, are Boolean isomorphic, or, equiva-
lently, the Gleasons G(F}) and G(F») are homeomorphic.

Finally, let us comment on other consistent configurations of P-sets. For
example, we can construct a model with ¢ > w; in which there are no
P-points and there are two fat P-sets, one with the wi-cc and the other
with the ws-cc. In connection with Theorem 2 we note that it is consistent
to have two fat P-sets having the ¢™-cc with distinct Gleasons. The proof is
more difficult and will be published elsewhere.
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