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Fat P -sets in the Spa
e ω
∗byRyszard FRANKIEWICZ, Magdalena GRZECH and Paweª ZBIERSKIPresented by Czesªaw RYLL-NARDZEWSKI

Summary. We prove that�
onsistently�in the spa
e ω
∗ there are no P -sets with the

c-

 and any two fat P -sets with the c
+-

 are 
oabsolute.1. Introdu
tion. A 
losed subset A ⊆ X of a topologi
al spa
e X is saidto be a P -set if the in
lusion A ⊆ int⋂

R holds for any 
ountable family R ofopen neighborhoods of A. A point x ∈ X is a P -point if the one-element set
{x} is a P -set. Here, we 
onsider the 
ase of X = ω∗ = β[ω]\ω, the remainderof the Stone��e
h 
ompa
ti�
ation of ω (= the nonnegative integers withthe dis
rete topology). Hen
e, we may assume that the family R mentionedabove 
onsists of open-
losed neighborhoods of A. The existen
e of P -pointsfollows e.g. from the 
ontinuum hypothesis (see [6℄), but it is not provablein set theory. In fa
t, Shelah 
onstru
ted a model in whi
h c = ω2 and thereare no P -points (see [7℄).Let κ be a 
ardinal. We say that a set A has the κ-cc (the κ (anti-)
hain
ondition) if every disjoint family of relatively open subsets of A has powerless than κ. In [3℄ a 
onstru
tion is presented of a model in whi
h c = ω2and there are no P -sets with the ω1-cc in the remainder ω∗ (see also [4℄ forall the referen
es). In this paper we strengthen this theorem by des
ribing amodel in whi
h c = ω2 and there are no P -sets with the c-cc. Moreover, inthe 
onstru
ted model any two fat (see below for the de�nition) P -sets withthe c

+-cc are alike in the sense that they are 
oabsolute (i.e. their Gleasonspa
es are homeomorphi
).The 
ase of non-fat sets requires a di�erent for
ing and will be 
onsideredelsewhere.2000 Mathemati
s Subje
t Classi�
ation: Primary 03E35; Se
ondary 03E40, 03E65.Key words and phrases: ω
∗, Gregorie� for
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2. Basi
 fa
ts and de�nitions. If A, B are subsets of ω then A ⊆∗ Bmeans A\B is �nite. Closed subsets of ω∗ 
an be identi�ed with �lters on ω.Indeed, any 
losed set in ω∗ 
an be written as

⋂
{A \ ω : A ∈ F}where F is a �lter on ω (A is the 
losure of A ⊆ ω in β[ω]), and vi
eversa. P -�lters (�lters 
orresponding to P -sets) are then 
hara
terized bythe following 
ondition:For every family {Ai : i ∈ ω} ⊆ F there is an A ∈ F su
h that

A ⊆∗ Ai for all i ∈ ω.Equivalently, P -ideals I (ideals dual to P -�lters) have the following property:For every {Bi : i ∈ ω} ⊆ I there is a B ∈ I su
h that Bi ⊆∗ B for all
i ∈ ω.An ideal I (and its dual �lter F ) is 
alled fat if it satis�es the following
ondition:If {Bi : i ∈ ω} ⊆ I is su
h that limi minBi = ∞, then there is anin�nite Z ⊆ ω su
h that ⋃

i∈Z Bi ∈ I.In [5℄ it is proved that every P -set having the c-cc is fat.For the rest of this se
tion let us �x a fat P -�lter F and its dual I.The �lter F determines a for
ing P = P(F ) in the following way: Let
T 
onsist of all trees t = (t,≤t), whi
h are suborderings of (ω,≤) whosedomains t are in�nite elements of I. Fix a tree t0 order isomorphi
 to theCantor tree B (i.e. a full binary tree of height ω). Moreover we 
an assumethat min t0 = 0. So, B 
an be treated as the set of all �nite zero-one se-quen
es. Moreover we 
an assume that if h : {0, 1}<ω → (t0,≤t0) is therequired isomorphism then the following 
ondition holds:If x1, x2 are di�erent elements of B, length(x1 ∩ x2) = l and

x1(l) < x2(l) then h(x1|{0,1,...,l}) < h(x2|{0,1,...,l}).We de�ne the relation whi
h partially orders the family T as follows: (t,≤t)
≤ (s,≤s) if and only if (s,≤s) is a subordering of (t,≤t) and ea
h bran
h of
(t,≤t) 
ontains 
o�nally a (unique) bran
h of (s,≤s).For any t ∈ T and n ∈ ω let t(n) = t \ {0, . . . , n} denote the subtree of tobtained from t by deleting the elements 0, . . . , n.Now de�ne P = P(F ) as the set of all pairs p = 〈tp, fp〉, where tp ∈ Tand tp ≤ t

(n)
0 for some n and a tree t0, and fp : tp → {0, 1}. The orderingon P is de�ned as follows:

p ≤ q ≡ tp ≤ tq and fp ⊇ f q.
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Thus, the sets of bran
hing points of the trees are exa
tly the same. (Infa
t, these points are pre
isely the bran
hing points of the �xed tree t0.) Itfollows that ea
h bran
h of the tree tp is uniquely 
oded by a bran
h of t0(and B).To see how P works, suppose that G ⊆ P is a generi
 �lter. For any bran
h
b of t0 in V let bp be the bran
h of tp whi
h almost 
ontains b 
o�nally; put
tG =

⋃
p∈G tp, fG =

⋃
p∈G fp and bG =

⋃
p∈G bp. Clearly, tG is a tree (but

tG 6∈ I), fG : tG → {0, 1} and bG is a bran
h of tG extending b. De�ne
Xb = {i ∈ ω : i ∈ bG and fG(i) = 1}.By assumption, the sets tp belong to I and therefore the set (ω \ tp) ∩Ais in�nite, for ea
h A ∈ F and p ∈ P. It follows that the sets

EA,b
n,ε = {p ∈ P : ∃i ≥ n [i ∈ A ∩ bp and fp(i) = ε]}are dense for ea
h A ∈ F , n ∈ ω, ε = 0, 1 and any bran
h b of t0 (in V ).Hen
e, Xb interse
ts in�nitely ea
h set A ∈ F , and the 
omplement bG \ Xbhas the same property. In [3℄, it is proved that the 
ountable produ
t Pω(F ) =

P(F ) × P(F ) × · · · is always ω-proper and ωω-bounding (i.e. ea
h fun
tion
f : ω → ω from V [G] is majorized by a fun
tion g : ω → ω from V ). Thus ω1is not 
ollapsed and sin
e distin
t bran
hes bG are almost disjoint we maysay that the for
ing P adds un
ountably many almost disjoint Gregorie�-like sets Xb. In parti
ular, the Suslin number of the set ⋂

{A \ ω : A ∈ F}determined by F will be un
ountable in V [G].A similar notion of for
ing is used in [3℄ to 
onstru
t a model in whi
hthere are no 
losed 


 P -sets (in ω∗). Sin
e ω1 is not 
ollapsed, to obtain anun
ountable family of relatively open subsets of ⋂
F it is enough to add anew element Xb for every bran
h bV of BV (i.e. every bran
h whi
h belongsto the ground model). Sin
e, starting with c = ω1, we iterate the for
ing

Pω(F ) ω2 times, in the resulting model we have c = ω2. So to ensure thatea
h 
losed P -set is c-

 we have to add new elements of the type Xb for ω2(new) bran
hes of B.Note that sin
e the set tG does not belong to the ground model its 
har-a
teristi
 fun
tion is a new bran
h in the binary tree B.3. Constru
tion of the model. Let us �x a ground model V in whi
h
c = ω1, 2ω1 = ω2 and the diamond prin
iple holds:There is a sequen
e 〈Tα : α < ω2 and cf(α) = ω1〉 su
h that for every

Y ⊆ H(ω2) the set {α < ω2 : 
f(α) = ω1 and Y ∩ Hα = Tα} isstationary.Here, H(ω2) denotes the family of all sets of hereditary power less than ω2;
H(ω2) =

⋃
α<ω2

Hα is a standard de
omposition into a 
ontinuously in-
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reasing 
hain with card(Hα) = ω1. (As V we 
an take for example the
onstru
tible universe.)De�ne by indu
tion a 
ountable support iteration 〈Pα : α < ω2〉 asfollows:

• Pα = Limβ<α Pβ (limit with 
ountable supports) for limit α,
• Pα+1 = Pα ∗ Pω(Tα) if cf(α) = ω1 and Pα 
 “Tα is a fat P -�lter�,
• Pα+1 = Pα ∗Qα in all remaining 
ases (Qα is a Pα-name of an arbitraryfor
ing whose 
ountable support iteration is proper and ωω-bounding).We 
an assume that Pα ⊆ H(ω2). In view of [7, Ch. V, Theorem 4.3℄ thefor
ing Pω2

is proper and ωω-bounding. Let G be a generi
 �lter.4. Main theorem. The model 
onstru
ted in the previous se
tion sat-is�es the following.Theorem 1. In the model V [G] there are no P -sets with the c-

.Proof. Suppose the opposite and derive a 
ontradi
tion. Thus, there is afat P -�lter F ∈ V [G]. Clearly, we have
V [G] |= “c = (ω2)

V � and V [G|α] |= “c = ω1� for all α < ω2.Set Fα = F ∩ V [G|α]. We 
laim thatThe set C1 = {α < ω2 : Fα ∈ V [G|α]} is an ω1-
ub(i.e. unbounded and 
losed under limits of length ω1). Choose a 
anoni
alname F ⊆ H(ω2) of F 
onsisting of some pairs 〈x, p〉 (in fa
t, 
anoni
alnames for pairs, whi
h are elements of H(ω2)), where x is a Pω2
-name of asubset of ω and p ∈ Pω2

. Denote by F (x) the set {p : 〈x, p〉 ∈ F}). Sin
e
cardF (x) is at most ω1, the set

C2 = {α < ω2 : ∀x [x ∈ V (Pα) → F (x) ⊆ Pα]}is easily seen to be an ω1-
ub. Plainly, the set Fα = F ∩ (V (Pα) × Pα) is a
Pα-name and we have

Fα[G|α] = F [G] ∩ V [G|α] = Fα,when
e Fα ∈ V [G|α] for all α ∈ C2.In addition we may assert that the Fα's are fat P -�lters, be
ause theyare so on an ω1-
ub subset of C1. Indeed, if R = {Ai : i ∈ ω} ⊆ Fα, thenthere is an A ∈ F su
h that A ⊆∗ Ai for all i ∈ ω. There is a β < ω2su
h that A ∈ V [G|β] (
f. [7, Ch. V, 4.4℄. Sin
e there are at most c = ω1
ountable subfamilies R of Fα in V [G|α], there must be an ordinal α∗ ∈ C1su
h that in V [G|α∗] we 
an �nd some lower bounds A ∈ F for all su
h R's.Now de�ne indu
tively α0 = α, αξ+1 = α∗
ξ and αλ = supξ<λ αξ for limit λ.If β = supξ<ω1

αξ, then β ∈ C1 and Fβ ∈ V [G|β] is a P -�lter. Obviously,
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the set
C ′

1 = {β < ω2 : Fβ is a P -�lter}is ω1-
losed, whi
h proves that C ′
1 is an ω1-
ub.In a similar way we show that Fβ is fat on an ω1-
ub subset ⊆ C1, whi
hproves the 
laim.A standard reasoning also shows that the set

C3 = {α < ω2 : F ∩ Hα = Fα}is an ω1-
ub. Hen
e, C = C1∩C3 is also an ω1-
ub. By the diamond prin
ipleapplied to Y = F ⊆ H(ω2) there is an α < ω2, with cf(α) = ω1 su
h that
Tα is a Pα-name of the fat P -�lter Fα. By the de�nition of the iteration wefor
e with Pω(Fα) at stage α, i.e. Pα+1 = Pα ∗ Pω(Fα).To �nish the proof �x a p ∈ Pω2

. Then the αth term p(α) 
an be writtenas p(α) = 〈pn(α) : n ∈ ω〉. Let b be a bran
h in the binary tree B (in
V [G|α]) and denote by bG

n,α the 
orresponding bran
h in tGn,α =
⋃

p∈G tpn,α,where p|α 
 �p(α) = 〈tpn,α, fp
n,α〉�. De�ne

Xα
n,α(b) = {k ∈ bG

n,α : fG
n,α(k) = 1}.Note that for any ξ > α with cf(ξ) = ω1, tGm,ξ =

⋃
p∈G tpm,ξ determines anew bran
h in the binary tree and thus a new bran
h bm,ξ

n,α in the tree tGn,α.Indeed, we 
an identify the set tGn,ξ with its 
hara
teri
ti
 fun
tion. Su
ha fun
tion is just a (new) bran
h in the binary tree, say b. Let bm,ξ
n,α be the
orresponding bran
h of the tree tGn,α. (Of 
ourse, this bran
h does not belongto the model V [G|α].) De�ne

Xm,ξ
n,α = {k ∈ bm,ξ

n,α : fG
m,α(k) = 1}.(Note that the sets Xm,ξ

n,α for α ≤ ξ and m ∈ ω form a family of c almostdisjoint Gregorie�-like sets 
entered with Fα.)A
tually, what we will use isLemma 1. Assume that 〈ξi : i ∈ ω〉 ∈ V is a sequen
e of ordinals greaterthen or equal to α, of 
o�nality ω1. Let 〈ni : i ∈ ω〉 ∈ V [G|α] and 〈mi :
i ∈ ω〉 ∈ V [G| sup ξi] be sequen
es of natural numbers (the �rst one is inje
-tive). Suppose that a sequen
e 〈bi : i ∈ ω〉 of bran
hes of the binary tree Band a fun
tion g : ω → ω belong to V [G|α]. Denote by Xi the set Xα

ni,α
(bi)if ξi = α, and Xmi,ξ

ni,α otherwise. Then the set
⋂

i∈ω

[(ω \ Xi) ∪ [0, g(i))] is in the ideal Iα (dual to Fα).Proof. The proof 
onsists of two 
ases:
Case 1. Suppose that ξi = α for all i ∈ ω. It is enough to show that theassertion of the lemma holds for V and the for
ing Pω(Fα). So suppose that
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F is a fat P -�lter in V. For a given p = 〈(tn, fn) : n ∈ ω〉 there is a set Band integers ki ∈ ω su
h that

tni
\ [0, ki) ⊆ B for all i ∈ ω.We may assume that g(i) < ki < ki+1 and yi = [ki, ki+1) \ B 6= ∅ forall i. Extend ea
h tni

by adding to the bran
h bi all elements of yi and put
fni

(k) = 1 for k ∈ yi. Then q obtained in this way for
es that
[(ω \ Xi) ∪ [0, g(i))] ∩ yi = ∅,and hen
e ⋂

i∈ω

[(ω \ Xi) ∪ [0, g(i))] ∩
⋃

i∈ω

yi = ∅.But ⋃
i∈ω yi = [km0

,∞) \ B and thus
q 
 “

⋂

i∈ω

(ω \ Xi) ∪ [0, g(i)) ⊆∗ B�,whi
h proves the �rst 
ase.
Case 2. Suppose that there are ξi > α. Without losing generality we
an treat V [G|α] as a ground model. De�ne yi as above. Then �rst of all, forall i ∈ {j : ξj = α}, extend 
onditions (tni

, fni
) by adding new elements tothe trees tni,α, in the way des
ribed above.Let ξi > α. By de�nition, tni

≤ t
(m)
0 for some m ∈ ω. (In fa
t, tni

≤

t
(m)
0 (ξi, ni), sin
e the 
hoi
e of the tree t0 depends on an ideal I(ξi, ni) 
on-sidered at stage ξi and for the index ni. We 
an assume that if I(ξ1, n1) ⊆

I(ξ2, n2) for some ξ1 < ξ2 or ξ1 = ξ2 and n1 < n2, then t0(ξ1, n1) ⊆
t0(ξ2, n2).) We 
hoose a �nite sequen
e of pairwise 
omparable 
onditions
p = p0 ≥ p1 ≥ · · · ≥ pk whi
h for
es all properties listed below. To simplifynotation we will write hi, xl, yi et
. instead of their 
anoni
al names.For a �xed isomorphism hi : B → t0 denote by cl the images hi(xl), where
xl is a sequen
e of length l and range {1}. Put

ci = cli
0
, where li0 = {l : cl ∈ tni

}.Thus ci is the least bran
hing point of tni
whi
h belongs to the bran
h

ui =
⋃

l∈ω hi(xl).We extend tni
as follows: For all r ∈ yi and r < ci we put r ≤tni

c. Thereexists the least li ∈ ω su
h that
yi \ {0, 1, . . . , ci} ⊂ [ci, cli) ∩ ω.Thus we add all elements of yi to the bran
h 
orresponding to ui and put

fni
(r) = 1 for ea
h of them. Moreover extend the 
ondition p(ξi)(mi) =

(tmi,ξi
, fmi,ξi

) in su
h a way that
p|ξi


 “{0, 1, . . . , li} ⊂ tmi,ξi
.�
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The 
ondition pk obtained in this way for
es the same as the q de�ned inCase 1. So Lemma 1 is proved.Now, we 
an �nish the proof of Theorem 1. From the c-cc assumption itfollows that for every i ∈ ω there is an ηi < ω2 su
h that ω \ Xmi,ξ
ni,α ∈ F forall ξ ≥ ηi with cf(ξ) = ω1 and mi ∈ ω. Let ω2 > ξi > ηj with cf(ξi) = ω1and mi ∈ ω.Sin
e F is a P -set, there is an A ∈ F and a fun
tion g : ω → ω su
h that

A \ [0, g(i)) ⊆ ω \ Xmi,ξi

ni,α
for ea
h i ∈ ω,whi
h implies ⋂

i∈ω(ω\Xmi,ξi

ni,α )∪[0, g(i)) ∈ Fα. Sin
e Pω2
is bounding we mayassume that g ∈ V . This 
ontradi
ts Lemma 1 and the proof is �nished.5. Stru
ture of a fat P -set. The 
oabsoluteness assertion follows easilyfrom the following theorem, whi
h 
lari�es the stru
ture of any fat P -set.Theorem 2. In the model V Pω2 [G] every fat P -set F has a π-base treeof height ω, ea
h vertex of whi
h splits into c elements.Proof. Let F denote also the 
orresponding �lter. Keeping the notationfrom the pre
eding proof we use the sets X i

γ to 
onstru
t a dense tree in thefa
tor algebra P (ω)/F . Fix an enumeration of the bran
hes of the binarytree {bγ : γ < ω2}. Denote by X i
γ the set Xmi,ξi

i,α if bγ is the 
hara
teristi
fun
tion of the tree tGmi,ξi
(ξi > α), and the set Xα

ni,α
(bγ) if bγ belongs to themodel V [G|α]. Noti
e �rst that for a given positive element a = [A] > Ofrom P (ω)/F , there is an i ∈ ω su
h that

a · xi
γ > O for c-many γ,where xi

γ = [X i
γ ] denotes the equivalen
e 
lass mod F of elements determinedby the bran
h bγ in the tree tGi,α.Indeed, suppose the opposite, i.e. for ea
h i ∈ ω there is a βi su
h that

A ∩ X i
γ ∈ I for every γ ≥ βi.Let γ > supj∈ω βj with cf(γ) = ω1. We then have

A \ Bi ⊆ ω \ X i
γ for all i ∈ ω,where the Bi's belong to I. Sin
e I is a P -ideal there is a set B ∈ I su
hthat Bi ⊆∗ B for all i ∈ ω and hen
e

A \ B ⊆
⋂

i∈ω

(ω \ X i
γ) ∪ [0, g(i)),where g may be assumed to be in V , as the for
ing is bounding. Now,Lemma 1 implies that A \ B and hen
e A are in I, whi
h 
ontradi
ts thepositivity of a = [A].
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Clearly, deleting �small� sets (i.e. those from I) and renumbering we mayassume that we are given a matrix

M = {xi
γ : i ∈ ω and γ < c}su
h that every element xi

γ is positive in P (ω)/F and ea
h positive element
a > O interse
ts c elements xi

γ in some row i (depending on a). Obviously,ea
h row in M is an anti
hain. Finally, note that any positive a > O splitsinto c elements. To see this, we 
he
k that the �lter
Fa = {X ⊆ ω : [a] ≤ [X]} = {X ⊆ ω : A \ X ∈ I}is a fat P -�lter, as F is, and then apply Theorem 1 to 
onvin
e ourselvesthat the algebra P (ω)/Fa has an anti
hain of power c.Now, de�ne a tree T as follows. Extend, if ne
essary, the �rst row {x0

γ :

γ < c} to a maximal anti
hain T0 = {y0
β : β < c}.Assume that the levels T0, . . . , Tn−1 are already de�ned so that ea
h

Ti = {yi
β : β < c} is a maximal anti
hain. Extend ea
h of the anti
hains

{yn−1
β ∩ xn

γ : γ < c} \ {O} to a maximal T β
n . By the remark above we mayassert that T β

n always has c elements. Let Tn =
⋃

β<c
T β

n . Clearly, in theresulting tree T =
⋃

n∈ω Tn ea
h vertex splits into c elements and everypositive a > O interse
ts c elements of some level Tn. Hen
e, to ea
h a > Owe may assign an element ya ∈ T su
h that a · ya > O and ya 6= yb whenever
a 6= b, as in [1℄. Repla
e any su
h ya by a · ya if ya −a > O, and the same forall y ≤ ya. Clearly, the tree T so modi�ed be
omes additionally a π-base.6. Final remarks. From Theorem 2 it follows immediately that forany two fat P -�lters F1 and F2 in V [G] the Boolean algebras P (ω)/F1 and
P (ω)/F2 have order isomorphi
 dense subsets. This, in turn, implies that the
ompletions of P (ω)/F1 and P (ω)/F2 are Boolean isomorphi
, or, equiva-lently, the Gleasons G(F1) and G(F2) are homeomorphi
.Finally, let us 
omment on other 
onsistent 
on�gurations of P -sets. Forexample, we 
an 
onstru
t a model with c > ω1 in whi
h there are no
P -points and there are two fat P -sets, one with the ω1-cc and the otherwith the ω2-cc. In 
onne
tion with Theorem 2 we note that it is 
onsistentto have two fat P -sets having the c

+-cc with distin
t Gleasons. The proof ismore di�
ult and will be published elsewhere.
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