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with Respect to a Grébner Basis
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Summary. We deal with a reduction of power series convergent in a polydisc with respect
to a Grobner basis of a polynomial ideal. The results are applied to proving that a Nash
function whose graph is algebraic in a “large enough” polydisc, must be a polynomial.
Moreover, we give an effective method for finding this polydisc.

1. Introduction. Let 2 C C™ be a domain and let xg € {2. We say that
a holomorphic function f : {2 — C is a Nash function at xg if there exists an
open neighborhood U C {2 of xy and a nonzero polynomial F : C**! — C
such that the graph I'y of f over U is contained in the zero set of F. We call
f a Nash function in {2 if it is a Nash function at each x € 2. The family of
Nash functions in §2 is denoted by N (£2).

A subset X of C” is said to be algebraic in 2 if X N 2 = X N 2 where
X is the Zariski closure of X.

REMARK 1.1 (see |9, Remark 1.2]). Let 2 C C™ be a domain and let
f : £2 — C be a holomorphic function. Then the following statements are
equivalent:

(i) feN($),
(ii) there exists an irreducible polynomial F : C**! — C, unique up to a
multiplicative scalar, such that F'(z, f(x)) =0 for x € 2.

THEOREM 1.2 (see [9, Theorem 1.3|). Ewvery entire Nash function is a
polynomial.

The proof in [9] is elementary. Theorem 1.2 can also be deduced from
Serre’s graph theorem ([8]). An elementary proof of the affine version of
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Serre’s graph theorem, based on the theory of Grébner bases, can be found
in [1, Theorem 4.2].

The main result of this paper is Theorem 3.4 which gives a reduction
of convergent (in a “large enough” polydisc) power series with respect to a
Grébner basis of a given polynomial ideal.

The results obtained are applied to prove Theorem 4.5 which states that
if f is a Nash function in (2 and the graph I'; of f is algebraic in a “large
enough” polydisc contained in {2 x C then f is a polynomial. Moreover, the
theory of Grobner bases may be used to find the “large” polydisc.

2. Notation and basic facts. Let K be the field of complex (C) or
real (R) numbers. We denote by N the set of nonnegative integers and by R
the set of positive real numbers. For convenience of the readers we recall some
facts; we follow the notation of [1|. The basic algebraic structures involved
in this paper are the polynomial ring R = K[X] = K[X}, ..., X,], the ring
K[[X]] = K[[X1, ..., Xy]] of formal power series and the rings

E,. :={f € K[[X]] : f is absolutely convergent at the point r}
corresponding to 7 = (r1,...,7,) € R%. Note that if f € E, then f is

absolutely uniformly convergent in the closure of the polydisc
P.:={(z1,...,zp) € K" |x1] < 71,00y |2n| < T}
Let X% := X" .- X3 For f =3 cyn CaX® € K[[X]] the support of f
is defined to be
supp f = {a : cq # 0}.
For a set I C K[[X]] we put supp F' = {J ;¢ - supp f.

Let f =) cnn CaX® € By, where r = (rq,...,7,) € R} The space E,
with the norm

(1) 1£llr =D Icalr®
aeNn

is a Banach space (for details see e.g. [5]). For a given nonempty subset
D C N™,
E,(D):={f € E, : supp f C D}

is a Banach subspace of E,.. The spaces R and
R(D):={f € R:supp f C D}

are dense subspaces of F, and E,.(D), respectively.
From elementary facts concerning power series we can deduce the follow-
ing lemma.
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LEMMA 2.1. Let r = (r1,...,r,) € RY. If fo € E.(D) for o € N* and
> lfallr < oo,
aeN"
then the series ) cnn fo is convergent to an f € E.(D).
Let < be a fixed admissible term ordering in N™ (see [1]). Then, by

definition, X* < XP if a < B. If f = 3 yn caX® € R, f # 0, then the
exponent, leading coefficient, initial term and tail of f are defined to be

exp f = mjx{a ;o € supp [},

les f = Cexp f>
ing f:=les fXOP<7,
ta.il_< f = f — in_< f,

respectively.
For FF C R we define

_ JUjeplexps f+N") if F ¢ {0}, o Nn
AF—{® ing{O}, Dr =N \AF
Let I C R be a nonzero ideal and let < be an admissible term ordering.
A finite subset G C [ is called a Grobner basis of I with respect to < if
Ag = Ajg.
The reader is expected to be familiar with fundamental facts of the theory
of Grobner bases (for example presented in [3], [4] or [6]).

3. Reduction of holomorphic functions in a polydisc. We start
with the following lemma important in what follows.

LEMMA 3.1. Let F' C R be a finite set and let < be an admissible term
ordering. Then there exists ro = (ro1,...,70n) € R} such that

(2) [ing fllry > lltail fllr, ~ for f € F.

Proof. By Bayer’s Lemma ([2], see also [1]) there exists a linear form
n
L=) 6X; withf;eNy, i=1,...,n,
i=1

such that, for any «, 5 € supp F', if a < (3 then L(a) < L(f3).
Now we define a new admissible term ordering <, as follows:
a<rf < (Lla) < L(B) or L(aw) = L(B) and a < ).

Observe that the restrictions of the orderings <y and < to supp F' coincide.
Put o; = (t,...,t), t € R. Since F is finite, there exists ty € Ry such
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that

exp

. L( f) .
H1n<L fHQtO = HC<L f’tO > Htaﬂ<L f”Qto for f € F.

Since iny f = in<, f and tailL f = tails, f for any f € F, it follows that
ro := 0t, Satisfies

(3) linz flly > 6@l fllyy for f € F. n
Let < be an admissible term ordering. We say that ¢ € R reduces to

g € R modulo F C R, written g £ g, if there exist f € F, v € N",
¢y € K\ {0} such that

g =9—c,X'f and y+exp,fEsuppg\suppy’.
That reduction is called a simple reduction step.

LEMMA 3.2. Let F' C R be a finite set, < an admissible term ordering,
and let ro be as in Lemma 3.1. Then there exists € > 0 such that

(4) 19" 1o + elley X llno < llgllr,
for any simple reduction step g £ g =9-—c,Xf.

Proof. The proof is similar to the proof of Lemma 3.3 from [1]. Since F’
is finite, there exists € > 0 such that

(5) lins fllrg > [[tail< fllny +¢  for f € F.

We set o := v +exp_ f. Then g can be decomposed as g = ¢, X* + p with
a ¢ suppp and ¢, = ¢y lc< f. Consequently,

9llro = [IPllro + llcaXllrg = [IPllrg + [ley X7 in< fllrg
= [Ipllro + llexy X7 [lrol[in< f1lro-

By (5) it follows that

(6) 19llro = lIpllrg + [ley X7 [l (lltail< fllrg + ).

Applying the triangle inequality to the equation

d=9—c,X'f=p+caX®—c, X ing [ — ¢, X7 tail, f

=p—c, X" tailg f

and then using (6) yields

19 llr < lpllrg + lle X7 tail< fllrg = lIPllvg + ley X7 [lngl|tail £l

< [lgllrg = €lley X liro.

which completes the proof. m

PRrROPOSITION 3.3. Let < be an admissible term ordering. Let G C R
be a Grobner basis of an ideal I and let ro be as in Lemma 3.1. Then there
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exists € > 0 such that

(i) for any f € R there exist polynomials hy corresponding to g € G and
exactly one polynomial freq € R(Dr) such that

(7) F=> hgg+ frea:
geG
(ii) the mapping red : R 5 f + fiea € R(Dy) is linear,
(i) || freallro +2 2 geq 1hgllrg < [ fllry for f € R,
(iv) [|hgllre < € M fllry for f € R and g € G,
(V) [ fredllrg < [1fllro-

Proof. (i) and (ii) follow from the well known Buchberger Algorithm (see
e.g. [4, Proposition 1, p. 79]).

To prove (iii) we will use the same method as in the proof of Proposi-
tion 3.4(i) in [1]. According to the Buchberger Algorithm, f can be rewritten
in the form m

/= Z CuXa“g,u + fred
pn=1
with ¢, X% which appeared in a simple reduction step of a reduction se-
quence

2 m
f g [f—aX%gq g f - ZCuXa”gu g te g f= ZcuXa”g,u = fred-
p=1 p=1
Condition (iii) follows by applying Lemma 3.2 to each step of the reduction
sequence. Conditions (iv) and (v) are trivial consequences of (iii). m

By (v) and since freq = 0 if and only if f € I, the division formula (7)
gives a representation of R as a direct sum
R=1a7R(Dr)

with a continuous projection “red” of R onto R(Dy).

THEOREM 3.4. Let <, G, and ry be as in Proposition 3.3. Then

(i) if f =D nenn CaX € Eyy then the series ) nn CaXioq 5 conver-
gent to an freq € Er, (D[),
(ii) the extended mapping “red” gives a continuous projection of E,, onto
ETO (D[),
(iii) ||fred||7"0 < Hf”To for [ e Eroa
(iv) if f € Ey, then fiea =0 if and only if f € IE,,,
(v) BEr, =1E,, ® E, (Dr) (direct sum).

Proof. (i) follows from condition (v) of Proposition 3.3 and Lemma 2.1.
To prove (ii) and (iii) observe that the mapping

red: R > f — frea € R(Dy)
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can be uniquely extended to the Banach space E,, with preservation of the
norm, because it is a densely defined bounded linear mapping.

Since I is dense in IE,, and frq = 0 for f € I, we have fq = 0 for
f € 1E,,, which completes the proof of condition (iv).

To prove (v) take f =) cyn CaX® € Epy. According to Proposition 3.3
we have

XO‘ = Z hg,ag + Xroéd
geG

such that fieq = > cnn CaXfoq- Therefore,
f= Z anhg,ag + fred-
aeN? geGG

Set hg := > cnn Calga- From condition (iv) of Proposition 3.3 and Lem-
ma 2.1 it follows immediately that h, € E, . Since red : R 3 f + fieqa €
R(Dry) is the identity mapping on the dense subspace R(Dy) of E,,(Dr), the
extended mapping “red” is the identity mapping on E,, (D), which completes
the proof. m

4. Applications. Let I C R be a polynomial ideal, < be an admissible
term ordering, and G be the reduced Grébner basis of I with respect to <.

DEFINITION 4.1. We say that a polydisc P, » € R, is convenient for
reduction with respect to I and < if

[in< g[l» > [[tail< g[|, for g € G.

PROPOSITION 4.2. If P, is a polydisc convenient for reduction with re-
spect to an ideal I and a term ordering <, then for any f € E, there exist
a unique h € IE, and a unique froq € E(Dr) such that f = h+ freq.

Proof. This follows immediately from Lemma 3.1 and Theorem 3.4. u
Define
Mi < = {r € R} : P, is a polydisc convenient for reduction with
respect to the ideal I and the term ordering <}.
REMARK 4.3. Since the functions
RY 5 7 [in gl — [tail gl € R,
for g € G are continuous, the set Mj _ is open.

Let I ¢ K[X,Y] :=K[Xy,...,X,,Y] be an ideal. Let <y be an elimi-
nation ordering for Y, i.e. an admissible term ordering in N™ x N such that
(8) X<y Y*  foraeN" keN\{0}.

Let G be the reduced Grébner basis of the ideal I with respect to <y-.
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PROPOSITION 4.4. If = (r1,...,7n, nt1) € My <y, then
re=(r1,...,mn,t) € My <, fort>r,y.
Proof. Let g € G and t > rp41. Since r € My <., we have

(9) [in<y gl > [|tail<, gl

If tailL, g is independent of Y, the right side of (9) is constant and the left
side is nondecreasing with respect to 7,41, which completes the proof.

Otherwise, tail, g depends on Y in a degree k. Then in, g also depends
on Y. We have the inequality

k
(10) ark | > Z bl 1,
=0
where a = a(ry,...,m,), b ="0b(r1,...,rn), a,b; > 0 for j =1,... k. Multi-
plying (10) by (t/r,11)F we obtain

k
at® > byt
j=0
Thus 1y = (r1,...,7,t) E M1 <, . =

THEOREM 4.5. Let 2 C C" be a domain, f : {2 — C a Nash function
in 2, and I C C[X,Y] the ideal of the graph of f. Let P, = P. X Pn, where
r=(r1,..sTnt1), ¥ = (r1,...,mn), 7" = rpy1, be a polydisc convenient for
reduction with respect to the ideal I and <y, an elimination ordering for'Y .
If P, C 2 and the graph I'y of f is algebraic in P, then f is a polynomial.

Proof. Since the Zariski closure of I'; is an algebraic set of codimension 1,
the reduced Grobner basis G of I with respect to <y consists of only one
polynomial g of the form

9(X,Y) = ap(X)Y* +ap 1 (X)YP L 4 (X)),

with & > 1 and a; # 0, and so ins, g = X*Y* with an a € N". Hence
GNC[X] =0 and f = freq. Since Y — f(X) vanishes on I'y and I’y is algebraic
in P, Y—f(X) € IO(P;), where O(P;) is the ring of holomorphic functions
in P, (see e.g. [7, Theorem 4.6]). The set M - is open (see Remark 4.3).
Thus, we can find 7 € M - such that the closure of P; is contained in P, and
for Py all the assumptions of Theorem 4.5 are satisfied. Since IO(P,) C Ej,
we have Y — f(X) € IEz and s0 0 = (Y — f)red = Yied — fred, where “red”
is the reduction in E;. On the other hand, Y,q is a polynomial. Hence so is
f = fred, which completes the proof. m

EXAMPLE 4.6. Let fi(X):=1/(X—k),keN,andlet I :=((X—k)Y —1)
be the ideal in C[X, Y] generated by (X —k)Y —1. Theset G = {(X—k)Y -1}
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is the reduced Grobner basis of I with respect to any elimination ordering
for Y.

1. If P, ,) is convenient for reduction then rq > k. Indeed, according
to Definition 4.1,

rire > kro + 1,
which implies that r{ > k.

2. If ry < k then P, ,,) is not convenient for reduction. To see this, fix
0 < r1 < k and consider the Nash function f; in 2 = {x € C: |z| < k}

given by
1N /X 1
0= (3) = 7=

J=0

The series f is absolutely convergent at r; and so fi € E
is independent of Y. Note that

Dy ={(i,j) € N : ij = 0},

r1,r)s Decause [

and Y — fy, € IE(;, ;,), by the same argument as in the proof of Theorem 4.5.
Then

0#Y — fu(X) € E(r) ) (D1) NI E( 1),

which contradicts condition (iv) of Theorem 3.4.
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