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Summary. We prove a fixed point theorem for Borsuk continuous mappings with spher-
ical values, which extends a previous result. We apply some nonstandard properties of the
Stiefel-Whitney classes.

1. Introduction. The aim of this note is to complete the proof of the
following result for set-valued mappings of the disc D" in the n-dimensional
Euclidean space.

THEOREM 1. Let f : D™ — 2P" be a Borsuk continuous map such that

n # 6 and for every x in D", f(x) is homeomorphic to either a point or the
(n — 2)-sphere S"~2. Then f has a fized point.

Borsuk continuity means continuity with respect to the metric g, defined
in [1]. Our research is motivated by Goérniewicz’s fixed point theorem for
Borsuk continuous mappings of D? (see [6]) and Schirmer’s results on bimaps
with values homeomorphic to a point or S° (see [16]). The author does not
know if S"~2 in Theorem 1 can be replaced by Sk with 1<k <n-—3.

Theorem 1 was proved in [12] for n = 3 and in [13] for n = 3,4,5. For
completeness we first recall the sketch of the proof of Theorem 1 in a special
case. In this case all bundles which appear in the proof are assumed to have
the structural group O(n — 1). We point out those steps of the proof which
seem to be difficult without this restriction. Then we show how to avoid the
difficulties.
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2. Sketch of the proof of Theorem 1 in a special case. Let U =
{x € D" : f(z) = S"2}. The set U is open in D". Roughly speaking, we
approximate OU by some (n — 1)-dimensional closed connected manifolds M
in U (see [11, pp. 56-57]). Fix such an M. Let I' = I'j; denote the graph
of flar. We need the assumption n # 6 to deduce from the Borsuk conti-
nuity of f that the projection p : I' — M is a completely regular map and
locally trivial fibration [4]. Here we apply Ferry’s theorem on approximating
homotopy equivalences by homeomorphisms, which seems to be unknown in
dimension 4 (see [2], [5], [8], [9])-

Denote the Stiefel-Whitney classes of the bundle p with fibre S"2 by
w1, ..., Wn—1. The Stiefel-Whitney classes are defined in terms of the Thom
isomorphism for all spherical fibrations (see for instance [10, p. 181]). By [11,
Theorem 1], a sufficient condition for f to have a fixed point is that

dim H,,_o(I"; Z3) > dim H,,_o(M; Z5),
which is equivalent to the equality
wp—1 =0 (see [12, p. 128]).

e The first restriction for this special case consists in assuming that there
is a free fibre-preserving action of Z3 on I" such that the orbit spaces
of the fibres are the projective spaces RP" 2. If we try to define such
an action in the natural way, i.e. transporting the antipodal map of
S"=2 to the fibres by local trivializations, then we succeed only if all
mappings in the structural group of p are odd.

Having the above action we proceed as follows. Let ¢ be the first (= the
last) Stiefel-Whitney class of the bundle I' — I'/Z5. Let q : I'/Z3 — M be
the map induced by p. Then

n—1
(1) Al = Zq*({ﬁj) Uc™ 1 for some @y, ..., Wy_1,
7j=1

by the Leray-Hirsch theorem (see [7, II1.1]); and
(2) " =0,

since otherwise the projection I' C M x R™ — R” contradicts a version of
the Borsuk-Ulam theorem (see [13, pp. 73-74]).

e The second condition, which should be clarified in the general case, is
the equality w; = w; for j = 1,...,n — 1. Proofs of this equality, as
far as I know, use the Splitting Principle, which is a property of the
bundles having the structural group O(n—1) [7, III1.5]. We assume that
this is the case.
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From (1), (2) and the above assumption we have

n—2
0=c"1Uuc= Zq*(wl Uwj +wjp1) UL
j=1
This gives wjt1 = wyUw; for j =1,...,n—2, and w,—1 = (w1)"" ! =0, the

last equality being a consequence of the triviality of the (n — 1)th power in
the Z-cohomology algebra of any closed (n — 1)-dimensional manifold in R™
(see [13, pp. 72-73|). This proves the theorem (in the special case).

3. The general case. Let S = S"72 §% = S x S\ A with A the
diagonal. Tt is easy to check that the maps ¢, : S& — S defined by

$zy)=lle -yl (z-y), V(y =2

are homotopy equivalences with homotopy inverse w(x) = (x, —x). Let

' ={(z,y) e ' x "'\ A :p(z) =p(y)}

and p®(z,y) = p(x). The group Zs acts on S and I'® by transposition.
The map p® : I'® — M is a locally trivial bundle with fibre S©. The orbit
spaces of the fibres of p® are homeomorphic to SA/ZQ ~ RP" 2, the last
equivalence being induced by ¢ (the idea of such an equivalence is due to
Cohen [3, Proposition III]). Thom proved that the Stiefel-Whitney classes
are invariants of fibre homotopy equivalences [17]. Thom’s argument shows
that the same is true for mappings over M which are homotopy equivalences
on the fibres. One such mapping is

I'®s (z,y) —zel,

because ) is a homotopy equivalence. Consequently, both bundles p, p© have
the same Stiefel-Whitney classes. It is a simple matter to obtain the formulae
(1) and (2) from Section 2 in the new situation, with ¢, ¢, w; replaced by

&€ H(I'® ) Zy; Zs), ¢° : T2 )Zy — M and v} € HI(M; Zy).

The author does not know if ij = w; for every j (in spite of the fact
that the mod-2 characteristic classes for spherical fibrations are indicated in
[14]). Clearly, the proof of Theorem 1 can be completed along the lines of
Section 2 provided

(3) wh | = w1,

Our proof of this equality will resemble a classical inductive reasoning in
the theory of characteristic classes, which makes use of the Gysin sequence
(see [15, 14.5]). The difference is that the splittings will have to be purely
algebraic, because of the lack of the notion of orthogonal complement in the
fibres.
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4. Proof of (3). To simplify notation, we continue to write
o E=T1% FEy=1%/2;
A A
W= wy_1, v =W, e=c";
o r=p~, g=q>, 0: E — E (the projection).
By the Leray—Hirsch theorem,
(¥)  H*(E; Z5)is an H*(M; Z3)-module freely generated by 1,e, ..., e" 2
with the multiplication
H*M x H*E3 3 (p,n) = p-n = g*(p) Un.

The Gysin exact sequences of the bundles r and p form the following
commutative diagram:

S H M — H" M S H"?ES HOM Y H M D H R —
ol Lia
RN Hn_SEQ U_e> Hn—2E2 9_*) Hn—2E i Hn—2E2 f} I_[n—lE‘2 Q_Z Hn—lE N

Since H~'M =0, r*=2: H"2M — H"2F is a monomorphism. Simi-
larly, 7*7 is an isomorphism for j < n—2. By our assumption, M is pathwise
connected, so HOM = Z,.

CASE 1. Assume that o = 0. Since 7%/ is now an isomorphism for j <
n — 2 and r* = p* o g*, we have
(4) HY By = ker(o*) @ im(g*) = im(Ue) @ im(g*)
for j < m—2. Since w = 1 Uw € ker(r*) = ker(p* o g*), it follows that
g*w € ker(o*) = im(Ue). There is 21 € H" 2E, with g*w = x1 Ue. By (4),
there are x5 € H" 3E, and v,_o € H" ?M with 21 = 22 U e + ¢*v,—_2. By
induction on 5 < n — 2,

Tj = Tj41 Ue + g*vn_j_l

for some xj11 € H"27JF, and Upn—j—1 € H™ 3710 Thus gw = x,_1U
e”_l—l—Z?:_f g*vn,j,lLJej foranz, 1 € H'Ey = {0,1}. If ,,_1 = 0 then (%)
shows that w = 0. In this way « is an epimorphism, o # 0, which contradicts
our assumption. We conclude that z,,_1 = 1 and

n—2
" = grw + E G Vp—j_1 U e,
=1

which gives w = v,,—1 as required.

CASE 2. Assume that o # 0. Thus « is an epimorphism, ker(Uw) =
HOM, w=1Uw =0.
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CASE 2.1. Suppose that 3 = 0. Hence ¢*"~? is an epimorphism. By (x),
n—2 ' '
H'" 2By = g*H" *M & @P(g*H" 7> M)Uél.
j=1
Since ¢* o (Ue) = 0, we have o*H" 2Ey = o*¢g*H"?M. Thus H"2E =
*H""2M = ker(a), a = 0, a contradiction.

CASE 2.2. Suppose that 5 # 0. There is an x; € im((), 1 # 0. Clearly,
0=z Ue.

CASE 2.2.1. Assume that ag*r; = 1. Fix x € H"2E. If a(z) = 0
then z € im(r*) C im(o*). If a(z) = 1 then x = (x — o*x1) + 0*z1 € im(p"),
because a(z—0*r1) = 0. Hence im(o*) = H" 2E and 3 = 0, a contradiction.

CASE 2.2.2. Assume that ap*z; = 0. Thus o*z1 € ker(a) = im(r*) =
im(o* o g*). There is a v, o € H" 2M with ¢*z1 = 0*¢g*v,,_o. Thus

x1 — g*vp—2 € ker(p*) = im(Ue).

There is an o € H" 3E, with 21 = 29 U e + ¢*vp—2. We will now proceed
by induction. Just as in Case 1, z; = zj41 Ue + g*v,—j—1 and

n—2
gw=0=zUe=1x,1Ue" 1 + Zg*vn_j_l Uel.
j=1
Next we claim that x; # 0 for every j = 1,...,n — 1. Conversely, suppose
that j + 1 = min{m : 2, = 0}. Thus 0 = z; Ue = > ], g*vp—i—1 U e'.

By (), vp—i—1 = 0 for ¢ = 1,...,4. Thus z; = 0, contrary to the choice
of j. We have proved that x,_1 # 0, and so z,_; = 1. Thus " ! = g*w +
E?:_f g vp—j—1Ue’l, and w = v,_1 as required.

The equality (3) follows and the proof of Theorem 1 is complete.
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