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An Appli
ation of the Stiefel�Whitney Classes to theProof of a Fixed Point Theorem for Set-Valued MappingsbyDariusz MIKLASZEWSKIPresented by Andrzej LASOTA
Summary. We prove a �xed point theorem for Borsuk 
ontinuous mappings with spher-i
al values, whi
h extends a previous result. We apply some nonstandard properties of theStiefel�Whitney 
lasses.1. Introdu
tion. The aim of this note is to 
omplete the proof of thefollowing result for set-valued mappings of the dis
 Dn in the n-dimensionalEu
lidean spa
e.Theorem 1. Let f : Dn → 2Dn be a Borsuk 
ontinuous map su
h that
n 6= 6 and for every x in Dn, f(x) is homeomorphi
 to either a point or the
(n− 2)-sphere Sn−2. Then f has a �xed point.Borsuk 
ontinuity means 
ontinuity with respe
t to the metri
 ̺c de�nedin [1℄. Our resear
h is motivated by Górniewi
z's �xed point theorem forBorsuk 
ontinuous mappings ofD2 (see [6℄) and S
hirmer's results on bimapswith values homeomorphi
 to a point or S0 (see [16℄). The author does notknow if Sn−2 in Theorem 1 
an be repla
ed by Sk with 1 ≤ k ≤ n− 3.Theorem 1 was proved in [12℄ for n = 3 and in [13℄ for n = 3, 4, 5. For
ompleteness we �rst re
all the sket
h of the proof of Theorem 1 in a spe
ial
ase. In this 
ase all bundles whi
h appear in the proof are assumed to havethe stru
tural group O(n− 1). We point out those steps of the proof whi
hseem to be di�
ult without this restri
tion. Then we show how to avoid thedi�
ulties.2000 Mathemati
s Subje
t Classi�
ation: 55M20, 55R25, 54C60.Key words and phrases: �xed points of set-valued mappings, Stiefel�Whitney 
lasses,Borsuk 
ontinuity. [181℄
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2. Sket
h of the proof of Theorem 1 in a spe
ial 
ase. Let U =

{x ∈ Dn : f(x) ∼= Sn−2}. The set U is open in Dn. Roughly speaking, weapproximate ∂U by some (n−1)-dimensional 
losed 
onne
ted manifolds Min U (see [11, pp. 56�57℄). Fix su
h an M . Let Γ = ΓM denote the graphof f |M . We need the assumption n 6= 6 to dedu
e from the Borsuk 
onti-nuity of f that the proje
tion p : Γ → M is a 
ompletely regular map andlo
ally trivial �bration [4℄. Here we apply Ferry's theorem on approximatinghomotopy equivalen
es by homeomorphisms, whi
h seems to be unknown indimension 4 (see [2℄, [5℄, [8℄, [9℄).Denote the Stiefel�Whitney 
lasses of the bundle p with �bre Sn−2 by
w1, . . . , wn−1. The Stiefel�Whitney 
lasses are de�ned in terms of the Thomisomorphism for all spheri
al �brations (see for instan
e [10, p. 181℄). By [11,Theorem 1℄, a su�
ient 
ondition for f to have a �xed point is that

dimHn−2(Γ ;Z2) > dimHn−2(M ;Z2),whi
h is equivalent to the equality
wn−1 = 0 (see [12, p. 128℄).

• The �rst restri
tion for this spe
ial 
ase 
onsists in assuming that thereis a free �bre-preserving a
tion of Z2 on Γ su
h that the orbit spa
esof the �bres are the proje
tive spa
es RPn−2. If we try to de�ne su
han a
tion in the natural way, i.e. transporting the antipodal map of
Sn−2 to the �bres by lo
al trivializations, then we su

eed only if allmappings in the stru
tural group of p are odd.Having the above a
tion we pro
eed as follows. Let c be the �rst (= thelast) Stiefel�Whitney 
lass of the bundle Γ → Γ/Z2. Let q : Γ/Z2 → M bethe map indu
ed by p. Then

cn−1 =

n−1∑

j=1

q⋆(w̃j) ∪ c
n−1−j for some w̃1, . . . , w̃n−1,(1)

by the Leray�Hirs
h theorem (see [7, III.1℄); and
cn = 0,(2)sin
e otherwise the proje
tion Γ ⊂ M × R

n → R
n 
ontradi
ts a version ofthe Borsuk�Ulam theorem (see [13, pp. 73�74℄).

• The se
ond 
ondition, whi
h should be 
lari�ed in the general 
ase, isthe equality w̃j = wj for j = 1, . . . , n − 1. Proofs of this equality, asfar as I know, use the Splitting Prin
iple, whi
h is a property of thebundles having the stru
tural group O(n−1) [7, III.5℄. We assume thatthis is the 
ase.
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From (1), (2) and the above assumption we have

0 = cn−1 ∪ c =
n−2∑

j=1

q⋆(w1 ∪ wj + wj+1) ∪ c
n−j−1.

This gives wj+1 = w1∪wj for j = 1, . . . , n−2, and wn−1 = (w1)
n−1 = 0, thelast equality being a 
onsequen
e of the triviality of the (n− 1)th power inthe Z2-
ohomology algebra of any 
losed (n−1)-dimensional manifold in R

n(see [13, pp. 72�73℄). This proves the theorem (in the spe
ial 
ase).3. The general 
ase. Let S = Sn−2, S△ = S × S \ △ with △ thediagonal. It is easy to 
he
k that the maps φ, ψ : S△ → S de�ned by
φ(x, y) = ‖x− y‖−1 · (x− y), ψ(x, y) = xare homotopy equivalen
es with homotopy inverse ω(x) = (x,−x). Let
Γ△ = {(x, y) ∈ Γ × Γ \ △ : p(x) = p(y)}and p△(x, y) = p(x). The group Z2 a
ts on S△ and Γ△ by transposition.The map p△ : Γ△ → M is a lo
ally trivial bundle with �bre S△. The orbitspa
es of the �bres of p△ are homeomorphi
 to S△/Z2 ≃ RPn−2, the lastequivalen
e being indu
ed by φ (the idea of su
h an equivalen
e is due toCohen [3, Proposition III℄). Thom proved that the Stiefel�Whitney 
lassesare invariants of �bre homotopy equivalen
es [17℄. Thom's argument showsthat the same is true for mappings over M whi
h are homotopy equivalen
eson the �bres. One su
h mapping is

Γ△ ∋ (x, y) 7→ x ∈ Γ,be
ause ψ is a homotopy equivalen
e. Consequently, both bundles p, p△ havethe same Stiefel�Whitney 
lasses. It is a simple matter to obtain the formulae(1) and (2) from Se
tion 2 in the new situation, with c, q, w̃j repla
ed by
c△ ∈ H1(Γ△/Z2;Z2), q△ : Γ△/Z2 →M and w△

j ∈ Hj(M ;Z2).The author does not know if w△

j = wj for every j (in spite of the fa
tthat the mod-2 
hara
teristi
 
lasses for spheri
al �brations are indi
ated in[14℄). Clearly, the proof of Theorem 1 
an be 
ompleted along the lines ofSe
tion 2 provided
w△

n−1
= wn−1.(3) Our proof of this equality will resemble a 
lassi
al indu
tive reasoning inthe theory of 
hara
teristi
 
lasses, whi
h makes use of the Gysin sequen
e(see [15, 14.5℄). The di�eren
e is that the splittings will have to be purelyalgebrai
, be
ause of the la
k of the notion of orthogonal 
omplement in the�bres.
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4. Proof of (3). To simplify notation, we 
ontinue to write
• E = Γ△, E2 = Γ△/Z2;
• w = wn−1, vj = w△

j , e = c△;
• r = p△, g = q△, ̺ : E → E2 (the proje
tion).By the Leray�Hirs
h theorem,

(∗) H⋆(E2;Z2) is an H⋆(M ;Z2)-module freely generated by 1, e, . . . , en−2with the multipli
ation
H⋆M ×H⋆E2 ∋ (µ, η) 7→ µ · η = g⋆(µ) ∪ η.The Gysin exa
t sequen
es of the bundles r and ̺ form the following
ommutative diagram:

· · · → H
−1

M → H
n−2

M
r⋆

→ H
n−2

E
α
→ H

0
M

∪w
→ H

n−1
M

r⋆

→ H
n−1

E → · · ·

g⋆

↓ ↓ id

· · · → H
n−3

E2

∪e
→ H

n−2
E2

̺⋆

→ H
n−2

E
β
→ H

n−2
E2

∪e
→ H

n−1
E2

̺⋆

→ H
n−1

E → · · ·

Sin
e H−1M = 0, r⋆n−2 : Hn−2M → Hn−2E is a monomorphism. Simi-larly, r⋆j is an isomorphism for j < n−2. By our assumption, M is pathwise
onne
ted, so H0M = Z2.
Case 1. Assume that α = 0. Sin
e r⋆j is now an isomorphism for j ≤

n− 2 and r⋆ = ̺⋆ ◦ g⋆, we have
HjE2 = ker(̺⋆) ⊕ im(g⋆) = im(∪e) ⊕ im(g⋆)(4)for j ≤ n − 2. Sin
e w = 1 ∪ w ∈ ker(r⋆) = ker(̺⋆ ◦ g⋆), it follows that

g⋆w ∈ ker(̺⋆) = im(∪e). There is x1 ∈ Hn−2E2 with g⋆w = x1 ∪ e. By (4),there are x2 ∈ Hn−3E2 and vn−2 ∈ Hn−2M with x1 = x2 ∪ e+ g⋆vn−2. Byindu
tion on j ≤ n− 2,
xj = xj+1 ∪ e+ g⋆vn−j−1for some xj+1 ∈ Hn−2−jE2 and vn−j−1 ∈ Hn−j−1M . Thus g⋆w = xn−1 ∪

en−1+
∑n−2

j=1
g⋆vn−j−1∪e

j for an xn−1 ∈ H0E2 = {0, 1}. If xn−1 = 0 then (∗)shows that w = 0. In this way α is an epimorphism, α 6= 0, whi
h 
ontradi
tsour assumption. We 
on
lude that xn−1 = 1 and
en−1 = g⋆w +

n−2∑

j=1

g⋆vn−j−1 ∪ e
j ,whi
h gives w = vn−1 as required.

Case 2. Assume that α 6= 0. Thus α is an epimorphism, ker(∪w) =
H0M , w = 1 ∪ w = 0.



A Fixed Point Theorem for Set-Valued Mappings 185
Case 2.1. Suppose that β = 0. Hen
e ̺⋆n−2 is an epimorphism. By (∗),

Hn−2E2 = g⋆Hn−2M ⊕
n−2⊕

j=1

(g⋆Hn−j−2M) ∪ ej.

Sin
e ̺⋆ ◦ (∪e) = 0, we have ̺⋆Hn−2E2 = ̺⋆g⋆Hn−2M . Thus Hn−2E =
r⋆Hn−2M = ker(α), α = 0, a 
ontradi
tion.
Case 2.2. Suppose that β 6= 0. There is an x1 ∈ im(β), x1 6= 0. Clearly,

0 = x1 ∪ e.
Case 2.2.1. Assume that α̺⋆x1 = 1. Fix x ∈ Hn−2E. If α(x) = 0then x ∈ im(r⋆) ⊂ im(̺⋆). If α(x) = 1 then x = (x− ̺⋆x1) + ̺⋆x1 ∈ im(̺⋆),be
ause α(x−̺⋆x1) = 0. Hen
e im(̺⋆) = Hn−2E and β = 0, a 
ontradi
tion.
Case 2.2.2. Assume that α̺⋆x1 = 0. Thus ̺⋆x1 ∈ ker(α) = im(r⋆) =

im(̺⋆ ◦ g⋆). There is a vn−2 ∈ Hn−2M with ̺⋆x1 = ̺⋆g⋆vn−2. Thus
x1 − g⋆vn−2 ∈ ker(̺⋆) = im(∪e).There is an x2 ∈ Hn−3E2 with x1 = x2 ∪ e + q⋆vn−2. We will now pro
eedby indu
tion. Just as in Case 1, xj = xj+1 ∪ e+ g⋆vn−j−1 and

g⋆w = 0 = x1 ∪ e = xn−1 ∪ e
n−1 +

n−2∑

j=1

g⋆vn−j−1 ∪ e
j.Next we 
laim that xj 6= 0 for every j = 1, . . . , n − 1. Conversely, supposethat j + 1 = min{m : xm = 0}. Thus 0 = x1 ∪ e =

∑j
i=1

g⋆vn−i−1 ∪ ei.By (∗), vn−i−1 = 0 for i = 1, . . . , j. Thus xj = 0, 
ontrary to the 
hoi
eof j. We have proved that xn−1 6= 0, and so xn−1 = 1. Thus en−1 = g⋆w +∑n−2

j=1
g⋆vn−j−1 ∪ e

j, and w = vn−1 as required.The equality (3) follows and the proof of Theorem 1 is 
omplete.
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