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PROBABILITY THEORY AND STOCHASTIC PROCESSES

Central Limit Theorem for Di�usion Pro
essesin an Anisotropi
 Random EnvironmentbyErnest NIEZNAJPresented by Stanisªaw KWAPIE�
Summary. We prove the 
entral limit theorem for symmetri
 di�usion pro
esses withnon-zero drift in a random environment. The 
ase of zero drift has been investigated ine.g. [18], [7]. In addition we show that the 
ovarian
e matrix of the limiting Gaussianrandom ve
tor 
orresponding to the di�usion with drift 
onverges, as the drift vanishes,to the 
ovarian
e of the homogenized di�usion with zero drift.1. Introdu
tion. We 
onsider the symmetri
 di�usion pro
ess with adrift in a random environment. Let xω(t) = (x1

ω(t), . . . , xd
ω(t)), t ≥ 0, be thesolution of the It� sto
hasti
 di�erential equation

(1.1)




dx(p)
ω (t) =

d∑

q=1

(
1

2
∂xqapq(xω(t);ω) + vq

)
dt

+
d∑

q=1

σpq(xω(t);ω)dwq(t),

x
(p)
ω (s) = x,for p = 1, . . . , d, where w(t) = (w1(t), . . . , wd(t)) is a d-dimensional standardBrownian motion over a probability spa
e T := (Σ,A, Q), σ = [σij] :=

[aij ]
1/2 and v = (v1, . . . , vd) 6= 0. Here [aij(x;ω)], x ∈ R

d, ω ∈ Ω, is asymmetri
 matrix valued stationary random �eld de�ned over a probabilityspa
e T0 := (Ω,B(Ω),P). We assume that Ω is a Polish metri
 spa
e, B(Ω)is the Borel σ-�eld and P is a probability measure. Sin
e the �eld is assumedto be stationary we may and will assume that it is given by aij(x;ω) :=2000 Mathemati
s Subje
t Classi�
ation: Primary 60K37; Se
ondary 82D30.Key words and phrases: di�usions, random �elds, e�e
tive di�usivity.[187℄
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aij(Txω), where {Tx}x∈Rd is a measure preserving group of transformationson T0 that satis�es: Tx : Ω → Ω, T0 = I, TxTy = Tx+y, Tx(A) ∈ B(Ω),
P[Tx(A)] = P[A] for all x,y ∈ R

d and A ∈ B(Ω). We assume that therandom matrix [aij(ω)]di,j=1 satis�es the following assumptions:(A1) aij(ω) = aji(ω) for i, j = 1, . . . , d,(A2) there exists γ > 0 su
h that for P-a.s. ω ∈ Ω and ξ = (ξ1, . . . , ξd)
∈ R

d,

γ‖ξ‖2 ≤
d∑

i,j=1

aij(ω)ξiξj

where ‖ξ‖2 = ξ21 + · · · + ξ2d,(A3) there exists a deterministi
 
onstant C > 0 su
h that
sup
ω∈Ω

|aij(ω)| ≤ C

P-a.s. for every i, j = 1, . . . , d,(A4) the mapping x 7→ aij(Txω) is 
ontinuous together with the deriva-tives up to the se
ond order, and the �rst derivative is lo
ally Lip-s
hitz for i, j = 1, . . . , d, for P-a.s. ω.For a �xed ω the pro
ess given by (1.1) is a di�usion with the generator
Lωf(x) =

1

2

d∑

i,j=1

∂xi
(aij(Txω)∂xj

f(x)) + v · ∇xf(x),

where f ∈ C2
0 (Rd). The di�usion in a random environment is a pro
ess x(t),

t ≥ 0, de�ned over the produ
t probability spa
e T ⊗ T0 := (Ω ×Σ,B(Ω)⊗
A,P ⊗ Q) given by x(t;ω, σ) := xω(t;σ) for any (ω, σ) ∈ Ω × Σ. It shouldbe stressed that although for a frozen ω, the pro
ess xω(t;σ) is Markovian,the pro
ess x(t) need not have the Markov property when 
onsidered overthe produ
t spa
e.We are interested in investigating the asymptoti
 behavior of traje
toriesof x(t). It is fairly standard to show, via the ergodi
 theorem, that x(t)/t→ va.s., as t → ∞. The next step is therefore to establish whether the 
entrallimit theorem (CLT) holds, i.e. whether the laws of the random ve
tor (x(t)−
vt)/

√
t 
onverge to a normal law as t→ ∞.For v = 0 the problem has already been investigated: see e.g. the paperby Papani
olaou and Varadhan [18], or Kozlov�Zhikov�Ole��nik [10]. It hasbeen shown that the CLT holds in that 
ase. In this paper we are interestedin the e�e
t of the anisotropy of the medium, re�e
ted by the assumptionthat v 6= 0, on the asymptoti
 behavior of the parti
le. Our main result isthat the CLT persists in this 
ase (see Theorem 2 below).
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We should stress that although we have di�usive behavior of the parti
lein both 
ases of v = 0 and v 6= 0 there are important di�eren
es in theproofs 
aused by the presen
e of a non-zero drift. The prin
ipal obje
t usedin the proof of CLT, the so-
alled 
orre
tor �eld E(x;ω) (see the de�nition

(2.6) below), behaves di�erently in the two 
ases. In the isotropi
 
ase, i.e.when v = 0, we have sublinear growth of the se
ond moment of the 
orre
tor�eld, i.e. for every K > 0 and p = 1, . . . , d,

lim
a→∞

sup
|x|≤Ka

‖E(p)(x)‖L2

a
= 0(see e.g. [18, p. 848℄). On the other hand, when the drift in the dire
tion of

v is present then the growth is mu
h slower in the dire
tion parallel to thedrift. Namely (see Theorem 1 below), we have(1.2) lim
a→∞

sup
x∈C(v,a)

‖E(p)(x)‖L2

a
= 0

where C(v, a) := {x ∈ R
d : |x ·v| ≤ a2K, |Pv(x)| ≤ aK} and Pv(x) denotesthe 
omplement of the orthogonal proje
tion along the dire
tion of v.To prove (1.2) we use the Harna
k inequality and methods of partialdi�erential equations. In Se
tion 4 we show that (1.2) implies CLT (Theo-rem 2). Additionally in Theorem 3 we prove that the 
ovarian
e matrix ofthe limiting normal random ve
tor 
orresponding to the di�usion with v 6= 0
onverges, as v → 0, to the 
ovarian
e of the homogenized di�usion with

v = 0.
2. Preliminaries and the statement of the main theorems. Let

L2(Ω) denote the Hilbert spa
e of all square integrable random variablesover the probability spa
e T0. For F,G ∈ L2(Ω) we denote by (F,G)L2 thestandard s
alar produ
t, i.e.
(F,G)L2 :=

\
FGdP.The norm is then given by ‖F‖L2 :=

√
(F, F ), F ∈ L2(Ω). We de�ne theunitary group by UxF = F (Txω), x ∈ R
d. Its generators are given by

DkF (ω) =
∂

∂xk
F (Txω)

∣∣∣∣
x=0

, k = 1, . . . , d,for F ∈ D(Dk), where the di�erentiation is understood in the L2(Ω) sense.By Corollary 1.1.6 of [2℄ the in�nitesimal generators are 
losed and denselyde�ned in L2(Ω). Let Cm
b (Ω) denote the spa
e of all F ∈ L2(Ω) whi
hhave m deterministi
ally bounded derivatives. Sin
e {Tx}x∈Rd is measure
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preserving, for F,G ∈ D(Dk) and for any k = 1, . . . , d we have\

Ω

DkFGdP = −
\
Ω

FDkGdP.Substituting G = 1 we obtain(2.1) \
Ω

DkF dP = 0(see also [14, p. 16℄ for more details).Using xω(t) we introdu
e (for �xed ω ∈ Ω) the environment pro
ess ξtde�ned by(2.2) ξt = Txω(t)(ω)for t ≥ 0 with state spa
e Ω. For t ≥ 0 let P tF (ω) =
T
F (Txω)pω(t, 0,x) dxwhere pω(t, x, y) is a transition of probability density 
orresponding to di�u-sion (1.1), F ∈ B(Ω). Sin
e Tpω(t,x,y) dx =

T
pω(t,x,y) dy it follows thatT

P tF dP =
T
F dP for F ∈ B(Ω) and (P t) 
an be extended to a C0 semi-group on L2(Ω). It turns out that ξt is a Markov pro
ess with (P t) as itstransition of probability semigroup (see [6, p. 104℄), and its generator equals
LF (ω) =

1

2

d∑

i,j=1

Di(aij(ω)DjF (ω)) + v · ∇F (ω)

where ∇ = (D1, . . . , Dd) and F ∈ C2(Ω), whi
h is a 
ore of L.Next we solve the resolvent equation in L2(Ω):(2.3) λE
(p)
λ − LE(p)

λ = ṽ(p)with λ > 0, where
ṽ(p)(ω) =

1

2

d∑

i=1

Diaip(ω)

for p = 1, . . . , d. Multiplying (2.3) by E(p)
λ and integrating over Ω we get

(2.4) λ
\
Ω

[E
(p)
λ ]2 P(dω) − 1

2

d∑

i,j=1

\
Ω

Di(aij(ω)DjE
(p)
λ )E

(p)
λ P(dω)

−
\
Ω

v · ∇E(p)
λ E

(p)
λ P(dω) =

1

2

d∑

i=1

\
Ω

Diaip(ω)E
(p)
λ P(dω).Sin
e \

Ω

DiE
(p)
λ E

(p)
λ P(dω) = −

\
Ω

E
(p)
λ DiE

(p)
λ P(dω), i = 1, . . . , d,
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this term equals zero. Thus we 
an rewrite (2.4) in the form of the so-
alledenergy inequality
(2.5) lim

λ→0+
λ‖E(p)

λ ‖2
L2 +

1

2

d∑

i,j=1

\
Ω

aij(ω)DjE
(p)
λ DiE

(p)
λ P(dω)

≤ −1

2

d∑

i=1

\
Ω

aip(ω)DiE
(p)
λ P(dω).From (2.5) we 
on
lude that

sup
0<λ<1

‖DiE
(p)
λ ‖L2 ≤ C for i = 1, . . . , d,where C is a 
onstant independent of λ and v. Hen
e there exists a sequen
e

λn → 0 as n→ ∞ su
h that
e
(p)
k = lim

n→∞
DkE

(p)
λn

for k = 1, . . . , din the weak L2 sense. Next we de�ne the following random �eld, 
alled the
orre
tor �eld :
E(x;ω) = (E(1)(x;ω), . . . , E(d)(x;ω)), (x;ω) ∈ R

d ×Ω,where(2.6) E(p)(x;ω) :=
d∑

k=1

1\
0

e
(p)
k (Ttxω)xk dt, p = 1, . . . , d,

and E(p)(0;ω) = 0.Proposition 1. The following 
onditions are satis�ed :(i) E(p)(x; ·) ∈ L2,(ii) ∂xj
E(p)(x;ω) = e

(p)
j (Txω) for j = 1, . . . , d,(iii) for any 
ontinuously di�erentiable fun
tion φ : R

d × Ω → R su
hthat φ(·, ω) is 
ompa
tly supported for every ω ∈ Ω and φ(x, ·) ∈ L2for any x ∈ R
d we have

(2.7)
1

2

d∑

i,j=1

\
Rd

\
Ω

aij(Txω)∂xj
E(p)(x;ω)∂xi

φ(x, ω) dxP(dω)

+
d∑

i=1

\
Rd

\
Ω

viE
(p)(x;ω)∂xi

φ(x, ω) dxP(dω)

= − 1

2

d∑

i=1

\
Rd

\
Ω

aip(Txω)∂xi
φ(x, ω) dxP(dω).
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Proof. From (2.6) it follows that ∂xi

E(p)(x;ω) = e
(p)
i (Txω) so (i) and (ii)hold. For (iii) see e.g. [18, proof of Theorem 2℄.In the present paper we use the following version of the ergodi
 theorem(see [11, Theorem 2.13, p. 210℄ and [9, Proposition 6, p. 103℄).Proposition 2. Suppose f ∈ L1(Ω) and φ ∈ C0(R

d). Then(2.8) lim
a→∞

1

ad+1

\
Rd

f(Txω)φ

(
x1

a2
,
x2

a
, . . . ,

xd

a

)
dx = E[f ]

\
Rd

φ(x) dx

P-a.s. and in the L1 norm.Now we 
an formulate the main results.Theorem 1. The random �eld E(x;ω) satis�es(2.9) lim
a→∞

sup
x∈C(v,a)

‖E(p)(x)‖L2

a
= 0.

We show in Se
tion 4 the following 
orollary of Theorem 1.Theorem 2. Suppose that the random matrix-valued �eld [aij ] satis�esthe assumptions (A1)�(A4). Then the sequen
e of the laws 
orresponding tothe random ve
tors (x(t) − vt)/
√
t 
onverges weakly , as t → ∞, to the lawof a normal random ve
tor of mean 0 with 
ovarian
e matrix D∗.Remark 1. A more detailed des
ription of D∗ will be given in Se
tion 4(see Remark 2).Multiplying both sides of (2.3) by φ ∈ C1

b (Ω), integrating over Ω andletting λ→ 0 we obtain
(2.10) 1

2

d∑

i,j=1

\
Ω

aije
(p)
i DjφdP −

d∑

i=1

\
Ω

vie
(p)
i φdP = −1

2

d∑

i=1

\
Ω

aipDiφdP.

Theorem 3. (i) There is a unique solution e(p)
i , i = 1, . . . , d, of (2.10)su
h that Te(p)

i DjφdP =
T
e
(p)
j DiφdP. We denote this solution by

e
(p)
i (v).(ii) We have

lim
v→0

(e
(p)
1 (v), . . . , e

(p)
d (v)) = (e

(p)
1 (0), . . . , e

(p)
d (0))in the L2 sense.
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3. Proof of Theorem 1. From the de�nition of E(x;ω) it follows thatit satis�es, in the weak p.d.e. sense, the following equation:

(3.1)
1

2

d∑

i,j=1

∂xj
(aij(Txω)∂xj

E(p)(x)) +

d∑

i=1

vi∂xi
E(p)(x)

= −1

2

d∑

i=1

∂xi
aip(Txω)

P-a.s. Let χ(p)(t,x) := E(p)(x + vt). It has the following properties:
∂tχ

(p)(t,x) = v · ∇xE
(p)(x + vt), ∂xj

χ(p)(t,x) = ∂xj
E(p)(x + vt),hen
e

(3.2) ∂tχ
(p)(t,x)

= −1

2

d∑

i,j=1

∂xi
(aij(Txω)∂xj

E(p)(x + vt)) − 1

2

d∑

i=1

∂xi
aip(Txω).

Let y(p)(t,x) := xp+χ(p)(t,x). Noti
e that ∂xqy
(p)(t,x) = δpq +∂xqχ

(p)(t,x),hen
e y(p)(t,x) is a weak solution of the following inverse time paraboli
p.d.e.:
∂ty

(p)(t,x) +
1

2

d∑

i,j=1

∂xi
(aij(Txω)∂xj

y(p)(t,x)) = 0.It is now easy to see that (2.9) is equivalent to the 
ondition(3.3) lim
a→∞

sup
|t|≤Ka2, |x|≤Ka

‖χ(p)(t,x)‖L2

a
= 0.We de�ne the s
aled fun
tions

χ(p)
a (t,x) = a−1χ(p)(a2t, ax), y(p)

a (t,x) = a−1y(p)(a2t, ax),for a > 0. Hen
e the fun
tion y
(p)
a (t,x) satis�es the inverse time paraboli
p.d.e.(3.4) ∂ty

(p)
a (t,x) = −1

2

d∑

i,j=1

∂xi
(aij(a

2vt+ ax)∂xj
y(p)

a (t,x)).The 
ondition (3.3) (and in 
onsequen
e (2.9)) will be proven if we 
an showthat(3.5) lim
a→∞

sup
|t|≤K, |x|≤K

‖χ(p)
a (t,x)‖L2 = 0for any K > 0.We prove (3.5) in several steps. We use the following elementary lemma(see e.g. [19, pp. 114�116℄.
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Lemma 1. Assume that on a probability spa
e (Ω,F ,P) we have twosequen
es of random variables, {Xn} and {Zn}, n ≥ 1. If the following
onditions hold :(i) limn→∞Xn = 0, P-a.s.,(ii) 0 ≤ Xn ≤ Zn, n ≥ 1,(iii) Zn → Z in the L1-norm,then

lim
n→∞

‖Xn‖L1 = 0.The �rst step is to show that(3.6) sup
(t,x)∈ΩT,R

|y(p)
a (t,x) − xp| → 0, P-a.s.,where ΩT,R := [0 ≤ t ≤ T ] × BR(0). This fa
t is a 
onsequen
e of theHarna
k inequality (see (3.9)) and(3.7) lim

a→∞

\\
ΩT,R

[y(p)
a (t,x) − xp]φ(t,x) dt dx = 0, P-a.s.,

where φ ∈ C0(ΩT,R). The equality (3.7) will be proven at the end of these
tion.The se
ond step is to show that(3.8) E[ sup
(t,x)∈ΩT,R

|y(p)
a (t,x) − xp|2] = 0as a → ∞. This will be a 
onsequen
e of the �rst step and Lemma 1. Withthe help of this fa
t we 
an easily estimate the expression

E[|y(p)
a (t,x) − xp|2] ≤ E[ sup

(s,z)∈ΩT,R

|y(p)
a (s, z) − xp|2], ∀(t,x) ∈ ΩT,R,and take the limit as a→ ∞.We will show that

lim
a→∞

\\
ΩT,R

|∇xy
(p)
a (t,x)|2 dt dx <∞

(
f. (3.12) below). Re
all that ∇xy
(p)
a (t,x) = ep + ∇xχ

(p)(a2t, ax).We will also prove that
lim

a→∞

\\
ΩT,R

|y(p)
a (t,x)| dt dx ≤ C1and

sup
(t,x)∈ΩT ′,R′

|y(p)
a (t,x)| ≤ C2

\\
ΩT,R

|y(p)
a (t,x)| dt dx, P-a.s.

Now we begin the proof of (3.6). We use the Harna
k inequality forsubsolutions of paraboli
 p.d.e. proved by Moser in [13]. Sin
e ϕ(x) =



Central Limit Theorem for Di�usion Pro
esses 195
√

x2 + 1 is a twi
e di�erentiable 
onvex fun
tion, the fun
tion u
(p)
a (t,x) =√

y
(p)
a (t,x)2+1 is a subsolution of (3.4) (see [13, p. 117 for de�nition℄). Usingthe triangle inequality and Theorem 3, p. 113 of [13] applied for (3.4) andthe subsolution u(p)

a we have(3.9) sup
(t,x)∈ΩT ′,R′

|y(p)
a (t,x) − xp| ≤ C

( \\
ΩT,R

[u(p)
a (t,x)]2 dt dx

)1/2

where ΩT ′,R′ ⊂ ΩT,R and C is an absolute 
onstant that only dependson T ′, T, R′, R but not on ω. We use (3.9) in order to show that the termon the left hand side of this inequality is bounded (see (3.10) below). A
onsequen
e of the Harna
k inequality is the following result (see also [13,p. 109℄): the family {y(p)
a }a>0 is equi
ontinuous on ΩT,R. The fa
t that thefamily {y(p)

a }a>0 is also bounded allows us to use the Arzelà�As
oli theoremon ΩT,R. The last two statements and the 
ompa
tness of {y(p)
a }a>0 imply

(3.6).We show the following fa
ts:(3.10) lim
a→∞

\\
ΩT,R

[u(p)
a (t,x)]2 dt dx <∞, P-a.s.

and(3.11) lim
a→∞

E

\\
ΩT,R

[u(p)
a (t,x)]2 dt dx <∞.

Now we start the proof of (3.10). Using the Fubini's theorem, the Poin
aréinequality (for �xed t) and the de�nition of u(p)
a we get the estimate (
f. [3,p. 768℄)

(3.12)
\\

Ω2T,2R

[u(p)
a (t,x)]2 dt dx =

\\
Ω2T,2R

([y(p)
a (t,x)]2 + 1) dt dx

≤ C
\\

Ω2T,2R

|∇xy
(p)
a (t,x)|2 dt dx + C

2T\
0

dt
( \

B2R

y(p)
a (t,x) dx

)2
+ C

where C is an absolute 
onstant. The right hand side of the above inequalitywill be used as the upper estimate in part (ii) of Lemma 1. Denote by M(R)the �rst and by N(R) the se
ond term on the right hand side of (3.12). Sin
e
∂xk

y
(p)
a (t,x) = (∂xk

y(p))(a2t, ax) we have\\
Ω2T,2R

[∂xk
y(p)

a (t,x)]2 dt dx =
\\

Ω2T,2R

[(∂xk
y(p))(a2t, ax)]2 dt dx.

Re
all that e(p)
k = ∂xk

y(p) and use the ergodi
 theorem in the form of Propo-
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sition 2 for M(R) to obtain

lim
a→∞

\\
Ω2T,2R

[∂xk
y(p)(a2t, ax)]2 dt dx = |Ω2T,2R|E(e

(p)
k )2

P-a.s. and in the L1-norm. The se
ond term N(R) 
an be written as
(3.13) \

B2R

y(p)
a (t,x) dx =

\
B2R

y(p)
a (0,x) dx +

t\
0

(
d

ds

\
B2R

y(p)
a (s,x) dx

)
ds.

As in the previous expression, denote by I the �rst and by II the se
ondterm on the right hand side of (3.13). Then
I = a−1

\
B2R

E(p)(ax) dx.

Thanks to (3.4) we have
II =

t\
0

ds
\

B2R

∂sy
(p)
a (s,x) dx

= −
d∑

i,j=1

t\
0

ds
\

B2R

∂xi
[aij(a

2s+ ax)∂xj
y(p)

a (s,x)] dx

= −
d∑

i,j=1

t\
0

ds
\

S2R

aij(a
2s+ ax)∂xj

y(p)
a (s,x)

xi

|x| dS.We 
an estimate N(R) by
2T\
0

dt
( \

B2R

y(p)
a (t,x) dx

)2
≤ 2

( 2T\
0

I2 dt+

2T\
0

II2 dt
)
.

Let us rewrite I in the following form:
I = a−1

\
B2R

(\d
du
E(p)(axu) du

)
dx =

d∑

j=1

\
B2R

xj dx

1\
0

e
(p)
j (axu) du.

Now we 
an use the estimate
I2 ≤ CR2

1\
0

du
\

B2R

[e
(p)
j (axu)]2 dx.

Set
E(au) :=

\
B2R

[e
(p)
j ]2(axu) dx.
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From the ergodi
 theorem it follows that(3.14) \

B2R

[e
(p)
j ]2(bx) dx → E[e

(p)
j ]2|B2R|

P-a.s., as b→ ∞. Denote the right hand side of (3.14) by E(b;ω) and the lefthand side by E(∞). From this equation it follows that there exists b0 su
hthat for b ≥ b0(ω) we have
E(b) ≤ E(∞) + 1.Next note that

I2 ≤ CR2
1\
0

E(au) du = CR2
\

1≥au≥b0(ω)

E(au) du+ CR2
\

0≤au≤b0(ω)

E(au) du

≤ CR2
\
(E(∞) + 1) + CR2

\
0≤au≤b0(ω)

\
B2R

[e
(p)
j ]2(aux) dx

≤ CR2(E(∞) + 1) + CR2
\

0≤ay≤b0(ω)

1

(ay)d

\
B2auR

[e
(p)
j ]2(y) dy

≤ CR2(E(∞) + 1) + CR2 sup
B2b0R

|e(p)
j |2|2BR|.From the ergodi
 theorem we 
on
lude that the above estimate holds P-a.s.Now we prove that we also have L1-
onvergen
e (
f. (3.11)), i.e.

(3.15) lim
a→∞

E

∣∣∣
1\
0

du
\

B2R

[e
(p)
j (aux)]2 dx− E[e

(p)
j ]2|B2R|

∣∣∣ = 0.

From the mean ergodi
 theorem it follows that(3.16) lim
b→∞

E

∣∣∣
\

B2R

[e
(p)
j (bx)]2 dx− E(∞)

∣∣∣ = 0.

Denote the left hand side of (3.15) by S(a) and the left hand side of (3.16)by R(b). For any ε > 0 there exists b0 su
h that for every b ≥ b0 we have
R(b) < ε. Hen
e
S(b) ≤

\
b0≤ua≤1

R(ua) du+ E

∣∣∣
\

0≤au≤b0

du
( \

B2R

[e
(p)
j (aux)]2 dx− E(∞)

)∣∣∣

≤ ε+ 2|B2R|E(e
(p)
j )2

b0
a
,whi
h vanishes as a→ ∞.
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Now we estimate the term II:

(3.17)

2T\
0

II2 dt

≤ C
d∑

i,j=1

2T\
0

dt
( 2T\

0

ds
\

S2R

|aij(a
2s+ ax)| |e(p)

j (a2s+ ax)|S(dx)
)2

≤ C

d∑

i,j=1

2T\
0

ds
\

S2R

|aij(a
2s+ ax)|2|e(p)

j (a2s+ ax)|2 S(dx) =: ĨI(R).All the above 
al
ulations have led us to the following estimate:(3.18) \\
Ω2T,2R

[u(p)
a (t,x)]2 dt dx ≤ C ′(A(R) +B(R))

where C ′ is a 
onstant, and A(R) and B(R) denote the two terms on theright hand side of (3.12). Let R0 > 0 be �xed; then
(3.19) R0

\\
Ω2T,2R0

[u(p)
a (t,x)]2 dt dx ≤

2R0\
R0

dR
\\

Ω2T,2R

[u(p)
a (t,x)]2 dt dx

≤ C ′
2R0\
R0

(A(R) + I2(R) + ĨI(R)) dR

≤ C ′R0A(2R0) + C ′C2R0
R0 + C ′

2R0\
R0

ĨI(R) dR.

Set fij(a
2s + ax) := aij(a

2s + ax)ej(a
2 + ax) and note that fij is also atime-spa
e stationary random �eld. The right hand side of (3.19) 
an bewritten as

C ′R0A(2R0) + C ′C2R0
R0 + C ′

d∑

i,j=1

2T\
0

ds
\

B4R0
\B2R0

fij(a
2s+ ax) dx.

A 
onsequen
e of these estimates is the upper bound\\
Ω2T,2R

[u(p)
a (t,x)]2 dt dx ≤ C ′A(2R0) + C ′C2R0

+
C ′

R0

d∑

i,j=1

2T\
0

ds
\

B4R0
\B2R0

fij(a
2s+ ax) dx.

By the ergodi
 theorem the third term on the right hand side of this in-equality 
onverges both in the L1-norm and P-a.s. So we have proved (3.10)and (3.11).
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What remains to show is (3.7). We prove that for φ(t,x) ∈ C0(ΩT,R),

lim
a→∞

T\
0

\
Rd

y(p)
a (t,x)φ(t,x) dt dx =

T\
0

\
Rd

xpφ(t,x) dt dx

both P-a.s. and in the L1-norm. For φ(x) ∈ C0(R
d) we have

(3.20)
\

Rd

y(p)
a (t,x)φ(x) dx

=
\

Rd

y(p)
a (0,x)φ(x) dx +

d∑

i,j=1

t\
0

ds
\

Rd

aije
(p)
j ∂xj

φdx.

Using the ergodi
 theorem [3, p. 765℄, we have
lim

a→∞

\
Rd

y(p)
a (0,x)φ(x) dx =

\
Rd

xpφ(x) dx,

both P-a.s. and in the L1-norm. For �xed t > 0 the se
ond term on the righthand side of (3.20) tends (P-a.s. and in L1) to
d∑

i,j=1

(aij , e
(p)
j )L2

t\
0

ds
\

Rd

∂xi
φ(x) dx,

whi
h equals zero, for any φ ∈ C0(R
d). Now 
hoose any 
ompa
tly supported

ψ ∈ C0(R); then
lim

a→∞

\
ψ(t) dt

[\
y(p)

a (t,x)φ(x) dx
]

= lim
a→∞

\
ψ(t) dt

\
y(p)

a (0,x)φ(x) dx

+ lim
a→∞

d∑

i,j=1

R\
−R

ψ(t) dt
\
aij(a

2s+ ax)e
(p)
j (a2s+ ax) dxfor some R > 0. As in the previous 
ase, the last limit is zero.4. Proof of Theorem 2. It has been shown (see [15, Chapter 1℄) thatfor the validity of the 
entral limit theorem one needs to verify(4.1) lim

λ→0+
λ‖E(p)

λ ‖2
L2 = 0for any p = 1, . . . , d. It follows then, a

ording to [15℄, that(4.2) lim

λ→0+
‖DiE

(p)
λ − e

(p)
i ‖L2 = 0, i = 1, . . . , d.Let us brie�y outline why (4.1) implies CLT. We rewrite the pro
ess xω(t)in the form (using (2.3))

x(p)
ω (t) − vpt = λ

t\
0

E
(p)
λ (ξs) ds−

t\
0

LE(p)
λ (ξs) ds+

d∑

q=1

t\
0

σpq(ξs) dwq(s).



200 E. Nieznaj
Now using the It� formula we have(4.3) x(p)

ω (t) − vpt = λ

t\
0

E
(p)
λ (ξs)ds+ E

(p)
λ (ξ0) − E

(p)
λ (ξt) +M

(p)
λ,twhere(4.4) M

(p)
λ,t =

d∑

q,r=1

t\
0

(DrE
(p)
λ (ξs) + δp

r )σrq(ξs) dwq(s)

and δp
r denotes the Krone
ker symbol. Dividing both sides of (4.3) by √

tand taking λ = 1/
√
t we 
an use (4.1) to argue that the terms 
orrespondingto the �rst three terms on the right hand side of (4.3) vanish as t→ ∞. Theweak 
onvergen
e of (1/

√
t)M

(p)

1/
√

t,t
follows from the CLT for martingales.We use the martingale CLT in the version of Helland (see [4, Theorem 5.4℄)adapted to our situation. It deals with the martingales admitting jumps sothe 
onvergen
e 
laimed there is in the sense of the Stone topology on theSkorokhod spa
e D([0,∞); Rd). The statement of the theorem, modi�ed forthe 
ase of martingales with 
ontinuous traje
tories 
onsidered here, 
an beread as follows.Theorem 4. Let (M

(1)
λ (t), . . . ,M

(d)
λ (t)), t ≥ 0, be a family of squareintegrable, 
ontinuous traje
tory , R

d-valued martingales indexed by a param-eter λ > 0. Denote by (Fλ(t))t≥0, λ > 0, the �ltration that 
orresponds to agiven martingale. Suppose further that the quadrati
 
ovariations of martin-gales satisfy(i) 〈M (j)
λ ,M

(j)
λ 〉(t) →

Tt
0 f

2
j (s)ds as λ → 0+ in P probability for all

t > 0, where fj is a measurable, non-negative fun
tion su
h thatTt
0 f

2
j (s) ds <∞ for all t > 0.(ii) 〈M (i)
λ ,M

(j)
λ 〉(t) → 0 for all t > 0 and i 6= j.Then

(M
(1)
λ (t), . . . ,M

(d)
λ (t)) ⇒ (Y (1)(t), . . . , Y (d)(t))as λ → 0+, where Y (j)(t) =
Tt
0 fj(s) dwj(s) and w1, . . . , wd are indepen-dent standard Brownian motions. The 
onvergen
e here is the 
onvergen
eof sto
hasti
 pro
esses with 
ontinuous traje
tories.We apply the above theorem in the following way. Let us de�neM (p)

λ (t) :=

λM
(p)
λ,t/λ2 , p = 1, . . . , d, and

N
(p)
λ (t) :=

d∑

q=1

cpqM
(q)
λ (t), p = 1, . . . , d,
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where C := [cpq] = [D∗]−1/2 (from Remark 3 it is 
lear that C exists). Using
(4.2) and the mean ergodi
 theorem we 
on
lude immediately that

〈N (i)
λ , N

(j)
λ 〉(t) → δi,jt as λ→ 0.Applying Theorem 4 we infer that the laws of the martingales (N

(1)
λ (t), . . .

. . . , N
(d)
λ (t)), t ≥ 0, 
onverge weakly, as λ → 0+, to the law of a standard

d-dimensional Brownian motion. Hen
e, the laws of (M
(1)
λ (t), . . . ,M

(d)
λ (t))
onverge to the law of a Brownian motion with zero mean and 
ovarian
ematrix D∗. In the parti
ular 
ase when t = 1 and λ = 1/

√
t we obtain theweak 
onvergen
e of the laws of (1/

√
t)(M

(1)

1/
√

t,t
, . . . ,M

(d)

1/
√

t,t
) as t → ∞ tothe law of a normal ve
tor with mean zero and 
ovarian
e D∗.From (2.5) it follows that (4.1) holds if we show the energy identity

(4.5) d∑

i,j=1

(aije
(p)
j , e

(p)
i )L2 = −

d∑

i=1

(aip, e
(p)
i )L2 .

Now we prove that (4.5) is a 
onsequen
e of (2.7) and (2.9). Without anyloss of generality we may assume that v = (1, 0, . . . , 0). Our goal is to usean appropriate test fun
tion in equation (2.7).Let h(x) be 
ompa
tly supported C∞ fun
tion su
h that T
Rd h(x) dx = 1.We also assume that the support of h is 
ontained in [0, 1]d. In order to use

(2.9) we make a suitable s
aling. De�ne
ha(x) :=

1

ad+1
h

(
x1

a2
,
x2

a
, . . . ,

xd

a

)
, x ∈ R

d,for any a>0. Hen
eforth we will use the ve
tor-like notation ã := (a2, a, . . . , a)where ã has d-
oordinates, and x/ã := (x1/a
2, x2/a, . . . , xd/a). Now we de-�ne the fun
tion φa(x;ω) := E(p)(x;ω)ha(x) to be used in (2.7). The �rstterm on the left hand side of (2.7) then equals

(4.6)
1

2ad+1

d∑

i,j=1

\
Rd

\
Ω

aij(Txω)∂xj
E(p)(x;ω)∂xi

E(p)(x;ω)h

(
x

ã

)
dxP(dω)

+
1

2ad+1

d∑

i,j=1

\
Rd

\
Ω

aij(Txω)∂xj
E(p)(x;ω)E(p)(x;ω)∂xi

[
h

(
x

ã

)]
dxP(dω).

Taking the limit as a → ∞ in the �rst term of (4.6) and using (ii) andthe ergodi
 theorem, we get the term on the left hand side of (4.5). Forthe se
ond term of (4.6), note that ∂x1
[ha(x/ã)] = a−2(∂x1

ha)(x/ã) and
∂xi

[ha(x/ã)] = a−1(∂xi
ha)(x/ã) for i = 2, . . . , d. Therefore this term 
an be
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estimated, with the help of the Cau
hy�S
hwarz inequality, by

d

ad+1
max

i,j
(‖aij‖∞‖e(p)

j ‖L2)

d∑

i=1

sup
x∈C(v,a)

‖E(p)(x, ·)‖L2

a

\
Rd

∣∣∣∣(∂xi
h)

(
x

ã

)∣∣∣∣ dx,whi
h vanishes as a→ ∞. The term on the right hand side of (2.7) equals
− 1

2ad+1

d∑

i=1

\
Rd

\
Ω

aip(Txω)∂xi
E(p)(x;ω)h

(
x

ã

)
dxP(dω)

− 1

2ad+1

d∑

i=1

\
Rd

\
Ω

aip(Txω)E(p)(x;ω)∂xi

[
h

(
x

ã

)]
dxP(dω)

and by an analogous argument (as in (4.6)) applied to these terms we obtainthe expression on the right hand side of (4.5). What remains yet to be provedis the fa
t that the se
ond term on the left hand side of (2.7) vanishes as
a→ ∞. Re
all that v = (1, 0, . . . , 0) so we 
an rewrite this term in the form

1

ad+1

\
Rd

\
Ω

E(p)(x;ω)∂x1
E(p)(x;ω)h

(
x

ã

)
dxP(dω)

+
1

ad+1

\
Rd

\
Ω

E(p)(x;ω)E(p)(x;ω)∂x1

[
h

(
x

ã

)]
dxP(dω).

Integration by parts in the �rst term of the above expression gives
1

ad+1

\
Rd

\
Ω

E(p)(x;ω)∂x1
E(p)(x, ω)h

(
x

ã

)
dxP(dω)

= − 1

ad+1

\
Rd

\
Ω

∂x1

[
E(p)(x;ω)h

(
x

ã

)]
E(p)(x;ω) dxP(dω)

= − 1

ad+1

\
Rd

\
Ω

∂x1
E(p)(x;ω)h

(
x

ã

)
E(p)(x;ω) dxP(dω)

− 1

ad+1

\
Rd

\
Ω

E(p)(x;ω)∂x1

[
h

(
x

ã

)]
E(p)(x;ω) dxP(dω).

From the above equality we 
on
lude that
2

ad+1

\
Rd

\
Ω

∂x1

[
E(p)(x;ω)h

(
x

ã

)]
E(p)(x;ω) dxP(dω)

= − 1

ad+1

\
Rd

\
Ω

[E(p)(x;ω)]2(∂x1
h)

(
x

ã

)
dxP(dω).
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In order to establish (4.5) we need to show that

1

ad+3

\
Rd

\
Ω

[E(p)(x;ω)]2(∂x1
h)

(
x

ã

)
dxP(dω)tends to zero as a→ ∞. Indeed, this expression 
an be estimated by

1

ad+1
sup

x∈C(v,a)

(‖E(p)(x, ·)‖L2

a

)2 \
Rd

∣∣∣∣(∇xh)

(
x

ã

)∣∣∣∣ dx,whi
h vanishes as a→ ∞ by virtue of (2.9).Remark 2. By the de�nition of D∗ = [Dpp′ ]
d
p,p′=1 we have

Dpp′ = lim
t→∞

E(M
(p)

1/
√

t,t
,M

(p′)

1/
√

t,t
)

t
.By (4.4), the fa
t that dwq(s)dwr(s) = δqrds and the ergodi
 theorem wehave

Dpp′ = E

[ d∑

r,r′,q=1

(e(p)
r + δp

r )σrq(e
(p′)
r′ + δp′

r′ )σr′q

]
.

Hen
e, sin
e σ2 = A, we have(4.7) D∗ = E[(E + I)A(E + I)T ]where E = [e
(i)
j (ω)], A = [aij(ω)], I = [δij ], i, j = 1, . . . , d.Remark 3. From (4.7) it is 
lear that D∗ ≥ γI.5. Proof of Theorem 3. (i) Assume that there are two solutions of(2.10); denote them by e(p)

i,1 , e(p)
i,2 . De�ne e(p)

i,3 = 1
2(e

(p)
i,1 + e

(p)
i,2 ). Then by (4.5),

1

2

d∑

i,j=1

(aije
(p)
j,1 , e

(p)
i,1 )L2 +

1

2

d∑

i,j=1

(aije
(p)
j,2 , e

(p)
i,2 )L2 = −

d∑

i=1

(aip, e
(p)
i,3 )L2

=
d∑

i,j=1

(aije
(p)
j,3 , e

(p)
i,3 )L2 .

Hen
e e(p)
i,1 = e

(p)
i,2 P-a.s.(ii) By (2.10), e(p)

i (v) → e
(p)
i (0) in the weak L2 sense, sin
e the left handside of (2.10) does not depend on e(p)

i . By the energy identity (4.5) we have
lim
v→0

d∑

i,j=1

(aije
(p)
j (v), e

(p)
i (v))L2 =

d∑

i,j=1

(aije
(p)
j (0), e

(p)
i (0))L2.
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Sin
e
γ‖e(p)

j (v) − e
(p)
j (0)‖2

L2 ≤
d∑

i,j=1

(aij(e
(p)
j (v) − e

(p)
j (0)), e

(p)
i (v) − e

(p)
i (0))L2

by (A2), we 
on
lude that limv→0 ‖e(p)
j (v) − e

(p)
j (0)‖2

L2 = 0, j = 1, . . . , d.A
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