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Summary. Is the Lebesgue measure on [0, 1]2 a unique product measure on [0, 1]2 which
is transformed again into a product measure on [0, 1]2 by the mapping ψ(x, y) =
(x, (x + y) mod 1))? Here a somewhat stronger version of this problem in a probabilistic
framework is answered. It is shown that for independent and identically distributed ran-
dom variables X and Y constancy of the conditional expectations of X+Y −I(X+Y > 1)
and its square given X identifies uniform distribution either absolutely continuous or dis-
crete. No assumptions are imposed on the supports of the distributions of X and Y .

1. Introduction and the main result. It is well known that the
Lebesgue measure on [0, 1]2 is invariant under the mapping ψ : [0, 1]2 →
[0, 1]2 defined by ψ(x, y) = (x, x+ y− I(x+ y > 1)). Consequently, ψ trans-
forms a product measure into a product measure. It is natural to ask if the
Lebesgue measure is the only measure invariant under ψ. This problem is
equivalent to the question if ψ preserves independence of components of a
bivariate random vector. Here we are concerned with even weaker assump-
tions, which, in probabilistic framework, are conveniently expressed in terms
of constancy of regressions.

On the other hand, the problem can be viewed as related to the Darmois–
Skitovich theorem which states that independence of linear forms in inde-
pendent random variables implies the normality of these random variables.
This celebrated characterization theorem was a source of numerous further
investigations including its versions on different algebraic structures. In par-
ticular, Stapleton [11] proved its analogue for random variables taking values
in a compact Abelian topological group (Γ,⊕) obtaining a characterization
of the Haar measure µ on Γ . That paper was somehow overlooked in later in-
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vestigations of the Darmois–Skitovich characterization on topological groups
(see [1], [4]–[10]). For instance Baryshnikov et al. [1] considered independent
random variables X, Y taking values in the group of real numbers modulo
2π, ([0, 2π),⊕), which up to an isomorphism, is the algebraic structure we
consider in this paper.

A simplified version of one of the results from [11] reads: Let X and Y be
independent random variables (rv’s) with a common distribution which is
not concentrated on any coset of a proper subgroup of Γ . IfX and U = X⊕Y
are independent then µ (the Haar measure) is the common distribution of X
and Y .

Let us rewrite the result mentioned above for the group ([0, 1),⊕), where
x⊕ y = x+ y− I(x+ y > 1), x, y ∈ [0, 1). It states that for two independent
identically distributed (i.i.d.) rv’s X and Y , defined on a probability space
(Ω,F , P ), which are not of the discrete type, if X and U = X ⊕ Y are
independent then their distribution is continuous uniform on [0, 1]. In this
paper the result will be extended in two directions: (1) no assumptions on
the support nor type of distributions will be imposed; (2) the condition of
independence of U and X will be weakened to constancy of regressions of
two functions of U given X (see [6] for a regression version of the Darmois–
Skitovich theorem on locally compact Abelian groups). It turns out that
under such circumstances not only continuous uniform distribution may
appear as the common law for X and Y , but also a family of discrete uniform
distributions is admissible.

The regression conditions we are interested in are the following:

(1) E[X + Y − I(X + Y > 1) |X] = E(X) a.s.,

(2) E[(X + Y − I(X + Y > 1))2 |X] = K a.s.,

where K ∈ R is a constant. The main result of this paper, Theorem 1,
states that these two conditions characterize uniform continuous and discrete
distributions. Let us stress that no restrictions on the distribution of X and
Y are imposed. Also the fact that (1) and (2) hold only almost surely is a
source of additional difficulties in the proof.

It is worth mentioning that (1) and (2) imply that there exists A ∈ B
with P (X ∈ A) = 1 such that for any a, b ∈ R with 1− a, 1− b ∈ A,

E(Y | a < Y ≤ b) =
1

2
(a+ b) + E(Y )−

1

2
.(3)

Let supp(Y ) denote the support of the distribution of Y . The above property
looks quite similar to

E(Y | a ≤ Y ≤ b) =
1

2
(a+ b), ∀a, b ∈ supp(Y ),(4)

which was considered by Herer [3]. As shown there, (4) (also without any
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restrictions on distributions) characterizes uniform continuous and discrete
laws. Conditions (3) and (4) may seem similar, but there are important
differences, besides different right hand sides and different conditionings.
Firstly, a and b from (3) may not belong to the support of Y , while a and b
in (4) are points of the support of Y . Secondly, condition (3) holds almost
surely, while (4) is valid for each point in the support of Y . Much closer to
Herer’s characterization is the result by Das Gupta, Goswami and Rao [2]
who characterized uniform continuous and discrete distributions in terms of
order statistics by the condition

E(Y1 |Y(1), Y(n)) =
1

2
(Y(1) + Y(n)) a.s.,

where Y(1) and Y(n) are, respectively, the minimum and maximum of i.i.d.
rv’s Y1, . . . , Yn.

Let X be a real random variable with distribution µ (written X ∼ µ).
We say that X is uniformly distributed on [0, 1] if either

• X is continuous with density function f ≡ 1, or
• X is discrete and there exist x1, . . . , xn and r 6= 0 such that xi =
x1 + r(i − 1), µ({xi}) = 1/n, i = 1, . . . , n, and S(µ) = {x1, . . . , xn}
(see [3]).

Our main result is the following.

Theorem 1. Let X, Y be i.i.d. random variables having distribution µ
on R. If E|X| <∞ and conditions (1), (2) hold , then either

• K = 1/3 and µ is a continuous uniform distribution on [0, 1], or
• there exists n such that K = Kn = 1

6n2
(n + 1)(2n + 1) and µ is a

discrete uniform distribution with support {i/n : i = 1, . . . , n}.

The paper is organized as follows. In Section 2 conditions equivalent
to (1) and (2) are stated, and we obtain a restriction on the number of
non-isolated atoms (Lemma 2.1). The discrete case is considered separately
in Section 3. The results of this section are also useful in considering the
general case with no restrictions on µ. In Section 4 we show that the support
of µ consists of intervals and a finite number of atoms, and we present the
proof of the main theorem, which, in a sense, sums up the results of the
preceding lemmas.

2. Preliminary facts. Throughout the paper S(µ) denotes the support
of a measure µ, that is,

S(µ) = {x ∈ R : µ(x− ε, x+ ε) > 0 for any ε > 0},(5)

and Sd(µ) stands for the set of atoms. Let µ be the distribution of X and
let F be its (right continuous) distribution function.
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Using well known facts about conditional expectation we introduce con-
ditions that are equivalent to (1) and (2) respectively:

F (1−X) = 1−X a.s.,(6)

−X2 + EY 2 + 2XEY − 2E[Y I(X + Y > 1) |X] +X = K a.s.(7)

We say that x ∈ R satisfies (6) and (7) if

F (1− x) = 1− x,

−x2 +EY 2 + 2xEY − 2E[Y I(Y > 1− x)] + x = K.

Since (6) and (7) may not hold for some points of S(µ), we will need the
following proposition.

Proposition 2.1. For every convergent sequence {xn} ⊂ S(µ) with
xn → x, there exists a sequence {x̃n} ⊂ S(µ) such that x̃n → x and x̃n
satisfies conditions (6), (7) for n = 1, 2, . . . .

Proof. Let A = S(µ)∩{x ∈ R : x satisfies (6), (7)}. Since S(µ) is closed,
A is a Borel set. The definition of S(µ) implies that F (y+ ε)−F (y− ε) > 0
for any y ∈ S(µ) ∩ Ac and ε > 0. Since P (X ∈ A) = 1, for any ε > 0 there
exists yε ∈ (y − ε, y + ε) satisfying conditions (6) and (7).

Consider a sequence {εn} such that εn ↓ 0. From the above, with an
element xn ∈ S(µ)∩Ac one can associate x̃n ∈ (xn − εn, xn + εn) satisfying
(6) and (7) for n = 1, 2, . . . . Obviously x̃n → x.

Note that A ⊂ [0, 1] and µ(A) = 1. Moreover, every atom in S(µ) belongs
to A. In order to specify the support structure of µ we examine the possible
nature of atoms belonging to S(µ).

Lemma 2.1. Let µ be a measure satisfying (6) and (7). There exist only
a finite number of atoms that are accumulation points of S(µ).

Proof. Let a be an atom. With no loss of generality we can assume
that a 6∈ {0, 1}. Suppose that there exist two sequences {an}, {cn} ⊂ S(µ)
convergent to a such that an ↑ a and cn ↓ a. Then (6) ensures the existence
of sequences {1− a′n}, {1− c

′

n} ⊂ S(µ) of elements satisfying (6) such that
a′n ↑ a and c′n ↓ a (Proposition 2.1). Applying (6) to 1 − a′n and 1 − c′n we
have P (X = a) ≤ P (X ∈ (a′n, c

′

n]) = c′n − a
′

n. Since the right-hand side
converges to 0, we obtain P (X = a) = 0.

Therefore we shall consider only the cases that a is a left or right accu-
mulation point.

Left accumulation point. Let a be a left accumulation point of S(µ).
Then one can find a sequence {an} ⊂ S(µ) with an ↑ a and ε > a such that
(a, ε)∩S(µ) = ∅. Hence using (6), we can assert that there exists δ > 0 such
that (δ, 1 − a) ∩ S(µ) = ∅. Let ε̃ = sup{ε ∈ (a, 1] : (a, ε) ∩ S(µ) = ∅}, and
1 − d = inf{δ > 0 : (δ, 1 − a) ∩ S(µ) = ∅}. Applying (6) twice we deduce
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that there exists a sequence {1 − bn} ⊂ S(µ) with 1 − bn ↓ 1 − a. Without
loss of generality, one can assume that the elements of this sequence satisfy
(6) and (7).

The proof will be divided into three parts:

(i) ε̃ < d,

(ii) ε̃ > d,

(iii) ε̃ = d.

Case (i). Let us first show that ε̃ is an atom. Suppose it is not true.
Then one can prove that (1 − d, 1 − a) ∩ S(µ) 6= ∅, which contradicts the
definition of 1−d. Applying (6) to ε̃ and a gives P (X ∈ (1− ε̃, 1−a]) = ε̃−a.
Since (1 − ε̃, 1 − a) ∩ S(µ) = ∅, it follows that P (X = 1 − a) = ε̃ − a > 0.
Hence 1− a is an atom.

Suppose that 1 − d ∈ Sd(µ). This enables us to apply (6) to 1 − d and
1− a:

P (X ∈ (a, d]) = d− a.(8)

Considering the sequence {1− bn} and 1− d we obtain

P (X ∈ (bn, d]) = P (X ∈ (bn, a]) + P (X ∈ (a, d]),(9)

which yields P (X = a) ≤ a − bn. Since the right-hand side converges to 0
as n→∞, P (X = a) = 0.

If 1 − d 6∈ Sd(µ) we proceed in the same manner. We define a sequence
{1 − dn} ⊂ S(µ) with 1 − dn ↑ 1 − d and with elements satisfying (6), (7),
and instead of 1− d, we consider 1− dn. As a result, we get

P (X ∈ (bn, dn]) = P (X ∈ (bn, a]) + P (X ∈ (a, d]) + P (X ∈ (d, dn]),

which yields P (X = a) ≤ dn − d + a − bn. The same argument as above
implies P (X = a) = 0.

Case (ii). Using (6), it can be easily checked that P (X = 1 − d) > 0.
We apply (7) to 1− bn and 1− d as follows:

−(1− bn)
2 + EY 2 + 2(1− bn)EY − 2E[Y I(Y > bn)] + 1− bn = K,(10)

−(1− d)2 + EY 2 + 2(1− d)EY − 2E[Y I(Y > d)] + 1− d = K.(11)

Subtracting (10) from (11) we obtain

(d− bn)(2− bn − d)− 2(d− bn)EY + 2E[Y I(bn < Y ≤ d)]− (d− bn) = 0.

It follows that E[Y I(bn < Y ≤ d)] = 1
2(d− bn)(bn + d− 1 + 2EY ). Letting

n→∞, we have

E[Y I(a ≤ Y ≤ d)] =
1

2
(d− a)(a+ d− 1 + 2EY ).(12)
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Since there is no atom in (a, d], the above equation is equivalent to

aP (X = a) =
1

2
(d− a)(a+ d− 1 + 2EY ).(13)

On the other hand, applying (6) to 1 − bn and 1 − d, we have P (X ∈
(bn, d]) = d − bn. So taking n → ∞ we get P (X ∈ [a, d]) = d − a. Since
P (X ∈ [a, d]) = P (X = a), (13) leads to d = a+ 1− 2EY . Hence

P (X = a) = 1− 2EY.(14)

As a consequence, every atom that is not left-isolated has the same proba-
bility mass.

Case (iii). Assume that P (X = ε̃) = 0. If this is not true, by the same
method as in (i), one can prove that P (X = a) = 0.

The definition of ε̃ implies that there exists a sequence {εn} with εn ↓
d = ε̃. From (6) we can define a sequence {1− ε′n} ⊂ S(µ) such that ε′n ↓ d
and 1− ε′n satisfies (6), (7) (Proposition 2.1). By (7) we get

(ε′n − bn)(2−ε
′

n− bn)−2(ε′n − bn)EY +2E[Y I(bn<Y ≤ ε
′

n)]− (ε′n− bn) = 0,

which yields

E[Y I(bn < Y ≤ ε′n)] =
1

2
(ε′n − bn)(2EY − 1 + ε′n + bn).

A passage to the limit implies that

E[Y I(a ≤ Y ≤ d)] =
1

2
(d− a)(2EY − 1 + a+ d).(15)

Since P (X ∈ [a, d]) = d−a and (a, d)∩S(µ) = ∅ from the above we get (14)
again. Note that each atom that is not left-isolated has probability equal to
1 − 2EY . Thus we have actually proved that there are a finite number of
atoms that are not left-isolated.

Right accumulation point. Our next goal is to determine the number of
atoms that are not right-isolated. Let a be such an atom. One can define
sequences {an}, {1− bn} ⊂ S(µ) such that an, bn ↓ a. With no loss of gener-
ality we can assume that an, 1− bn satisfy (6) and (7) for n = 1, 2, . . . . We
can now proceed analogously to the case of the left accumulation point.

Case (i). Since ε̃ < d, one can verify that P (X = 1− d) > 0. Applying
(7) to 1− d and 1− bn we have

E[Y I(d < Y ≤ bn)] =
1

2
(bn − d)(bn + d− 1 + 2EY ).(16)

Letting n→∞, we obtain

E[Y I(d < Y ≤ a)] =
1

2
(a− d)(a+ d− 1 + 2EY ).(17)
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From (6) we have P (X ∈ (d, a]) = d − a. Thus (17) gives P (X = a) =
1− 2EY.

Case (ii). One can show that P (X = ε̃) > 0. Let us apply (6) to a
and ε̃: P (X ∈ (1 − a, 1 − ε̃]) = ε̃ − a. Thus one can infer that 1 − ε̃ is an
atom, a contradiction, since (1− a, 1− d) ∩ S(µ) = ∅.

Case (iii). Suppose there is an atom at ε̃ = d. By (6) we get

P (X ∈ (1− a, 1− d]) = a− d,(18)

which gives P (X = 1 − d) = d − a. We are now in a position to apply (6)
to 1− d and 1− bn. Thus P (X ∈ (d, bn]) = bn − d. Letting n→∞ we have
P (X ∈ (d, a]) = a− d. Since 1− d and 1− bn satisfy (7), for n = 1, 2, . . . we
obtain

E[Y I(d < Y ≤ bn)] =
1

2
(bn − d)(bn + d− 1 + 2EY ).(19)

The fact that bn ↓ a yields

E[Y I(d < Y ≤ a)] =
1

2
(a− d)(a+ d− 1 + 2EY ),(20)

and we get P (X = a) = 1− 2EY .

If P (X = d) = 0, we proceed in the same manner. Consider a sequence
{dn} ⊂ S(µ) with elements satisfying (6) and such that dn ↑ d. Applying
(6) to a and dn we obtain P (X ∈ (1− a, 1− dn]) = a− dn. Letting n→∞,
we get P (X ∈ (1− a, 1− d]) = a− d. Hence P (X = 1− d) > 0. We can now
proceed analogously to the preceding case. Using (7) for 1−d and 1− bn we
obtain P (X = a) = 1 − 2EY . By the argument of equal probability mass,
we obtain at most a finite number of atoms that are not right-isolated.

Let s = inf{x : x ∈ S(µ)} and t = sup{x : x ∈ S(µ)}. As a direct
conclusion from the proof of Lemma 2.1 we obtain the following result.

Remark 2. Let µ be a measure satisfying (6) and (7). Then every non-
isolated atom belonging to S(µ) \ {s, t} has probability equal to 1− 2EY .

3. Discrete distribution. In this section we assume that µ is a dis-
crete measure. Under this assumption we will show that µ is a uniform
distribution. First, we prove an auxiliary fact.

Proposition 3.1. Let µ be a measure satisfying (6) and (7). Then there
exists a sequence {an} of atoms such that either (an, an+1) ∩ Sd(µ) = ∅
(an < an+1) or (an+1, an) ∩ Sd(µ) = ∅ (an+1 < an), n = 1, 2, . . . .

Proof. We consider only the case of an infinite number of atoms. Since
the number of non-isolated atoms is finite, there exists an interval I con-
taining an infinite number of isolated atoms. Suppose that in I there exists
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an increasing sequence of atoms (the decreasing case can be treated anal-
ogously). Let a ∈ Sd(µ) ∩ I. We construct the sequence {an} as follows:
a1 = a and

an+1 = sup{r > an : (an, r) ∩ Sd(µ) = ∅}, n = 1, 2, . . . .(21)

Our aim is to show that a2 ∈ Sd(µ). Suppose to the contrary that there is no
atom at a2. Then we are able to find a sequence {zn} ⊂ Sd(µ) with zn ↓ a2.
This in turn implies the existence of {1− z̃n} ⊂ Sd(µ) with 1− z̃n ↑ 1− a2.
Applying (6) to zn and a1 we have P (X ∈ (1−zn, 1−a1]) = zn−a1. Letting
n → ∞, we obtain P (X ∈ [1− a2, 1− a1]) = a2 − a1. Since atoms in I are
isolated, one can prove that they are also isolated in I ′ (interval symmetric
to I with respect to 1/2), hence P (X = 1 − a2) = 0. Thus P (X ∈ (1 − a2,
1− a1]) = a2 − a1, which yields the existence of an atom in (1− a2, 1− a1],
say 1 − b. From (6) for 1 − z̃n and 1 − b we get P (X ∈ (b, z̃n]) = z̃n − b,
and a passage to the limit indicates that P (X ∈ (b, a2]) = a2− b. According
to (21), we obtain P (X = a2) > 0. This contradicts our assumption that
a2 is not an atom. We now proceed by induction to construct the required
sequence {an}.

The result stated above enables us to give a restriction on the number
of atoms in Sd(µ). The following lemma is crucial for further reasoning.

Lemma 3.1. A discrete measure µ satisfying conditions (6) and (7) con-
sists of a finite number of atoms.

Proof. Suppose that there exist infinitely many atoms in (0, 1). Hence
there exists a convergent sequence {an} ⊂ Sd(µ). Let a be its accumulation
point. In view of Proposition 3.1, one can choose {an} in such a way that
there are no atoms between consecutive elements of the sequence. We apply
(7) to an and an+1:

−a2n + EY 2 + 2anEY − 2E[Y I(Y > 1− an)] + an = K,(22)

−a2n+1 + EY 2 + 2an+1EY − 2E[Y I(Y > 1− an+1)] + an+1 = K.(23)

Subtracting (23) from (22) we get

(24) a2n+1 − a
2
n + 2(an − an+1)EY + 2E[Y I(1− an ≥ Y > 1− an+1)]

+ an − an+1 = 0.

On the other hand, by (6) we have

P (X ∈ (1− an+1, 1− an]) = an+1 − an,(25)

which indicates the existence of atoms in (1−an+1, 1−an]. It can be derived
from (6) that (1− an+1, 1− an] ∩ Sd(µ) = {1− an}.

Indeed, suppose that there exist two atoms x, y ∈ (1− an+1, 1− an]. For
one of them (e.g. x) we have x ∈ (1−an+1, 1−an). Using (6) for x, y we get
P (X ∈ (1− y, 1− x]) = y− x. Since (1− y, 1− x] ⊂ (an, an+1), one can find
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an atom in (an, an+1), which contradicts the definition of the sequence {an}
((an, an+1) ∩ Sd(µ) = ∅). Thus there is only one atom in (1− an+1, 1− an].
We denote it by 1 − bn. From (25) we obtain P (X = 1 − bn) = an+1 − an
and

E[Y I(1− an ≥ Y > 1− an+1)] = (1− bn)(an+1 − an).(26)

Using (25) and (26) we get

an+1 + an − 2EY + 2(1− bn)− 1 = 0,(27)

which yields

EY =
an+1 + an − 2bn + 1

2
.(28)

The sequences {an} and {bn} converge to a, so the right-hand side of (28)
converges to 1/2. Thus EY = 1/2. As a result we have

an+1 − bn = bn − an, n = 1, 2, . . . .(29)

Applying the same steps to the sequence {1− bn} we derive the equality

bn − an = an − bn−1, n = 2, 3, . . . .(30)

Now from (29) and (30) one gets

an − bn−1 = bn−1 − an−1 = an − an−1, n = 2, 3, . . . ,

which yields

an+1 − an = bn − bn−1 = an − an−1, n = 2, 3, . . . .

Hence the points of the sequence {an} are equispaced. This contradicts the
assumption of infinitely many atoms in S(µ).

The next lemma gives the main result for the discrete case.

Lemma 3.2. Let X be a random variable having distribution µ. If µ sat-
isfies (6) and (7) then X is uniformly distributed , and there exists n such
that µ is supported on the set {i/n : i = 1, . . . , n}.

Proof. From Lemma 3.1, there exists n such that S(µ) = {x1, . . . , xn},
xi ∈ [0, 1], i = 1, . . . , n. With no loss of generality, we can assume that
0 ≤ x1 < · · · < xn ≤ 1.

Suppose x1+ xn > 1. Since 1− xn < x1, we get 1− xn = F (1− xn) = 0,
hence xn = 1. From (6) we deduce that xn−k ∈ (1 − xk+1, 1 − xk] for
k = 1, . . . , n− 1, and xn−k is the only atom belonging to (1− xk+1, 1− xk].
Applying (7) to xk and xk+1 we obtain

(31) x2k+1 − x
2
k + 2(xk − xk+1) + 2E[Y I(1− xk+1 < Y ≤ 1− xk)]

+ xk − xk+1 = 0,



216 J. Chachulska

and since E[Y I(1− xk+1 < Y ≤ 1− xk)] = xn−k(xk+1 − xk), we get

xk + xk+1 − 2EY + 2xn−k − 1 = 0, k = 1, . . . , n− 1,

xn = 1.

It follows that

x2 = 2(xn − xn−1),

xk − xk−2 = 2(xn−k+2 − xn−k+1), k = 3, . . . , n.(32)

By induction one can show that

xk =
k(k − 1)

2
x2 − k(k − 2)x1, k = 1, . . . , n.(33)

Applying (33) to (32) for k = 2, we have x2 = 2x1, which yields xk = k/n
for k = 1, . . . , n.

Let pi = P (X = xi), i = 1, . . . , n. Condition (6) leads to

F (1− xn−k) = 1− pn − pn−1 − · · · − pk+1(34)

= 1− xn−k, k = 1, . . . , n− 1,

and by an easy computation we get pn−k = xk+1 − xk, k = 1, . . . , n − 1,
pn = x1. Hence xk = k/n and pn−k = xk − xk−1 = 1/n for k = 1, . . . , n.

Applying the same calculation to the case x1+xn ≤ 1 we obtain S(µ) =
{0, 1/n, . . . , (n− 1)/n}. Considering equations analogous to (34), we get

2

n
= F

(
1

n

)
= F

(
1−

n− 1

n

)
= 1−

n− 1

n
=

1

n
.

This is a contradiction, which completes the proof.

4. General case. In this section no additional restriction on µ is given.
We consider a measure that can be a mixture of discrete and continuous
distributions.

Proposition 4.1. Let X be a random variable having distribution µ. If µ
satisfies (6), (7), and there exists an interval (a, b) ⊂ S(µ), then EX = 1/2.

Proof. From (6) we conclude that intervals contained in S(µ) are sym-
metric with respect to 1/2. Since there are a finite number of atoms that
are not isolated (Lemma 2.1), and by definition there are no isolated atoms
in (a, b), there exists an interval (c, d) ⊂ (a, b) such that (c, d) ∩ Sd(µ) = ∅
and (1 − d, 1 − c) ∩ Sd(µ) = ∅. For any 1 − z ∈ (1 − d, 1 − c), we define a
sequence {1 − zn} ⊂ S(µ) such that 1 − zn ↑ 1 − z and 1 − zn satisfies (6)
for n = 1, 2, . . . . A passage to the limit as n → ∞ yields F (z) = z for any
z ∈ (c, d). Considering two points x1, x2 ∈ (c, d) (x1 < x2) we may construct
corresponding sequences {x1n}, {x2n} ⊂ S(µ) with elements satisfying (6)
and (7) such that x1n → x1 and x2n → x2. Applying (7) to {x1n}, {x2n}
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and taking the limit as n→∞, we obtain the formula

x22 − x
2
1 + 2(x1 − x2)EY + 2E[Y I(1− x2 < Y ≤ 1− x1)](35)

+ x1 − x2 = 0.

Since F (x) = x for x ∈ (1− d, 1− c), we have EY I(1− x2 < Y ≤ 1− x1) =
1
2((1− x1)

2 − (1− x2)
2). Thus from (35) we get EY = 1/2.

Lemma 4.1. Let X be a random variable having distribution µ. If µ sat-
isfies (6), (7) and there exist a, b such that P (X ∈ (a, b)) = b − a and
(a, b) ∩ Sd(µ) = ∅, then F (x) = x for x ∈ (a, b).

Proof. Suppose a < b. Then there exists x ∈ S(µ) \ Sd(µ) such that
a < x < b. Define

x⋆ = sup{y < x : ∃ε > 0 (y − ε, y) ∩ S(µ) = ∅},(36)

x⋆ = inf{y > x : ∃ε > 0 (y, y + ε) ∩ S(µ) = ∅},(37)

and (x1, x2) = (x⋆, x
⋆) ∩ (a, b). From (36) and (37) we conclude that the

set S(µ) \ Sd(µ) is dense in (x1, x2), and consequently in (1 − x2, 1 − x1).
Let z ∈ (x1, x2). There exists a sequence {1 − zn} of elements satisfying
(6) such that 1 − zn ↑ 1 − z. We thus get F (zn) = zn, n = 1, 2, . . . , and
zn → z. Since F is continuous on (x1, x2) ∋ z, letting n → ∞, we obtain
F (z) = z. Therefore X is absolutely continuous on (x1, x2)∪ (1−x2, 1−x1).
It remains to prove that x1 = a and x2 = b. Suppose x1 > a and x2 < b.
We have already noticed that with every point x̃ ∈ S(µ) \ Sd(µ) one can
associate an interval I(x̃) = (x̃1, x̃2) ∋ x̃ such that I(x̃) ⊂ S(µ). It follows
that (a, b) ∩ S(µ) consists of intervals and F (x) = x on each interval. The
assumption P (X ∈ (a, b)) = b−a implies x1 = a and x2 = b. Hence F (x) = x
for (a, b).

Remark 3. If F is continuous on S(µ) and (6), (7) hold, then F is
absolutely continuous with density function f ≡ 1 on (0, 1).

Lemma 4.2. If a measure µ has properties (6) and (7), then there exist
only a finite number of atoms in S(µ).

Proof. Suppose this is not true. We will define a convergent sequence
{bn} ⊂ Sd(µ) such that (bn, bn+1) ∩ Sd(µ) = ∅. One can find an interval I
which I contains an infinite number of atoms and every atom in I ∪ I ′ is an
isolated point in S(µ). (Recall that I ′ denotes the interval symmetric to I
with respect to 1/2.) Let b be an atom in I. We construct {bn} as follows:
b1 = b and

bn+1 = sup{r > bn : (bn, r) ∩ Sd(µ) = ∅}, n = 1, 2, . . . .(38)

We shall show that P (X = b2) > 0. Suppose that P (X = b2) = 0. Then
there exists a sequence {zn} ⊂ S(µ) such that zn ↓ b2 and zn satisfies (6), (7)
for n = 1, 2, . . . . From (6) we have P (X ∈ (1− zn, 1− b1]) = zn − b1. Hence
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P (X ∈ [1−b2, 1−b1]) = b2−b1. Since 1−b2 is not an isolated point in S(µ), we
obtain P (X = 1− b2) = 0. Then there exists an atom 1− b ∈ (1− b2, 1− b1],
since in the other case, by Lemma 4.1, (1 − b2, 1 − b1) ⊂ S(µ), and as a
consequence (b1, b2) ⊂ S(µ), contrary to the assumption that there is an
isolated atom at b1.

As P (X = 1 − b2) = 0, we define a sequence {1 − z′n} ⊂ S(µ) such
that 1 − z′n ↑ 1 − b2 and 1 − z′n satisfies (6) for n = 1, 2, . . . . Applying (6)
to 1 − b and 1 − z′n we obtain P (X ∈ (b, z′n]) = z′n − b. A passage to the
limit as n → ∞ gives P (X ∈ (b, b2]) = b2 − b. Since (b, b2) ∩ Sd(µ) = ∅,
Lemma 4.1 implies that F (x) = x for x ∈ (b, b2). Consequently, F (x) = x
for x ∈ (1 − b2, 1 − b). The existence of an atom at 1 − b contradicts our
assumption that every atom in I ′ is an isolated point. Hence there is an atom
at b2. By induction we can prove that there exists a sequence {bn} ⊂ Sd(µ)
such that (bn, bn+1) ∩ Sd(µ) = ∅.

In view of Lemma 3.1, since there are infinitely many atoms, there exist
x ∈ S(µ) \ Sd(µ) and bk, bk+1 such that bk < x < bk+1 (atoms bk, bk+1
∈ {bn}); otherwise applying Lemma 3.1 to a subinterval of I such that
{I ∪ I ′} ∩ S(µ) \ Sd(µ) = ∅ leads to contradiction. Define

x1 = inf{x ∈ S(µ) \ Sd(µ) : x ∈ (bk, bk+1)},

x2 = sup{x ∈ S(µ) \ Sd(µ) : x ∈ (bk, bk+1)}.

From Lemma 4.1 one can deduce that F (x) = x for x ∈ (x1, x2).
Since bk, bk+1 are isolated points in S(µ), we have (bk, x1) ∩ S(µ) = ∅ and
(x2, bk+1)∩ S(µ) = ∅. Consider a sequence {x1n} ⊂ S(µ) such that x1n ↓ x1
and x1n satisfies (6) for n = 1, 2, . . . . Applying (6) to 1−x1n and 1− bk, we
get

P (X ∈ [1− x1, 1− bk]) = x1 − bk.(39)

One can prove that [1− x1, 1− bk]∩Sd(µ) = {1− bk} and P (X = 1− bk) =
x1 − bk. On the other hand, there exists a sequence {x′1n} ⊂ S(µ) such that
x′1n ↓ x1 and x′1n satisfies (7) for n = 1, 2, . . .. Applying (7) to bk and x′1n
we get

(x′1n)
2− b2k + 2(bk − x

′

1n)EY + 2E[Y I(1− bk ≥ X > 1− x′1n)] + bk− x
′

1n = 0.

By passing to the limit as n→∞, and using (39), we obtain

x1 + bk − 2EY + 2(1− bk)− 1 = 0.(40)

From Proposition 4.1 we get EY = 1/2, which yields x1 = bk. Thus there
is no atom at bk. This contradicts our assumption that S(µ) has an infinite
number of atoms.

Lemma 4.3. The measure µ with properties (6), (7) is either atomic or
absolutely continuous.



A Characterization of Uniform Distribution 219

Proof. We have actually proved that the support of µ consists of intervals
and a finite number of atoms (Lemma 4.2). From the proof of Lemma 4.1
we deduce that intervals contained in S(µ) are symmetric with respect to
1/2. Furthermore, one can verify that between two intervals there must be
an element belonging to S(µ). Since the support structure is determined we
shall concentrate on the following mutually exclusive cases: (1) atoms exist
between intervals in S(µ), (2) there is only one interval in S(µ) surrounded
by atoms.

The first case, in view of the proof of Lemma 4.2 , leads to a contradiction.
Let us consider the second case. It suffices to consider an interval (c, 1− c)
and two atoms P (X = c) > 0 and P (X = 1 − c) > 0. (Using (6) and (7)
one can prove that there is no atom in [0, c) ∪ (1 − c, 1].) We shall show
that P (X = c) = P (X = 1 − c) = 0. Applying (6) to c and 1 − c we get
P (X ∈ (c, 1 − c]) = 1 − 2c. Since F (x) = x for x ∈ (c, 1 − c) we have
P (X ∈ (c, 1− c))=1− 2c, which yields P (X = 1− c) = 0. Hence using the
fact that EY = 1/2 we obtain P (X = c) = 0. It follows that the existence
of an interval in S(µ) implies absence of atoms.

Proof of Theorem 1. From Lemma 4.3 we conclude that µ is purely
discrete or absolutely continuous. By Lemma 3.2 the case that µ is discrete
leads to a uniform distribution. Supposing that the support of µ consists of
n atoms, we obtain S(µ) = {1/n, . . . , 1}. The result stated in Remark 2 for
continuous distribution implies that µ has density function f ≡ 1 on (0, 1).
This completes the proof of Theorem 1.
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