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Summary. We prove logarithmi
 Sobolev inequalities and 
on
entration results for 
on-vex fun
tions and a 
lass of produ
t random ve
tors. The results are used to derive tailand moment inequalities for 
haos variables (in the spirit of Talagrand and Ar
ones�Giné).We also show that the same proof may be used for 
haoses generated by log-
on
ave ran-dom variables, re
overing results by �o
howski, and present an appli
ation to exponentialintegrability of Radema
her 
haos.1. Introdu
tion. The paper is 
on
erned with 
on
entration propertiesof random ve
tors. We start with the followingDefinition 1. A real random variable ξ is said to have the 
on
entrationproperty of order α > 0 with 
onstants K,C if there exists a ∈ R su
h thatfor all t ≥ 0,(1) P(|ξ − a| ≥ t) ≤ Ce−tα/K .It is easy to see that the 
on
entration property implies that ξ has a�nite moment and there exist 
onstants C ′,K ′, depending on α,C,K only,su
h that for all t ≥ 0,(2) P(|ξ − Eξ| ≥ t) ≤ C ′e−tα/K′

.Moreover, by the Chebyshev inequality, the 
ondition (2) is equivalent tothe following moment estimates, valid for all p ≥ 1:(3) ‖ξ − Eξ‖p ≤ K ′′p1/α.2000 Mathemati
s Subje
t Classi�
ation: Primary 60E15; Se
ondary 60B11.Key words and phrases: log-Sobolev inequalities, 
on
entration of measure, polynomial
haos. [221℄
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More pre
isely, if (2) holds then so does (3) with K ′′ depending only on
α,C ′,K ′, whereas (3) implies (2) with C ′,K ′ depending only on K ′′, α.In what follows we restri
t our attention to random variables of the form
ξ = f(X), where X is a random ve
tor in R

n and the fun
tion f belongs to
F , a spe
i�ed 
lass of real, Borel measurable fun
tions on R

n (e.g. 1-Lips
hitzfun
tions or 1-Lips
hitz (homogeneous) 
onvex fun
tions).Definition 2. We say that a random ve
tor X in R
n has the 
on
entra-tion property of order α with 
onstants C,K with respe
t to a 
lass F of real,Borel measurable fun
tions on R

n if for every f ∈ F the random variable
f ◦X has the 
on
entration property of order α with 
onstants C,K.The above de�nition seems justi�ed as there are quite a few examples ofpairs (X,F) satisfying it. For instan
e, it is by now 
lassi
al that if X is astandard Gaussian random ve
tor in R

n then it has the 
on
entration prop-erty of order 2 with 
onstants 1, 2 with respe
t to the 
lass of 1-Lips
hitzfun
tions. Also random ve
tors in R
n with independent uniformly bounded
omponents have the 
on
entration property of order 2 with 
onstants in-dependent of the dimension with F being the 
lass of 1-Lips
hitz 
onvexfun
tions [19℄. The latter example 
an be extended to arbitrary random ve
-tors with bounded support, but the 
onstants will then also depend on themixing 
oe�
ients asso
iated with the random ve
tor [17℄.We now brie�y des
ribe one of the most e�
ient tools for proving the
on
entration property (espe
ially for produ
t distributions), whi
h has beendeveloped over the past several years, namely the entropy method.Definition 3. Let ξ be a nonnegative random variable and Φ : R+ → Ra 
onvex fun
tion su
h that Φ′′ > 0 and 1/Φ′′ is 
on
ave. De�ne the Φ-entropyof ξ by the formula(4) EntΦ ξ = EΦ(ξ) − Φ(Eξ).The most important examples are Φ(x) = x2 and Φ(x) = x log x. Inthese 
ases EntΦ be
omes respe
tively the varian
e and the usual entropyof a random variable (whi
h will be denoted simply by Ent). The notion isimportant from the 
on
entration of measure point of view sin
e we haveTheorem 1 (Herbst argument, see [11℄, [12℄). Let X ∈ R

n be a randomvariable and F a 
lass of fun
tions su
h that λf ∈ F for all f ∈ F and
λ ≥ 0. Assume furthermore that for all f ∈ F ,(5) Ent ef(X) ≤ CE|∇f(X)|2ef(X),and the right-hand side is �nite. Then for all f ∈ F with |∇f | ≤ 1 and t ≥ 0,

P(f(X) ≥ Ef(X) + t) ≤ e−t2/4C .
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A 
ru
ial property of EntΦ is the tensorization, whi
h is des
ribed in thefollowingTheorem 2 (see [4℄, [10℄). Consider a produ
t probability spa
e (Ω,µ),where Ω =

⊗n
i=1Ωi and µ =

⊗n
i=1 µi. Then for every nonnegative randomvariable ξ we have

EntΦ ξ ≤
n∑

i=1

E EntΦ,µi ξ,where EntΦ,µi ξ denotes the value of the fun
tional EntΦ at the fun
tion ξ,
onsidered as a fun
tion on Ωi, with the other 
oordinates �xed.Thus if a random ve
tor X ∈ R
n satis�es the inequality (5) for all

f ∈ F , then so does the random ve
tor X1 ⊕ · · · ⊕ Xd ∈ (Rn)d, where
Xi are independent 
opies of X, for all fun
tions f : (Rn)d → R su
h that
f(x1, . . . , xi−1, ·, xi+1, . . . , xd) ∈ F for all i and x1, . . . , xn ∈ R

n, whi
h 
anbe used to obtain 
on
entration inequalities. This method has led to 
on-
entration results for 1-Lips
hitz fun
tions of standard Gaussian ve
tors and
1-Lips
hitz 
onvex fun
tions of uniformly bounded produ
t distributions (see[12, Chapter 5℄). In a slightly di�erent setting it was also used to obtain 
on-
entration results for more general fun
tions of independent random variablesand also to some general moment inequalities for su
h fun
tions [4℄. We alsomention that inequalities in the spirit of (5) with the left-hand side repla
edby Var f(X) (the so-
alled Poin
aré inequalities) yield 
on
entration prop-erty of order 1. There are also similar Lataªa�Oleszkiewi
z inequalities whi
himply 
on
entration of order α ∈ (1, 2) (see [10℄).In this arti
le we will present two results 
on
erning 
on
entration. First,in Se
tion 2 we obtain some su�
ient 
onditions for a real random variableto satisfy the logarithmi
 Sobolev inequality (5) for 
onvex fun
tions, whi
hyields some subgaussian deviation inequalities. Then in Se
tion 3 we willshow that the 
on
entration property of a random ve
tor X with respe
t tothe 
lass of seminorms 
an be tensorized to obtain 
on
entration inequalitiesfor X1 ⊗ · · · ⊗ Xd (where Xi's are independent 
opies of X), whi
h givessome new and helps to re
over known inequalities for polynomial 
haoses.Finally, in the last se
tion we present an appli
ation of these inequalities,by presenting a new proof of exponential integrability for Radema
her 
haospro
ess.2. Logarithmi
 Sobolev inequalities and
on
entration of measure for 
onvex fun
tionsDefinition 4. For m > 0 and σ ≥ 0 let M(m,σ2) denote the 
lass ofprobability distributions µ on R for whi
h

υ+(A) ≤ σ2µ(A)
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for all sets A of the form A = [x,∞), x ≥ m, and

υ−(A) ≤ σ2µ(A)for all sets A of the form A = (−∞,−x], x ≥ m, where υ+ is the measure on
[m,∞) with density g(x) = xµ([x,∞)) and υ− is the measure on (−∞,−m]with density g(x) = −xµ((−∞, x]).Proposition 1. Let µ be a probability distribution on R. Then the fol-lowing 
onditions are equivalent :(i) µ ∈ M(m,σ2) for some m,σ,(ii) we have

µ([x+ C/x,∞)) ≤ αµ([x,∞)),

µ((−∞,−x− C/x]) ≤ αµ((−∞,−x]),for some C > 0, α < 1 and all x ≥ m,where the 
onstants in (ii) depend only on the 
onstants in (i) and vi
e versa.For instan
e if (i) holds, we 
an take C = 2σ2 and α = 1/2.Proof. Assume (i) holds. Then for x ≥ m we have
σ2µ([x,∞)) ≥

x+2σ2/x\
x

yµ([y,∞)) dy ≥ x
2σ2

x
µ([x+ 2σ2/x,∞))

= 2σ2µ([x+ 2σ2/x,∞)),whi
h 
learly implies the �rst inequality of (ii). The se
ond inequality followssimilarly.Suppose now that (ii) is satis�ed and for x ≥ m de�ne the sequen
e
a0 = x, an+1 = an +C/an. Then it is easy to see that an → ∞ and therefore

∞\
x

tµ([t,∞)) dt ≤
∞∑

n=0

an+1µ([an,∞))(an+1 − an) ≤ K1

∞∑

n=0

αnµ([a0,∞))

≤ K2µ([x,∞)).We 
an pro
eed analogously to obtain the 
ondition on the left tail.
Remark. It is also worth noting that for a real random variable X, the
ondition L(X)∈M(m,σ2) is equivalent to EX2

1{X≥t}≤(t2 +2σ2)P(X≥t)and EX2
1{X≤−t} ≤ (t2 + 2σ2)P(X ≤ −t) for all t ≥ m.

Example. Of 
ourse all measures with bounded support belong to
M(m, 0) for some m. Other examples of measures from M(m,σ2) are abso-lutely 
ontinuous distributions µ satisfying the inequalities

d

dt
logµ([t,∞)) ≤ − t

σ2
,

d

dt
logµ((−∞,−t]) ≤ − t

σ2
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for t ≥ m. In parti
ular, if µ has density of the form e−V (x) with V ′(x) ≥
x/σ2 and V ′(−x) ≤ −x/σ2 then µ ∈ M(1, σ2).Now we are ready to state the main result of this se
tion.Theorem 3. Let X1, . . . , Xn be independent random variables su
h that
L(Xi) ∈ M(m,σ2) and let ϕ : R

n → R be a smooth 
onvex fun
tion. Then
Ent eϕ(X1,...,Xn) ≤ C(m,σ2)Eeϕ(X1,...,Xn)|∇ϕ(X1, . . . , Xn)|2.Hen
e for every 1-Lips
hitz 
onvex fun
tion ϕ : R

n → R and all t ≥ 0,
P(ϕ(X1, . . . , Xn) ≥ Eϕ(X1, . . . , Xn) + t) ≤ e−t2/4C(m,σ2).Before we pro
eed to the proof of Theorem 3, we will need a few lemmas.Lemma 1. Let µ ∈ M(m,σ2). Then for all fun
tions f : R → R+ whi
hare nonin
reasing for x ≤ x0 and nonde
reasing for x ≥ x0, we have

∞\̃
m

f(x)xµ([x,∞)) dx ≤ 2σ2
\
R

f(x) dµ(x),

where m̃ = m ∨ (
√

2σ) + 2σ2/(m ∨ (
√

2σ)).Proof. First noti
e that by standard approximation arguments the in-equalities of De�nition 4 are also satis�ed for sets A = (x,∞), x ≥ m. Wehave
∞\̃
m

f(x)xµ([x,∞)) dx =

∞\̃
m

∞\
0

1{s≤f(x)}xµ([x,∞)) ds dx(6)
=

∞\
0

υ+({x ≥ m̃ : f(x) ≥ s}) ds.

The set A = {x ≥ m̃ : f(x) ≥ s} is either a half-line 
ontained in [m,∞) ora disjoint union of su
h a half-line and an interval I with left end m̃. In theformer 
ase we have υ+(A) ≤ σ2µ(A) ≤ σ2µ({x ∈ R : f(x) ≥ s}).Now 
onsider the latter 
ase. Denote the right end of I by t. Let a =
m ∨ (

√
2σ). As t ≥ m̃ = a+ 2σ2/a ≥ a, we obtain
υ+(A) ≤ υ+([m̃,∞)) ≤ σ2µ([a,∞)) ≤ 2σ2µ([a, a+ 2σ2/a))

≤ 2σ2µ([a, t)) ≤ 2σ2µ({x ≤ t : f(x) ≥ s}),where the se
ond inequality follows from the assumption µ ∈ M(m,σ2), thethird from Proposition 1 and the last one from the observation that x0 ≥ tand thus f is nonin
reasing for x ≤ t. Now we 
an write
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2σ2

\
R

f(x) dµ(x) = 2σ2
\
R

∞\
0

1{s≤f(x)} ds dµ(x)

= 2σ2
∞\
0

µ({x ∈ R : f(x) ≥ s}) ds,whi
h together with (6) allows us to 
omplete the proof.Lemma 2. If X is a random variable su
h that L(X) ∈ M(m,σ2) then
P(|X| ≥ t) ≤ C1(m,σ

2)e−t2/C2(m,σ2) for all t ≥ 0.Proof. Obviously it is su�
ient to prove the inequality for t ≥ 4m. De�ne
g(x) =

T∞
x yP(X ≥ y) dy. Then for x ≥ m,

xg(x) ≤ xσ2
P(X ≥ x),and thus

∞\
z

xg(x) dx ≤ σ2g(z), z ≥ m.Let f(z) =
T∞
z xg(x) dx. Sin
e the fun
tion x 7→ xg(x) is 
ontinuous, we 
anrewrite the above inequality as

f ′(z) ≤ − 1

σ2
zf(z), z ≥ m,whi
h gives f(z) ≤ C exp(−z2/2σ2) with C depending only on m and σ2.Now, as g is nonin
reasing, for z ≥ m we have

g(2z) ≤ 1

z2
f(z) ≤ C

z2
e−z2/2σ2and similarly

P(X ≥ 4x) ≤ g(2x)

4x2
≤ C

4x4
e−x2/2σ2for x ≥ m.The lower tail 
an be dealt with analogously.Lemma 3. Let ϕ : R → R be a smooth 
onvex Lips
hitz fun
tion and

X a random variable with L(X) ∈ M(m,σ2). Then there exists a 
onstant
C(m,σ2) su
h that(7) ∞\

0

∞\
0

ϕ′(x)ϕ′(y)eϕ(y)
P(X ≤ x ∧ y)P(X ≥ x ∨ y) dx dy

≤ C(m,σ2)Eϕ′(X)2eϕ(X).Proof. Let us �rst noti
e that the left-hand side of (7) is equal to
∞\
0

y\
0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy.
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Sin
e ϕ is 
onvex, there exists a point x0 (possibly 0 or in�nity) at whi
h ϕattains its minimum on [0,∞]. Moreover ϕ is nonin
reasing on (0, x0) andnonde
reasing on (x0,∞). Therefore for x, y ∈ (0, x0) with x ≤ y one has

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y)) ≤ 2ϕ′(x)2eϕ(x).Thus for m̃ being the 
onstant de�ned in Lemma 1 we have
(8) x0∧m̃\

0

y\
0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤ 2

x0∧m̃\
0

ϕ′(x)2eϕ(x)
P(X ≤ x)

x0∧m̃\
x

P(X ≥ y) dy dx

≤ 2m̃E

x0∧m̃\
0

ϕ′(x)2eϕ(x)
1{X≤x} dx ≤ 2m̃2

Eϕ′(X)2eϕ(X),

where the last inequality follows from the fa
t that if x0 > 0, then ϕ′(x)2eϕ(x)

≤ ϕ′(y)2eϕ(y) for y ≤ x ≤ x0.On the other hand, for x0 < x < y we have ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y)) ≤
2ϕ′(y)2eϕ(y). Obviously this is also the 
ase if x < x0 < y, so
(9) ∞\

x0∨m̃

y\
0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤ 2

∞\
x0∨m̃

ϕ′(y)2eϕ(y)yP(X ≥ y) dy ≤ 4σ2
Eϕ′(X)2eϕ(X),

by Lemma 1, sin
e L(X) ∈ M(m,σ2).So it remains to estimate the integral over the interval (x0 ∧ m̃, x0 ∨ m̃).Let us 
onsider two 
ases:(i) x0 < m̃. Then
(10) m̃\

x0

y\
0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤ 2

m̃\
x0

y\
x0

ϕ′(y)2eϕ(y)
P(X ≥ y) dx dy

≤ 2m̃E

m̃\
x0

ϕ′(y)2eϕ(y)
1{X≥y} dy ≤ 2m̃2

Eϕ′(X)2eϕ(X).
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(ii) x0 > m̃. We 
an obviously assume that m̃ ≥ 1. Then as before

(11) x0\̃
m

y\
0

ϕ′(x)ϕ′(y)(eϕ(x) + eϕ(y))P(X ≤ x)P(X ≥ y) dx dy

≤ 2

x0\̃
m

y\
0

ϕ′(x)2eϕ(x)
P(X ≤ x)P(X ≥ y) dx dy

= 2

x0\
0

x0\
x∨m̃

ϕ′(x)2eϕ(x)
P(X ≤ x)P(X ≥ y) dy dx

≤ 2

x0\
0

ϕ′(x)2eϕ(x)
P(X ≤ x)

∞\
m̃∨x

yP(X ≥ y) dy dx

≤ 2σ2
x0\
0

ϕ′(x)2eϕ(x)
P(X ≤ x)P(X ≥ x) dx

≤ 2σ2
m̃\
0

ϕ′(x)2eϕ(x)
P(X ≤ x) dx+ 2σ2

x0\̃
m

ϕ′(x)2eϕ(x)xP(X ≥ x) dx

≤ 2σ2(m̃+ 2σ2)Eϕ′(X)2eϕ(X).Bringing together (8)�(11) 
ompletes the proof.Lemma 4. Let ϕ : R → R be a smooth 
onvex Lips
hitz fun
tion, nonin-
reasing on (−∞, 0), and X be a random variable with L(X) ∈ M(m,σ2).Then \
{(x,y)∈R2 :xy≤0}

ϕ′(x)ϕ′(y)eϕ(y)
P(X ≤ x ∧ y)P(X ≥ x ∨ y) dx dy

≤ C(m,σ2)Eϕ′(X)2eϕ(X).Proof. Assume without loss of generality that m ≥ 1 and let m̃ be the
onstant de�ned in Lemma 1. For x < 0 < y we have either ϕ′(x)ϕ′(y) ≤ 0,or ϕ′(x) ≤ ϕ′(y) < 0 and ϕ(x) ≥ ϕ(y), so
0\

−∞

∞\
0

ϕ′(x)ϕ′(y)eϕ(y)
P(X ≤ x)P(X ≥ y) dy dx

≤
0\

−∞

∞\
0

ϕ′(x)2eϕ(x)
P(X ≤ x)P(X ≥ y) dy dx

≤ C(m,σ2)

0\
−∞

ϕ′(x)2eϕ(x)
P(X ≤ x) dx,
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where the last inequality follows from the fa
t that by Lemma 2,

∞\
0

P(X ≥ y) dy = EX+ ≤ C(m,σ2).Also
∞\
0

0\
−∞

ϕ′(x)ϕ′(y)eϕ(y)
P(X ≤ y)P(X ≥ x) dy dx

≤
0\

−∞

∞\
0

ϕ′(y)2eϕ(y)
P(X ≤ y)P(X ≥ x) dx dy

≤ C(m,σ2)

0\
−∞

ϕ′(y)2eϕ(y)
P(X ≤ y) dy.Now

−m̃\
−∞

ϕ′(x)2eϕ(x)
P(X ≤ x) dx ≤

−m̃\
−∞

ϕ′(x)2eϕ(x)(−x)P(X ≤ x) dx

≤ 2σ2
Eϕ′(X)2eϕ(X)by Lemma 1, as L(X) ∈ M(m,σ2). Moreover,

0\
−m̃

ϕ′(x)2eϕ(x)
P(X ≤ x) dx = E

0\
−m̃

ϕ′(x)2eϕ(x)
1{X≤x} dx

≤ m̃Eϕ′(X)2eϕ(X).Proof of Theorem 3. We will follow Ledoux's approa
h for bounded vari-ables. Due to the tensorization property of entropy (Theorem 2), it is enoughto prove the theorem for n = 1. Also, by the standard approximation argu-ment, we 
an restri
t our attention to 
onvex Lips
hitz fun
tions only. Letnow Y be an independent 
opy of X. By Jensen's inequality we have
Ent eϕ(X) = Eϕ(X)eϕ(X) − Eeϕ(X) log Eeϕ(X)

≤ 1

2
E(ϕ(X) − ϕ(Y ))(eϕ(X) − eϕ(Y ))

= E(ϕ(X) − ϕ(Y ))(eϕ(X) − eϕ(Y ))1{X≤Y }

= E

\
R

\
R

ϕ′(x)ϕ′(y)eϕ(y)
1{X≤x≤Y }1{X≤y≤Y } dx dy

=
\
R

\
R

ϕ′(x)ϕ′(y)eϕ(y)
P(X ≤ x ∧ y)P(X ≥ x ∨ y) dx dy.Sin
e L(−X) ∈ M(m,σ2), we 
an assume that the minimal value of ϕ isattained at some point of the right half-axis (possibly at ∞). Splitting now
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the double integral into four integrals depending on the signs of x and y andusing Lemmas 3 and 4 we obtain the desired inequality. Note that we 
anuse Lemma 3 to handle the integration over (−∞, 0)2 again by 
hange ofvariables and the fa
t that L(−X) ∈ M(m,σ2). The tail inequality followsfrom the entropy estimates by Theorem 1.
Remark. One would obviously like to 
hara
terize all real random vari-ables X su
h that the random ve
tors (X1, . . . , Xn) (where Xi's are indepen-dent 
opies of X) have the 
on
entration property of order 2 for 1-Lips
hitz
onvex fun
tions with 
onstants independent of the dimension n. Ea
h su
hvariable must of 
ourse have the 
on
entration property of order 2 itself. This,however, is not su�
ient, as 
on
entration with respe
t to 
onvex fun
tionsimplies hyper
ontra
tivity (see [5℄), whi
h is equivalent to some regularityof the tail. In parti
ular, it follows that EX2

1{X≥t} ≤ Ct2P(X ≥ t) for tlarge. This 
ondition is weaker than L(X) ∈ M(m,σ2) for some m,σ buthyper
ontra
tivity is also weaker than the 
on
entration property of order 2,uniformly over the dimension n.We would also like to point out that all Borel probability measures µ onthe real line, whi
h satisfy the logarithmi
 Sobolev inequality for all smooth(not ne
essarily log-
onvex) fun
tions, belong to M(m,σ2) for some m,σ.Thus ⋃
m,σ M(m,σ2) is stri
tly larger than the 
lass of all measures sat-isfying the logarithmi
 Sobolev inequality for all smooth fun
tions. Morepre
isely, we have the followingProposition 2. Let µ be a Borel probability measure on R for whi
hthere exists C <∞ su
h that for all smooth fun
tions,

Ent f(X)2 ≤ CE|f ′(X)|2,where X is a random variable with the law µ. Then there exist 
onstants
m,σ <∞ su
h that µ ∈ M(m,σ2).Proof. From the Bobkov�Götze 
riterion (see [2℄) it follows that if n isthe density of the absolutely 
ontinuous part of µ and M is a median of µ,than for some 
onstant K and all x ≥M ,

µ([x,∞)) log
1

µ([x,∞))

x\
M

1

n(t)
dt < K.Thus (sin
e µ has the 
on
entration property of order 2) from Hölder's in-equality we get (using the above inequality for x+ 1/x instead of x)

D

K
x2µ([x+ 1/x,∞)) ≤ 1Tx+1/x

M (1/n(t)) dt
≤ µ([x, x+ 1/x))

(
Tx+1/x
x 1 dt)2

= x2µ([x, x+ 1/x))
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for some D > 0 and x large enough, whi
h implies µ([x + 1/x,∞)) ≤
αµ([x,∞)) with α = (K/D)/(K/D + 1). Sin
e a similar 
ondition on theleft tail 
an be proven analogously, the 
laim follows by Proposition 1.3. Con
entration for seminorms on the tensor produ
t andrandom 
haoses3.1. A tensorization inequality for seminormsTheorem 4. Consider a random ve
tor X ∈ R

n for whi
h there exists a
onstant K su
h that for every seminorm ϕ : R
n → R+ we have Eϕ(X) <∞and for every p ≥ 1,

‖ϕ(X) − Eϕ(X)‖p ≤ K
√
p sup
|α|=1

ϕ(α).

Then if X1, . . . , Xd are independent 
opies of X and ψ :
⊗d

i=1 R
n → R+ aseminorm, we have

∥∥∥ψ
( d⊗

i=1

Xi

)
− Eψ

( d⊗

i=1

Xi

)∥∥∥
p

≤ Kd

∑

I⊆{1,...,d}, I 6=∅

p#I/2
E sup

|αk|≤1, k∈I
ψ

( d⊗

i=1

Xi,I,(αk)k∈I

)
,

where
Xi,I,(αk)k∈I

=

{
Xi if i /∈ I,

αi if i ∈ I,

Kd is a 
onstant depending only on K and d, and |α| denotes the Eu
lideannorm of the ve
tor α.Proof. We use indu
tion on d. For d = 1, the statement of the theorem isjust its hypothesis. Assume that the statement is true for fewer than d ≥ 2
opies of X. Using 
onditionally the indu
tion assumption for d1 = 1 andthe fun
tion
ϕ1(x) = ψ(X1 ⊗ · · · ⊗Xd−1 ⊗ x),we obtain

EXd

∣∣∣ψ
( d⊗

i=1

Xi

)
− EXd

ψ
( d⊗

i=1

Xi

)∣∣∣
p
≤ Kppp/2 sup

|α|≤1
ψ

( d−1⊗

i=1

Xi ⊗ α
)p
.Now noti
e that the fun
tion ϕ2(x) = sup|α|≤1 ψ(x ⊗ α) is a seminorm on

⊗d−1
i=1 R

d and thus we 
an apply the indu
tion assumption and the triangleinequality in Lp, whi
h together with the Fubini Theorem gives
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(12) E

∣∣∣ψ
( d⊗

i=1

Xi

)
− EXd

ψ
( d⊗

i=1

Xi

)∣∣∣
p

≤ K̃p
d−1

∑

I⊆{1,...,d}, d∈I

pp#I/2
(
E sup

|αk|≤1, k∈I
ψ

( d⊗

i=1

Xi,I,(αk)k∈I

))p
,

where K̃d−1 depends only on Kd−1 and d.Now we would like to estimate E|EXd
ψ(

⊗d
i=1Xi) − Eψ(

⊗d
i=1Xi)|p. Tothis end 
onsider ϕ3 :

⊗d−1
i=1 R

n → R+ de�ned as ϕ3(x) = Eψ(x⊗Xd). It iseasy to see that ϕ3 is a seminorm and thus, by the indu
tion assumption,
(13) E

∣∣∣ϕ3

( d−1⊗

i=1

Xi

)
− Eϕ3

( d−1⊗

i=1

Xi

)∣∣∣
p

≤ K̃p
d−1

∑

I⊆{1,...,d−1}, I 6=∅

pp#I/2
(
E sup

|αk|≤1, k∈I
ϕ3

( d−1⊗

i=1

Xi,I,(αk)k∈I

))p
.

Now it is enough to note that for ea
h I ⊆ {1, . . . , d− 1},
E sup

|αk|≤1, k∈I
ϕ3

( d−1⊗

i=1

Xi,I,(αk)k∈I

)
≤ E sup

|αk|≤1, k∈I
ψ

( d⊗

i=1

Xi,I,(αk)k∈I

)
,whi
h together with (12) and (13) 
ompletes the proof.Noti
e that by Theorem 3 for all produ
t random ve
tors X ∈ R

n with1-dimensional marginals in M(m,σ2) and all seminorms ϕ : R
n → R+ wehave ‖(ϕ(X)−Eϕ(X))+‖p ≤ K

√
p sup|α|≤1 ϕ(α), with K depending only on

m and σ2. Thus the same proof, with formal 
hanges only, givesTheorem 5. Let X1, . . . , Xn ∈ R
n be independent random ve
tors withindependent 
omponents and all 1-dimensional marginals in M(m,σ2).Then for every seminorm ψ :

⊗d
i=1 R

n → R+ we have
∥∥∥
(
ψ

( d⊗

i=1

Xi

)
− Eψ

( d⊗

i=1

Xi

))
+

∥∥∥
p

≤ Kd

∑

I⊆{1,...,d}, I 6=∅

p#I/2
E sup

|αk|≤1, k∈I
ψ

( d⊗

i=1

Xi,I,(αk)k∈I

)
,

where Kd depends only on m,σ2 and d.By the Chebyshev inequality we 
an obtain from the above theorems a
orollary 
on
erning the tail behaviour of ψ(
⊗d

i=1Xi). We give it only forTheorem 4; for Theorem 5 it is analogous but deals with the upper tail only.
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Corollary 1. Under the assumption of Theorem 4 there exist 
onstants

Kd, depending only on K and d, su
h that for all t ≥ 1,
P

(∣∣∣ψ
( d⊗

i=1

Xi

)
− Eψ

( d⊗

i=1

Xi

)∣∣∣

≥ Kd

∑

I⊆{1,...,d}, I 6=∅

t#I/2
E sup

|αk|≤1, k∈I
ψ

( d⊗

i=1

Xi,I,(αk)k∈I

))
≤ e−t.

3.2. Chaos random variables. The above theorems 
an be rewritten interms of de
oupled polynomial 
haoses. Below we present su
h a versionas a 
orollary (a
tually equivalent to Theorem 4), so that the reader 
ould
ompare it with existing results on 
haos random variables.Let X(1), . . . , X(d) be independent 
opies of X = (X1, . . . , Xn) ∈ R
n and
onsider a homogeneous de
oupled 
haos of order d, i.e. a random variable ofthe form(14) Z = sup

t∈T

∣∣∣
n∑

i1,...,id=1

ti1...idX
(1)
i1

· · ·X(d)
id

∣∣∣,

where T is a 
ountable, bounded set of fun
tions t : {1, . . . , n}d → R.Let us introdu
eDefinition 5. For I ⊆ {1, . . . , d} let
‖T ‖I = E sup

t∈T
sup

|α(k)|≤1, k∈I

∣∣∣
n∑

i1,...,id=1

ti1...id

∏

k∈I

α
(k)
ik

∏

k/∈I

X
(k)
ik

∣∣∣,

where the se
ond supremum is taken over all (α(k))k∈I ∈ (Rn)#I , and |α(k)|stands for the Eu
lidean norm of the ve
tor α(k).Corollary 2. Let X = (X1, . . . , Xn) have the 
on
entration propertywith 
onstants C,K with respe
t to 1-Lips
hitz seminorms on R
n. Then forany integer d ≥ 1, there exists a 
onstant Kd, depending only on d and C,K,su
h that for any homogeneous 
haos Z (as de�ned in (14)) and any p ≥ 1,(15) ‖Z − EZ‖p ≤ Kd

∑

I⊆{1,...,d}, I 6=∅

p#I/2‖T ‖I .

Corollary 3. There exist 
onstants Kd su
h that for all t ≥ 1,
P

(
|Z − EZ| ≥ Kd

∑

I⊆{1,...,d}, I 6=∅

t#I/2‖T ‖I

)
≤ e−t.
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Remark. Usually one is interested in the �unde
oupled� 
haos, i.e. arandom variable of the form

Z = sup
t∈T

∣∣∣
n∑

i1,...,id=1

ti1...idXi1 · · ·Xid

∣∣∣,where X1, . . . , Xn are independent random variables and for all t ∈ T thenumber ti1...id is invariant under permutations of 
oordinates and nonzeroonly if the 
oordinates are pairwise distin
t. The analogues of the abovetheorems for su
h 
haoses generated by Gaussian variables were obtained byBorell [3℄ and Ar
ones and Giné [1℄. The Radema
her 
ase was 
onsideredby Talagrand [18℄ (
haos of order 2) and Bou
heron, Bousquet, Lugosi andMassart [4℄ (
haos of arbitrary order d). It is easy to see that ea
h de
oupled
haos 
an be represented as an unde
oupled one, but the aforementionedresults do not re
over the lower tail inequalities (ex
ept for the 
ase d = 2).Also the methods are quite di�erent and do not allow treating both Gaussianand Radema
her variables in a uni�ed way.3.2.1. Chaoses generated by symmetri
 random variables with log-
on
avetails. Now we would like to point out that the proof of Theorem 4 
an bea
tually used in a slightly di�erent setting, namely for 
haoses generatedby independent random variables with logarithmi
ally 
on
ave tails. Su
hvariables have been investigated by Lataªa [7℄ and �o
howski [14℄.Definition 6. Let N = (X
(k)
i )k≤d, i≤n be a matrix of independent sym-metri
 random variables with logarithmi
ally 
on
ave tails, i.e. random vari-ables su
h that the fun
tions

N (k)
i (t) = − log P(|X(k)

i | ≥ t), t ≥ 0,are 
onvex. Furthermore assume (as a matter of normalization) that
inf{t : N (k)

i (t) ≥ 1} = 1,and de�ne modi�ed fun
tions Ñ (k)
i by the formula

Ñ (k)
i (t) =

{
t2 for |t| ≤ 1.

N (k)
i (|t|) for |t| ≥ 1.Let now T be a 
ountable set of fun
tions t : {1, . . . , n}d → R and Z arandom variable de�ned by (14). Moment estimates for Z will be expressedin terms of the following quantities:Definition 7. For I ⊆ {1, . . . , d} and p ≥ 1 de�ne

‖T ‖N ,I,p = E sup
t∈T

sup
α(k)∈Ak,p, k∈I

∣∣∣
n∑

i1,...,id=1

ti1...id

∏

k∈I

α
(k)
ik

∏

k/∈I

X
(k)
ik

∣∣∣,
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where

Ak,p =
{
α ∈ R

n :
n∑

i=1

Ñ (k)
i (αi) ≤ p

}
.The following result was proved for d = 1 by Lataªa [7℄ and for arbitrary

d by �o
howski [14℄.Theorem 6 (Lataªa, �o
howski). There exist 
onstants Kd (dependingonly on d) su
h that for all p ≥ 1,
1

Kd

∑

I⊆{1,...,d}

‖T ‖N ,I,p ≤ ‖Z‖p ≤ Kd

∑

I⊆{1,...,d}

‖T ‖N ,I,p.

Proposition 3. The 
on
lusion of Theorem 6 for d = 1 implies that
on
lusion for arbitrary d.Proof. When we rewrite the inequalities of Theorem 6 in the languageof seminorms, the proof be
omes analogous to the proof of Theorem 4. Onehas simply to noti
e that the fa
tors p#I/2 do not appear, as the dependen
eon p is in
orporated in the sets Ak,p whi
h repla
e the unit Eu
lidean ballin the supremum.As for the lower estimate, the proof is even simpler but we present it herefor the sake of 
ompleteness (written in the �
haos language�). Obviously
‖Z‖p ≥ ‖Z‖1 = ‖T ‖N ,∅,p. Moreover for any nonempty set I ⊆ {1, . . . , d},say with r ∈ I, we have by the indu
tion hypothesis

‖Z‖p ≥ 1

K1

∥∥∥ sup
t∈T

sup
α(r)∈Ar,p

∣∣∣
n∑

i1,...,id=1

ti1...id

∏

k 6=r

X
(k)
ik
α

(r)
ir

∣∣∣
∥∥∥

p

≥ 1

K1Kd−1
‖T ‖N ,I,p.Using the Chebyshev inequality and the Paley�Zygmund inequality to-gether with the hyper
ontra
tive properties of 
haoses (see [15℄) we obtainCorollary 4. There exist 
onstants Kd su
h that for all t ≥ 1,

P

(
Z ≥ Kd

∑

I⊆{1,...,d}

‖T ‖N ,I,t

)
≤ e−t,

P

(
Z ≥ 1

Kd

∑

I⊆{1,...,d}

‖T ‖N ,I,t

)
≥ e−t ∧ c.

Remark. The bound of Theorem 6 is also valid in the 
ase of unde-
oupled 
haoses due to the de
oupling results by de la Peña and Montgo-mery-Smith [16℄, whi
h say that tails and moments of the de
oupled andunde
oupled 
haos with the same 
oe�
ients are equivalent.
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Remark. All estimates presented so far are expressed in terms of ex-pe
ted values of empiri
al pro
esses, whi
h themselves are in general trouble-some and di�
ult to estimate. One would obviously want to obtain momentestimates in terms of deterministi
 quantities at least in the real-valued 
ase(i.e. when T is a singleton). This has been done by Lataªa in [7℄ for d = 2and log-
on
ave random variables, and re
ently in [8℄ for arbitrary d andGaussian 
haoses.4. An appli
ation. Finally, we would like to argue that estimates in thespirit of Se
tion 3, although nondeterministi
, may be of some use. We willdemonstrate it by presenting a sket
h of a new (at least to the author's bestknowledge) proof of exponential integrability of a generalized Radema
her
haos pro
ess for general d, whi
h we believe is simpler than the pre
ed-ing ones. The general result and the proof for d ≤ 2 may be found in themonograph by Ledoux and Talagrand [13℄.Let us �rst re
all the general setting. We deal with a Bana
h spa
e B forwhi
h there exists a 
ountable set D of linear fun
tionals from the unit ballof B′ su
h that for ea
h x ∈ B we have ‖x‖ = supf∈D |f(x)|. A B-valuedrandom variable X is a homogeneous Radema
her 
haos of order d if thereis a sequen
e (xi1...id)i1,...,id∈N ∈ B (xi1...id invariant under permutation of
oordinates and nonzero only if i1, . . . , id are pairwise distin
t) su
h thatfor every f ∈ D the multiple series ∑

i1,...,id
f(xi1...id)εi1 · · · εid 
onvergesalmost surely and (

∑
i1,...,id

f(xi1...id)εi1 · · · εid)f∈D has the same distributionas (f(X))f∈D.Theorem 7. Let X be a homogeneous Radema
her 
haos of order d.Then
Eeα‖X‖2/d

<∞ for all α ∈ R.Before we pro
eed to the proof, we needLemma 5. There exist 
onstants Ld (depending only on d) with the prop-erty that for every α > 0 there exists a 
onstant ε(α) su
h that for ev-ery homogeneous Radema
her 
haos X of order d and every M satisfying
P(‖X‖ > M) < ε(α) we have

P(‖X‖ > LdMtd/2) < e−αt for all t ≥ 1.Proof. Radema
her variables are log-
on
ave, so we 
an apply Corollary 4for �nite sums. It is easy to see that(16) Ak,p = Ap =
{
(αi) :

∑
α2

i ≤ p, |αi| ≤ 1
}
.Due to 
onvergen
e, using standard arguments one 
an extend the tail esti-mates to the general Radema
her 
haos X. Therefore, set
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φ(t) =

∑

I⊆{1,...,d}

‖T ‖N ,I,t,where T = {(f(xi1...id)) : f ∈ D}. From (16) it follows that(17) φ(xt) ≤ td/2φ(x)for all x ≥ 0 and t ≥ 1. As φ is in
reasing, by the last inequality it is 
ontin-uous. If φ(x) ≤ KdM for every x (Kd being the 
onstant from Corollary 4),we have, for t ≥ 1,
P(‖X‖ ≥MK2

dt
d/2) ≤ inf

x
P(‖X‖ ≥ Kdφ(x)) ≤ inf

x
e−x = 0.Otherwise KdM = φ(x) for some x. Thus

ε ≥ P(‖X‖ ≥M) = P(‖X‖ ≥ φ(x)/Kd) ≥ c ∧ e−x,whi
h for ε small enough yields x ≥ − log ε. Moreover (17) gives KdMtd/2 ≥
φ(tx) for t ≥ 1 and thus for ε < e−α,

P(‖X‖ ≥ K2
dMtd/2) ≤ P(‖X‖ ≥ Kdφ(tx)) ≤ e−tx ≤ et log ε ≤ e−αt.Proof of Theorem 7 (sket
h). We will pro
eed by indu
tion on d. Let

Sn =
∑

i1,...,id≥n xi1···idεi1 . . . εid . Then ‖Sn‖ is a reversed submartingale with
E‖Sn‖ ≤ E‖X‖ and thus it 
onverges to some random variable, whi
h by thezero-one law must be almost surely 
onstant. Thus there exists M su
h thatfor all ε > 0 we have P(‖Sn‖ ≥ M) < ε for n large enough. By Lemma 5,for every β > 0 there is n su
h that for all t ≥ 1,

P(‖Sn‖ ≥ LdMtd/2) < e−βtor equivalently
P(α‖Sn‖2/d ≥ t) ≤ exp

(
− βt

α(LdM)2/d

)

for t≥ (LdM)2/dα, whi
h 
learly implies Eeα‖Sn‖2/d
<∞ for α<β/(LdM)2/d.Sin
e X−Sn is a �nite sum of 
haoses of orders lower than d (when d > 1) ora bounded random variable (for d = 1), its integrability properties allow us touse Hölder's inequality and obtain Eeα‖X‖2/d

<∞ also for α < β/(LdM)d/2.This allows us to �nish the proof as β 
an be 
hosen arbitrarily large.A
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ing him to the subje
t and all the inspiring
onversations.
Referen
es[1℄ M. Ar
ones and E. Giné, On de
oupling, series expansion and tail behaviour of 
haospro
esses, J. Theoret. Probab. 6 (1993), 101�122.



238 R. Adam
zak
[2℄ S. G. Bobkov and F. Götze, Exponential integrability and transportation 
ost relatedto logarithmi
 Sobolev inequalities, J. Fun
t. Anal. 163 (1999), 1�28.[3℄ C. Borell, On a Taylor series of a Wiener polynomial, in: Seminar Notes on Mul-tiple Sto
hasti
 Integration, Polynomial Chaos and Their Integration, Case WesternReserve Univ., Cleveland, 1984.[4℄ S. Bou
heron, O. Bousquet, G. Lugosi and P. Massart, Moment inequalities forfun
tions of independent random variables, Ann. Probab. 33 (2005), 514�560.[5℄ P. Hit
zenko, S. Kwapie«, W. V. Li, G. S
he
htman, T. S
hlumpre
ht and J. Zinn,Hyper
ontra
tivity and 
omparison of moments of iterated maxima and minima ofindependent random variables, Ele
troni
 J. Probab. 3 (1998).[6℄ R. Lataªa, Tail and moment estimates for sums of independent random ve
tors withlogarithmi
ally 
on
ave tails, Studia Math. 118 (1996), 301�304.[7℄ �, Tail and moment estimates for some types of 
haos, Studia Math. 135 (1999),39�53.[8℄ �, Estimation of moments and tails of Gaussian 
haoses, preprint, 2005, http://www.arxiv.org/abs/math.PR/0505313.[9℄ R. Lataªa and R. �o
howski,Moment and tail estimates for multidimensional 
haosgenerated by positive random variables with logarithmi
ally 
on
ave tails, Progr.Probab. 56 (2003), 77�92.[10℄ R. Lataªa and K. Oleszkiewi
z, Between Sobolev and Poin
aré, in: Geometri
 As-pe
ts of Fun
tional Analysis, Israel Seminar (GAFA) 1996�2000, Le
ture Notes inMath. 1745, Springer, Berlin, 2000, 147�168.[11℄ M. Ledoux, On Talagrand's deviation inequalities for produ
t measures, ESAIM:Probab. Statist. 1 (1996), 63�87.[12℄ �, The Con
entration of Measure Phenomenon, Math. Surveys Monogr. 89, Amer.Math. So
., 2001.[13℄ M. Ledoux and M. Talagrand, Probability in Bana
h Spa
es, Springer, New York,1991.[14℄ R. �o
howski, Moment and tail estimates for multidimensional 
haoses generatedby symmetri
 random variables with logarithmi
ally 
on
ave tails, preprint.[15℄ V. H. de la Peña and E. Giné, De
oupling. From Dependen
e to Independen
e,Springer, 1999.[16℄ V. H. de la Peña and S. Montgomery-Smith, Bounds on the tail probability of U-statisti
s and quadrati
 forms, Bull. Amer. Math. So
. 31 (1994), 223�227.[17℄ P. M. Samson, Con
entration of measure inequalities for Markov 
hains and Φ-mixing pro
esses, Ann. Probab. 28 (2000), 416�461.[18℄ M. Talagrand, New 
on
entration inequalities in produ
t spa
es, Invent. Math. 126(1996), 505�563.[19℄ �, A new look at independen
e, Ann. Probab. 24 (1996), 1�34.Radosªaw Adam
zakInstitute of Mathemati
sPolish A
ademy of S
ien
es�niade
ki
h 8, P.O. Box 2100-956 Warszawa 10, PolandE-mail: R.Adam
zak�impan.gov.plRe
eived January 10, 2005;re
eived in �nal form July 20, 2005 (7429)


