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Summary. We prove logarithmic Sobolev inequalities and concentration results for con-
vex functions and a class of product random vectors. The results are used to derive tail
and moment inequalities for chaos variables (in the spirit of Talagrand and Arcones—Giné).
We also show that the same proof may be used for chaoses generated by log-concave ran-
dom variables, recovering results by f.ochowski, and present an application to exponential
integrability of Rademacher chaos.

1. Introduction. The paper is concerned with concentration properties
of random vectors. We start with the following

DEFINITION 1. A real random variable £ is said to have the concentration
property of order o > 0 with constants K, C if there exists a € R such that
for all t > 0,

(1) P(|¢ —a| > t) < Ce /K.

It is easy to see that the concentration property implies that & has a
finite moment and there exist constants C’, K, depending on «, C, K only,
such that for all ¢ > 0,

(2) P(|¢ — EE| > t) < e/

Moreover, by the Chebyshev inequality, the condition (2) is equivalent to
the following moment estimates, valid for all p > 1:

"1
(3) € = Bl < K",
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More precisely, if (2) holds then so does (3) with K” depending only on
a,C’, K', whereas (3) implies (2) with C’, K’ depending only on K", «.

In what follows we restrict our attention to random variables of the form
¢ = f(X), where X is a random vector in R™ and the function f belongs to
F, a specified class of real, Borel measurable functions on R™ (e.g. 1-Lipschitz
functions or 1-Lipschitz (homogeneous) convex functions).

DEFINITION 2. We say that a random vector X in R™ has the concentra-
tion property of order o with constants C, K with respect to a class F of real,
Borel measurable functions on R” if for every f € F the random variable
f o X has the concentration property of order o with constants C, K.

The above definition seems justified as there are quite a few examples of
pairs (X, F) satisfying it. For instance, it is by now classical that if X is a
standard Gaussian random vector in R™ then it has the concentration prop-
erty of order 2 with constants 1,2 with respect to the class of 1-Lipschitz
functions. Also random vectors in R™ with independent uniformly bounded
components have the concentration property of order 2 with constants in-
dependent of the dimension with F being the class of 1-Lipschitz convex
functions [19]. The latter example can be extended to arbitrary random vec-
tors with bounded support, but the constants will then also depend on the
mixing coefficients associated with the random vector [17].

We now briefly describe one of the most efficient tools for proving the
concentration property (especially for product distributions), which has been
developed over the past several years, namely the entropy method.

DEFINITION 3. Let ¢ be a nonnegative random variable and ¢: Ry — R
a convex function such that @” > 0 and 1/®” is concave. Define the @-entropy
of £ by the formula

(4) Ents € = EG(S) — B(EE).

The most important examples are ¢(z) = x? and &(z) = zlogz. In
these cases Entgs becomes respectively the variance and the usual entropy
of a random variable (which will be denoted simply by Ent). The notion is
important from the concentration of measure point of view since we have

THEOREM 1 (Herbst argument, see [11], [12]). Let X € R™ be a random
variable and F a class of functions such that A\f € F for oll f € F and
A > 0. Assume furthermore that for all f € F,

(5) Ent e/ X) < CE|V f(X)|2e X,
and the right-hand side is finite. Then for all f € F with |V f| <1 andt > 0,
B(f(X) > Ef(X) +1) < e /€.
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A crucial property of Entg is the tensorization, which is described in the
following

THEOREM 2 (see [4], [10]). Consider a product probability space ({2, 1),
where 2 = Q1 2; and p = Q" ;. Then for every nonnegative random
variable & we have

n
Ente¢ <> EEntg,, ¢,
=1
where Entg ,,, { denotes the value of the functional Entg at the function &,
considered as a function on (2;, with the other coordinates fized.

Thus if a random vector X € R satisfies the inequality (5) for all
f € F, then so does the random vector X; @ --- @ Xy € (R™)?, where
X; are independent copies of X, for all functions f: (R")¢ — R such that
flxy, oo xi-1,, Tig1, - .-, xq) € F for all i and x1,...,2, € R, which can
be used to obtain concentration inequalities. This method has led to con-
centration results for 1-Lipschitz functions of standard Gaussian vectors and
1-Lipschitz convex functions of uniformly bounded product distributions (see
[12, Chapter 5]). In a slightly different setting it was also used to obtain con-
centration results for more general functions of independent random variables
and also to some general moment inequalities for such functions [4]. We also
mention that inequalities in the spirit of (5) with the left-hand side replaced
by Var f(X) (the so-called Poincaré inequalities) yield concentration prop-
erty of order 1. There are also similar Latata—Oleszkiewicz inequalities which
imply concentration of order « € (1,2) (see [10]).

In this article we will present two results concerning concentration. First,
in Section 2 we obtain some sufficient conditions for a real random variable
to satisfy the logarithmic Sobolev inequality (5) for convex functions, which
yields some subgaussian deviation inequalities. Then in Section 3 we will
show that the concentration property of a random vector X with respect to
the class of seminorms can be tensorized to obtain concentration inequalities
for X1 ® -+ ® Xy (where X;’s are independent copies of X), which gives
some new and helps to recover known inequalities for polynomial chaoses.
Finally, in the last section we present an application of these inequalities,
by presenting a new proof of exponential integrability for Rademacher chaos
process.

2. Logarithmic Sobolev inequalities and
concentration of measure for convex functions

DEFINITION 4. For m > 0 and o > 0 let M(m,o?) denote the class of
probability distributions p on R for which

vH(A) < o%u(A)



224 R. Adamczak

for all sets A of the form A = [z, 00), z > m, and
v (A) < o’u(A)
for all sets A of the form A = (—oo0, —z], > m, where v is the measure on
[m, 00) with density g(x) = zu([z,00)) and v~ is the measure on (—oo, —m)|
with density g(x) = —zp((—o0, z]).
PROPOSITION 1. Let p be a probability distribution on R. Then the fol-
lowing conditions are equivalent:
(i) u € M(m,c?) for some m, o,
(ii) we have
[z + C/z,00)) < ap([z, 00)),
(=00, — — Cfa]) < ap((~o0, —]),
for some C >0, a <1 and all z > m,

where the constants in (ii) depend only on the constants in (i) and vice versa.
For instance if (i) holds, we can take C = 20? and a = 1/2.

Proof. Assume (i) holds. Then for > m we have
z4+202% /x 9
2 20 2
ullr,00) > | ynlly,00))dy > v 2l +20% ,o0)
x
— 20%u([x + 202/, 0)),

which clearly implies the first inequality of (ii). The second inequality follows
similarly.

Suppose now that (ii) is satisfied and for z > m define the sequence
ap = T, Gpy1 = an +C/a,. Then it is easy to see that a,, — oo and therefore

[ talt, o)) dt < S ansajil(an, 00)) (st — an) < Ky 3 a"u([ag, )
x n=0 n=0

< Kou([z, 0)).
We can proceed analogously to obtain the condition on the left tail. m

REMARK. It is also worth noting that for a real random variable X, the
condition £(X)eM(m,o?) is equivalent to EX?1;x~yy < (12 +202)P(X > 1)
and EXQI{XS_t} < (2 +20%)P(X < —t) for all t > m.

EXAMPLE. Of course all measures with bounded support belong to
M(m, 0) for some m. Other examples of measures from M (m, o?) are abso-
lutely continuous distributions p satisfying the inequalities

t

d t  d
| <= 2 oo, —t]) < ——
o og u([t,00)) < pc R og p((—o0, —t]) < =
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for ¢ > m. In particular, if ; has density of the form e~"(*) with V/(z) >
x/0? and V'(—x) < —x/0? then u € M(1,02).

Now we are ready to state the main result of this section.

THEOREM 3. Let X1,..., X, be independent random variables such that
L(X;) € M(m,c?) and let p: R"® — R be a smooth convex function. Then

Ent e#(X1Xn) < O(m, 0?)Ee?X0Xn) V(X1 ..., X)) |2
Hence for every 1-Lipschitz convez function ¢: R® — R and all t > 0,
P(o(X1,. ... Xn) > Ep(X1,..., X,) + 1) < e °/4Cm0%)
Before we proceed to the proof of Theorem 3, we will need a few lemmas.

LEMMA 1. Let p € M(m,o?). Then for all functions f: R — R which
are nonincreasing for x < xg and nondecreasing for x > xg, we have

| f@)zp(z, 00)) dx < 20° | f(2) dpu(a),
m R

where m =mV (vV20) + 202/(m V (V20)).

Proof. First notice that by standard approximation arguments the in-
equalities of Definition 4 are also satisfied for sets A = (x,00), z > m. We
have

(6) S f(x)mu<[m7 OO)) dr = S S 1{s§f(:c)}$:u<[$7 OO)) ds dx
m m 0

= S vt ({x >m: f(x) > s})ds.
0

The set A = {x > m: f(x) > s} is either a half-line contained in [m, co) or
a disjoint union of such a half-line and an interval I with left end m. In the
former case we have vt (A) < o?u(A) < o?u({z € R: f(z) > s}).

Now consider the latter case. Denote the right end of I by t. Let a =
mV (V20). Ast > m = a+ 202%/a > a, we obtain

vt (A4) < vH([, 00)) < o%u([a,00)) < 20%u([a,a + 20%/a))
<20%u([a, 1)) < 20°u({z < t: f(x) > s}),

where the second inequality follows from the assumption p € M(m,o?), the
third from Proposition 1 and the last one from the observation that zg > ¢
and thus f is nonincreasing for x < t¢. Now we can write
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20 | f(z) dp(z) = 20°

= —

} 1o sy dsdu(a)
0

202

u({z € R: f(z) > s})ds,

Or.’ﬁg

which together with (6) allows us to complete the proof. =
LEMMA 2. If X is a random variable such that L(X) € M(m,do?) then
P(|X| > t) < Ci(m, 02)et*/C2(mo) for all t > 0.
Proof. Obviously it is sufficient to prove the inequality for ¢ > 4m. Define
g(z) = §°yP(X > y)dy. Then for z > m,
zg(z) < zo’P(X > x),
and thus

o0

S rg(x)dr < o?g(z), z>m.

z
Let f(z) = (" 2g(x) da. Since the function 2 — xzg(z) is continuous, we can
rewrite the above inequality as

fl(z) < —% z2f(z), z>m,

which gives f(z) < Cexp(—22/20?) with C depending only on m and o?.
Now, as ¢ is nonincreasing, for z > m we have
1 C 2 2
2 < _ < — —Z /20’
9(29) < 5 () < e
and similarly

—x2 /202

P(X >4z) < e

for x > m.
The lower tail can be dealt with analogously. =

LEMMA 3. Let o: R — R be a smooth convex Lipschitz function and
X a random variable with L(X) € M(m,0?). Then there ezists a constant
C(m,o0?) such that

o0 0

(1§ 1@ @)erVP(X <z Ay)P(X >z Vy)dedy
b < C(m,o?)Ey' (X)%e?X),

Proof. Let us first notice that the left-hand side of (7) is equal to
ooy
| & (@)¢' (9)(e#W) + #WP(X < 2)P(X > y) da dy.
00
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Since ¢ is convex, there exists a point g (possibly 0 or infinity) at which ¢
attains its minimum on [0, cc]. Moreover ¢ is nonincreasing on (0, zg) and
nondecreasing on (xg,00). Therefore for z,y € (0,x0) with < y one has

¢ (1) () (2@ + e#W)) < 24 (z)2e2@).

Thus for m being the constant defined in Lemma 1 we have

ToAM Y
®) | (@)™ + FWPX < 2)P(X > y) dudy
0 0
oA oA
<2 S ¢ (2)2e?PP(X < ) S P(X > y)dydz
0 T
To AT
<2mE S (p'(ac)Qe“"(”")l{ng} dr < 277LQE<p’(X)26‘p(X),
0

where the last inequality follows from the fact that if 2y > 0, then ¢/ (z)2e#(*)
< ¢ (y)?e?W) for y < @ < xp.

On the other hand, for 29 < z < y we have ¢/(2)¢/(y)(e?® + e#W)) <
20/ (y)?e?W). Obviously this is also the case if z < zg < ¥, so

o Y
© | @) (™ + fWP(X < 2)P(X > y) dzdy
zoVm 0
<2 | ¢ @)?e*WyP(X > y)dy < 40°Ey' (X)?e?X),
zoVm

by Lemma 1, since £(X) € M(m,c?).
So it remains to estimate the integral over the interval (xo A m,zo V m).
Let us consider two cases:

(i) xp < m. Then

(10) TSn ¢ (2) (y) (P + PV)P(X < 0)P(X 2 y) da dy

O e @

¢ (y)2e?WP(X > y) da dy

ey S

m
<2 |
o

8

0

m

< 2mE S cp’(y)Qe‘/’(y)l{XEy} dy < 2m*Ey (X )29,

o
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(ii) o > m. We can obviously assume that m > 1. Then as before

(11) ISO ¢ (2)¢ (y) (P + PV)P(X < 0)P(X > y) da dy

O e @

¢ (2)2e?DP(X < 2)P(X > y)de dy

IA

[\)
gzv_/ﬂg
O e @

8

0 o
| ¢ (2)2e?P(X < 2)P(X > y)dyda

zvVm

|
B

OL’ﬂg O

¢ (2)2efP(X <) | yP(X > y)dyda

mVax

IA
()

o
202 S ' (2)2e?DP(X < 2)P(X > z)dx
0

IN

< 20° S @' (2)2e?DP(X < z)dx + 207 S ' ()2 P(X > z) dx
0

< 202 (m + 202 B¢/ (X) 2,
Bringing together (8)—(11) completes the proof. m
LEMMA 4. Let p: R — R be a smooth convexr Lipschitz function, nonin-

creasing on (—00,0), and X be a random variable with L(X) € M(m,o?).
Then

| ¢ ()¢ () e!VP(X <z Ay)P(X > 2V y)dedy
{(z,y)€R? : 2y<0}
< C(m,o?)Ey' (X)%e?™),

Proof. Assume without loss of generality that m > 1 and let m be the
constant defined in Lemma 1. For x < 0 < y we have either ¢'(z)¢'(y) < 0,

or ¢'(z) < ¢'(y) <0 and p(z) = @(y), so

0 oo
| | & @ m)e?WP(X < 2)P(X > y) dy da

—oo 0

0 oo
< § [ P@PeIP(X < )B(X > y) dyda
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where the last inequality follows from the fact that by Lemma 2,

| P(X > y)dy =EX| < C(m,0?).
0
Also

co 0
| | ¢@¢@)e?WP(X <y)P(X > z)dyda
0

— o0

0 o
< | | dW)?e?WP(X < y)P(X > 2)dudy

—o0 0
0
<C(m,0%) | ¢'(y)°e?WP(X < y)dy.
Now
S ¢ (2)2efDP(X < z)dx < S ¢ ()2 (—2)P(X < z)da

< 20%Ey/ (X)2e¥X)
by Lemma 1, as £(X) € M(m,a?). Moreover,

0 0
S ¢ (2)2e?PP(X < z)de =E S gp’(m)ze“’(z)l{xgx} dz

< mE¢' (X)?e?X) . u

Proof of Theorem 3. We will follow Ledoux’s approach for bounded vari-
ables. Due to the tensorization property of entropy (Theorem 2), it is enough
to prove the theorem for n = 1. Also, by the standard approximation argu-
ment, we can restrict our attention to convex Lipschitz functions only. Let
now Y be an independent copy of X. By Jensen’s inequality we have

Ent e#X) = Ep(X)e?X) — Ee?X) log Re?(X)
1
< SE(p(X) — p(1)(e#) — M)

= E(p(X) — p(V)(#X) — e#0N) 1y oy
=E

S S @/(x)spl(y)ecp(y)1{X§x§y}1{XSy§y} dx dy
RR
= [ [P (@)@ ()P VB(X < 2 Ay)P(X > 2V y)dedy.
RR

Since £(—X) € M(m,0?), we can assume that the minimal value of ¢ is
attained at some point of the right half-axis (possibly at 0o). Splitting now
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the double integral into four integrals depending on the signs of x and y and
using Lemmas 3 and 4 we obtain the desired inequality. Note that we can
use Lemma 3 to handle the integration over (—oo,0)? again by change of
variables and the fact that £(—X) € M(m,0?). The tail inequality follows
from the entropy estimates by Theorem 1. m

REMARK. One would obviously like to characterize all real random vari-
ables X such that the random vectors (X1, ..., X,,) (where X;’s are indepen-
dent copies of X) have the concentration property of order 2 for 1-Lipschitz
convex functions with constants independent of the dimension n. Each such
variable must of course have the concentration property of order 2 itself. This,
however, is not sufficient, as concentration with respect to convex functions
implies hypercontractivity (see [5]), which is equivalent to some regularity
of the tail. In particular, it follows that Ele{XZt} < CH?P(X > t) for t
large. This condition is weaker than £(X) € M(m,o?) for some m,o but
hypercontractivity is also weaker than the concentration property of order 2,
uniformly over the dimension n.

We would also like to point out that all Borel probability measures p on
the real line, which satisfy the logarithmic Sobolev inequality for all smooth
(not necessarily log-convex) functions, belong to M(m,o?) for some m, 0.
Thus Umﬁ/\/l(m,JQ) is strictly larger than the class of all measures sat-
isfying the logarithmic Sobolev inequality for all smooth functions. More
precisely, we have the following

PROPOSITION 2. Let p be a Borel probability measure on R for which
there exists C' < oo such that for all smooth functions,

Ent f(X)? < CE|f'(X)]?,

where X is a random variable with the law p. Then there exist constants
m,o < oo such that u € M(m,a?).

Proof. From the Bobkov—Gétze criterion (see [2]) it follows that if n is
the density of the absolutely continuous part of p and M is a median of u,
than for some constant K and all x > M,

T

1
S P RTO R

p1([z, 00)) log

Thus (since p has the concentration property of order 2) from Hdélder’s in-
equality we get (using the above inequality for z + 1/x instead of z)

1 o iz, x+1/))
[ )yt (§TYT Ldt)?
= 2?p([x, z + 1/x))

2 au(fe+1/2,00)) <
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for some D > 0 and z large enough, which implies p(jz + 1/z,00)) <
ap(lr,00)) with o = (K/D)/(K/D + 1). Since a similar condition on the
left tail can be proven analogously, the claim follows by Proposition 1. =

3. Concentration for seminorms on the tensor product and
random chaoses

3.1. A tensorization inequality for seminorms

THEOREM 4. Consider a random vector X € R™ for which there exists a
constant K such that for every seminorm ¢: R™ — R we have Ep(X) < oo
and for every p > 1,

[p(X) —Eo(X)|p, < K/p sup ¢(a).

laf=1

Then if X1,...,Xq are independent copies of X and v: ®?:1 R" — Ry a
seminorm, we have

(@) - =i(®x)],

d
< K4 Z p*PE  sup ¢<®X¢,1,(ak)k€,)v

lag|<1, kel i=1

IC{1,....d}, T#D
where
X, ifi¢l,
X, =
i1, (ap)ker {ai if i €1,

K, is a constant depending only on K and d, and || denotes the Euclidean
norm of the vector .

Proof. We use induction on d. For d = 1, the statement of the theorem is
just its hypothesis. Assume that the statement is true for fewer than d > 2
copies of X. Using conditionally the induction assumption for d;y = 1 and
the function

pi1(z) =Y(X1® - ® X4 ® ),

we obtain

w(éxi)—Exdw(éxi)

Now notice that the function p2(z) = supj,<; ¥ (7 ® ) is a seminorm on

Ex,

d—1
. < Kppp/2 sup ¢(®Xz ®a)p.
i=1

o<1

®§l;11 R? and thus we can apply the induction assumption and the triangle
inequality in LP, which together with the Fubini Theorem gives
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< I?dp,l Z pp#1/2<E sup 1&(@)@»,17(%)%[))1},

IC{1,...d}, del lak|<1, kel * ;2

where f(d—l depends only on K;_; and d.

Now we would like to estimate E|Ex,1(®™L, X;) — Ey(®L, Xi)[P. To
this end consider ¢3: ®?:_11 R™ — Ry defined as p3(x) = Ey(z @ Xg). It is
easy to see that (3 is a seminorm and thus, by the induction assumption,

d—1 d—1
(13) E‘¢3(®X)—E903(®Xi)p
=1 1=1
< [}gil Z pP#L/2 (IE sup 303(§Xi,1,(ak)kez))p'

IC{1,...d—1}, I#0 || <1, kel i=1

Now it is enough to note that for each I C {1,...,d — 1},

d—1

d
E sup @3(@)(@'71,(%)%[) <E sup ¢(®X@L(ak)k61>’

log | <1, kel log | <1, kel i=1
which together with (12) and (13) completes the proof. m

Notice that by Theorem 3 for all product random vectors X € R" with
1-dimensional marginals in M(m,0?) and all seminorms ¢: R® — R, we
have [[(o(X) —E@(X))+[lp < K\/Psupjy <1 ¢(), with K depending only on
m and 2. Thus the same proof, with formal changes only, gives

THEOREM 5. Let X1,...,X, € R” be independent random vectors with

independent components and all 1-dimensional marginals in M(m,o?).
Then for every seminorm 1 : ®?:1 R™ — Ry we have

d d
(&) -=(@x)), |,
< Ky Z p*/?E  sup ¢<éXi,I,(ak)k€I)v

IC{1,....d}, I#£0 o | <1, kel i=1

where K, depends only on m,o? and d.
By the Chebyshev inequality we can obtain from the above theorems a

corollary concerning the tail behaviour of 1/1(®?:1 Xi). We give it only for
Theorem 4; for Theorem 5 it is analogous but deals with the upper tail only.
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COROLLARY 1. Under the assumption of Theorem 4 there exist constants
K4, depending only on K and d, such that for all t > 1,

d d
(@) -=+(& )
> Ky Z t#1/2E sup w(éXiyL(ak)keI)) <et.

IC{1,..d}, 40 k[ <L kel ™ =y

3.2. Chaos random variables. The above theorems can be rewritten in
terms of decoupled polynomial chaoses. Below we present such a version
as a corollary (actually equivalent to Theorem 4), so that the reader could
compare it with existing results on chaos random variables.

Let X, ..., X be independent copies of X = (X1,...,X,) € R" and
consider a homogeneous decoupled chaos of order d, i.e. a random variable of
the form

n
(14) Z = sup Z tz‘l...z’dXi(ll) .. Xi(;i) ,
€T 1y =1
where 7 is a countable, bounded set of functions ¢: {1,...,n}¢ — R.

Let us introduce

DEFINITION 5. For I C{1,...,d} let

n

|7]|r =Esup  sup ‘ Z tiy..iy H az(»”:) H XZ-(]:C)

€T oM<, kel 'y, T kel kel

)

where the second supremum is taken over all (a®)),c; € (R™)#!, and |a(¥)]
stands for the Euclidean norm of the vector ¥,

COROLLARY 2. Let X = (X1,...,X,,) have the concentration property
with constants C', K with respect to 1-Lipschitz seminorms on R™. Then for
any integer d > 1, there exists a constant Ky, depending only on d and C, K,
such that for any homogeneous chaos Z (as defined in (14)) and any p > 1,

(15) 1Z-Ezl,<Ks Y, pPPIT

COROLLARY 3. There exist constants Kg such that for allt > 1,

IP’(|Z ~EZ|> Ky Y t#1/2||T||1) <et.
IC{1,...,d}, I#£0
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REMARK. Usually one is interested in the “undecoupled” chaos, i.e. a

random variable of the form
n

Z =sup Z iy .igXiy -+ Xig|s

€T 1y =1
where X7,..., X, are independent random variables and for all ¢ € 7 the
number ¢;, ;, is invariant under permutations of coordinates and nonzero
only if the coordinates are pairwise distinct. The analogues of the above
theorems for such chaoses generated by Gaussian variables were obtained by
Borell [3] and Arcones and Giné [1]. The Rademacher case was considered
by Talagrand [18] (chaos of order 2) and Boucheron, Bousquet, Lugosi and
Massart [4] (chaos of arbitrary order d). It is easy to see that each decoupled
chaos can be represented as an undecoupled one, but the aforementioned
results do not recover the lower tail inequalities (except for the case d = 2).
Also the methods are quite different and do not allow treating both Gaussian
and Rademacher variables in a unified way.

3.2.1. Chaoses generated by symmetric random variables with log-concave
tails. Now we would like to point out that the proof of Theorem 4 can be
actually used in a slightly different setting, namely for chaoses generated
by independent random variables with logarithmically concave tails. Such
variables have been investigated by Latata [7] and Lochowski [14].

DEFINITION 6. Let N' = (X(k))kgd,ign be a matrix of independent sym-

(2
metric random variables with logarithmically concave tails, i.e. random vari-

ables such that the functions
NP () = —1ogP(Xx®| > 1), t>0,

)

are convex. Furthermore assume (as a matter of normalization) that
inf{t: NP (t) > 1} = 1,

and define modified functions ./\N/;-(k) by the formula

~ t2 for |t| < 1.
N® () = -
) NE(t]) for |t > 1.

Let now 7 be a countable set of functions ¢: {1,...,n}? — R and Z a
random variable defined by (14). Moment estimates for Z will be expressed
in terms of the following quantities:

DEFINITION 7. For I C {1,...,d} and p > 1 define

n

k k
Tl =Bsp s |3 o [[a® 5%
teT (k) €A p, kel i1, yig=1 kel kel

)
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where
A p = {a e R": Z./\?i(k)(ai) < p}.
i=1

The following result was proved for d = 1 by Latata [7] and for arbitrary
d by Lochowski [14].

THEOREM 6 (Latala, Lochowski). There exist constants Ky (depending
only on d) such that for all p > 1,

1
. S WTIwvipn <12l <Ko D T lInap-
¢ rc(rdy IC{1,...,d}

PROPOSITION 3. The conclusion of Theorem 6 for d = 1 implies that
conclusion for arbitrary d.

Proof. When we rewrite the inequalities of Theorem 6 in the language
of seminorms, the proof becomes analogous to the proof of Theorem 4. One
has simply to notice that the factors p#!/2 do not appear, as the dependence
on p is incorporated in the sets Aj , which replace the unit Euclidean ball
in the supremum.

As for the lower estimate, the proof is even simpler but we present it here
for the sake of completeness (written in the “chaos language”). Obviously
I1Zllp > I1Z|l1 = ||T||xpp- Moreover for any nonempty set I C {1,...,d},
say with r € I, we have by the induction hypothesis

1 (k; (7»)
Z||, > —H sup sup ‘ E t; | | X
1Z]] Kol et e . i1...0g ir

i1eig=1

1
> —=—|7T|ni1p =
Kle—IH H 4P

Using the Chebyshev inequality and the Paley-Zygmund inequality to-
gether with the hypercontractive properties of chaoses (see [15]) we obtain

COROLLARY 4. There ezist constants Kg such that for allt > 1,

IP’(Z >Kg Y HTHN,I,t> <e™,

IC{1,...d}
1 _
IP’(Z > 7 Z HTHMM) >e ' Ae.
4 reqt,.d}

REMARK. The bound of Theorem 6 is also valid in the case of unde-
coupled chaoses due to the decoupling results by de la Pefia and Montgo-
mery-Smith [16], which say that tails and moments of the decoupled and
undecoupled chaos with the same coefficients are equivalent.
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REMARK. All estimates presented so far are expressed in terms of ex-
pected values of empirical processes, which themselves are in general trouble-
some and difficult to estimate. One would obviously want to obtain moment
estimates in terms of deterministic quantities at least in the real-valued case
(i.e. when 7 is a singleton). This has been done by Latala in [7] for d = 2
and log-concave random variables, and recently in [8] for arbitrary d and
Gaussian chaoses.

4. An application. Finally, we would like to argue that estimates in the
spirit of Section 3, although nondeterministic, may be of some use. We will
demonstrate it by presenting a sketch of a new (at least to the author’s best
knowledge) proof of exponential integrability of a generalized Rademacher
chaos process for general d, which we believe is simpler than the preced-
ing ones. The general result and the proof for d < 2 may be found in the
monograph by Ledoux and Talagrand [13].

Let us first recall the general setting. We deal with a Banach space B for
which there exists a countable set D of linear functionals from the unit ball
of B’ such that for each x € B we have |[z|| = supsep |[f(7)]. A B-valued
random variable X is a homogeneous Rademacher chaos of order d if there
is a sequence (.. i,)i;,...iueN € B (x4, invariant under permutation of
coordinates and nonzero only if i1,...,7; are pairwise distinct) such that
for every f € D the multiple series Zil,...,id f(xiy..iy)€i, - - - €4, converges
almost surely and (3_; . f(®i..iz)€i, - - €iy) rep has the same distribution

as (f(X))rep-

THEOREM 7. Let X be a homogeneous Rademacher chaos of order d.
Then

Eel X177 < o for all o € R.

Before we proceed to the proof, we need

LEMMA 5. There exist constants Lg (depending only on d) with the prop-
erty that for every o > 0 there exists a constant €(«) such that for ev-
ery homogeneous Rademacher chaos X of order d and every M satisfying

P(| X > M) < e(a) we have
P(| X | > LaMt¥?) < et forall t > 1.

Proof. Rademacher variables are log-concave, so we can apply Corollary 4
for finite sums. It is easy to see that

(16) App=A :{(ozi): S a2 <p oy g1}.

Due to convergence, using standard arguments one can extend the tail esti-
mates to the general Rademacher chaos X. Therefore, set
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ot)= > ITlInvue,

1C{1,....d}
where T = {(f(24,..i,)): f € D}. From (16) it follows that
(17) p(wt) < t¢(x)

for all x > 0 and t > 1. As ¢ is increasing, by the last inequality it is contin-
uous. If ¢p(x) < KgM for every x (K4 being the constant from Corollary 4),
we have, for t > 1,

B(1X | > MEGY?) < inf B(| X|| > Kgé(x)) < infe™™ = 0.

Otherwise KqM = ¢(z) for some x. Thus
e > P(IX|| > M) = P(IX]| > $(z)/Ka) > c A e,
which for ¢ small enough yields = > — loge. Moreover (17) gives KyMt%/? >
¢(tz) for t > 1 and thus for ¢ < e™?,
P(|X | > KGMt%?) <P(|X[| > Kqg(tz)) < e < e8¢ < e

Proof of Theorem 7 (sketch) We will proceed by induction on d. Let
Sn = i1, ig>n Tir—ig€iy - - - €iq- Then | Sy || is a reversed submartingale with
E|| Sy < ]EHXH and thus it converges to some random variable, which by the
zero-one law must be almost surely constant. Thus there exists M such that
for all ¢ > 0 we have P(||S,|| > M) < ¢ for n large enough. By Lemma 5,
for every 8 > 0 there is n such that for all ¢ > 1,

P(||Sy|| = LgMt¥?) < e Pt
or equivalently
B(o S, 2/ > 1) < exp( — D
- a(LgM)2/d

for t > (LygM)?/ %o, which clearly implies EeolSnl*" < o6 for o < B/(LgM)?/4,
Since X — .5, is a finite sum of chaoses of orders lower than d (when d > 1) or
a bounded random variable (for d = 1), its integrability properties allow us to
use Hélder’s inequality and obtain Ee®XI”’* < o0 also for a < B/(LgM)4/2,
This allows us to finish the proof as 8 can be chosen arbitrarily large. »
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