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Summary. We prove that there exist infinite Büchi sequences in some local rings and
local fields, with the exception of the ring Zp of p-adic integers. In Zp there are only finite
but arbitrarily long Büchi sequences.

1. Introduction. A Büchi sequence of length M in a commutative ring
A with unit is a solution a1, , . . . , aM ∈ A of the system of equations

(1) x2
n+2 − 2x2

n+1 + x2
n = 2, 1 ≤ n < M − 1.

Here 3 ≤M ≤ ∞.
For every a ∈ A and εn ∈ {−1, 1}, 1 ≤ n ≤M, the sequence

(ε1(a+ 1), ε2(a+ 2), . . . , εM (a+M))

satisfies (1). We call it the trivial Büchi sequence.
Büchi’s problem for a ring A is the following:

B2(A): Does there exist a positive integer M ≥ 3 such that every Büchi
sequence of length M in the ring A is trivial?

The Büchi problem B2(Z) is related to Hilbert’s Tenth Problem (see [3]).
Büchi conjectured that every Büchi sequence of length 5 in Z is trivial,

but this is still an open question.
In [1] an example is given of a nontrivial infinite Büchi sequence in the

field R of real numbers (more precisely, in the ring of real algebraic integers).
Namely, the sequence an :=

√
n2 + 1 , n ∈ N, is such an example, which can

be easily verified. Here 1 can be replaced by any positive real algebraic inte-
ger. Moreover, the authors write, “We ‘suspect’ that B2(Zp) has a negative
answer as well.”
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They distinguish two kinds of rings in which Büchi problem has a nega-
tive answer:

Type 1: Rings for which there exists an infinite Büchi sequence.
Type 2: Rings for which there exist nontrivial Büchi sequences of any

length, but there is no infinite one.

They give examples of rings of type 1 and they expect that there are also
rings of type 2.

In the present paper we prove some results on the existence, respectively
nonexistence, of nontrivial infinite Büchi sequences in some local fields and
local rings. In particular we prove that B2(Zp) has a negative answer, and
the ring Zp is of type 2.

2. The field Qp of p-adic numbers and the ring Zp of p-adic
integers. First we investigate the existence of nontrivial infinite Büchi se-
quences in Qp and in Zp. Next we generalize the results to more general
local fields and local rings.

The case of the field of p-adic numbers is easy, as the following theorem
shows.

Theorem 1. In the field Qp there are nontrivial infinite Büchi se-
quences, e.g.

(2)
an :=

√
n2 + p−2 , n ∈ N, for p > 2,

an :=
√
n2 + 2−4 , n ∈ N, for p = 2.

Proof. It is easy to verify that these sequences satisfy (1), and are non-
trivial. It remains to prove that an ∈ Qp for n ∈ N.

For p odd we have

n2 + p−2 = (1 + p2n2)/p2

and 1 + p2n2 is a square in Zp, since every a ∈ Zp satisfying a ≡ 1 (mod p)
is a square in Zp, by Hensel’s lemma. Consequently, an ∈ Qp.

If p = 2 we proceed similarly:

n2 + 2−4 = (1 + 24n2)/24,

and 1 + 24n2 is a square in Z2, since every a ∈ Z2 such that a ≡ 1 (mod 8)
is a square in Z2. Consequently, an ∈ Q2.

Remark 1. In the first formula of (2) the summand p−2 can be replaced
by any element of Qp which has even negative valuation. Similarly, in the
second formula of (2) the summand 2−4 can be replaced by any element of
Q2 which has an even valuation less than −2.

Corollary 1. In every field F containing Qp ∩Q there are nontrivial
infinite Büchi sequences.
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Proof. The numbers an defined in Theorem 1 are algebraic over Q, there-
fore they belong to the field F.

Remark 2. Theorem 1 implies that the system (1) has a nontrivial
solution everywhere locally. We do not know whether it has a nontrivial
global solution, even a solution in Q for M ≥ 7.

The numbers an defined in (2) are not p-adic integers. The next theorem
shows that there are no p-adic integers with this property.

Theorem 2. There is no nontrivial infinite Büchi sequence in the ring
Zp of p-adic integers.

Proof. Assume that (an)n≥1 is an infinite Büchi sequence with an ∈ Zp.
Then, by definition,

a2
n+2 = 2a2

n+1 − a2
n + 2 for n ≥ 1.

It follows by induction that

a2
n = n2 + (a2

2 − a2
1 − 3)n+ (2a2

1 − a2
2 + 2) for n ≥ 1.

Consequently,

(3) a2
n =

(
n+ 1

2(a2
2 − a2

1 − 3)
)2 +

(
(2a2

1 − a2
2 + 2)− 1

4(a2
2 − a2

1 − 3)2
)
.

We claim that 1
2(a2

2−a2
1−3) ∈ Zp. For p > 2 this is clear since 2 is invertible

in Zp.
For p = 2 it is sufficient to prove that 2 - a2−a1. Suppose that 2 | a2−a1.

Then 4 | a2
2 − a2

1, and from

a2
3 = 2a2

2 − a2
1 + 2

we conclude that a2
3 ≡ a2

2 + 2 (mod 4). This is impossible.

To prove the theorem, in view of (3), it is sufficient to prove the following
lemma.

Lemma 1. Let p be a prime and let a, b ∈ Zp. Suppose that for every
n ≥ 1,

(4) f(n) := (n+ a)2 + b

is a square in Zp. Then b = 0.

Proof. (i) Suppose that p is odd, and let g ∈ N be a fixed primitive root
modulo p.

Nonzero squares in Zp are of the form

p2kg2l(1 + pc), where k ≥ 0, l ≥ 0, c ∈ Zp.
Hence the set of nonzero squares is closed (and open) in Zp \ {0}.

The set N of positive integers is dense in Zp, therefore for every a ∈ Zp
the set N + a := {n+ a : n ∈ N} is also dense in Zp.
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If b is not a square, then for every n+a sufficiently close to zero, (n+a)2+b
is not a square, since the set of squares is closed.

This is a contradiction, since f(n) = (n + a)2 + b is a square for every
n ∈ N.

If b is a nonzero square, then

b = p2kg2l(1 + pc)

for some k ≥ 0, l ≥ 0, c ∈ Zp.
It is well known that every nondegenerate quadratic form in two variables

over a finite field represents all elements of the field (see e.g. [2, Theorem
1.2, p. 111 and Lemma 2.3, p. 116]).

In particular the form x2
1 + x2

2 represents the element g. Thus for some
α, β ∈ Z we have g2α + g2β ≡ g (mod p). Multiplying by g2l−2α we get

g2l + g2m ≡ g2r+1 (mod p),

where m = β − α+ l, r = l − α.
Now we choose n ∈ N such that n + a = pkgm(1 + pc1), where c1 ∈ Zp,

which is possible in view of the density of the set N + a. Then

(n+ a)2 = p2kg2m(1 + pc2), c2 ∈ Zp.
Consequently,

f(n) = (n+ a)2 + b = p2kg2m(1 + pc2) + p2kg2l(1 + pc)

= p2k(g2m + g2l + pc3) = p2kg2r+1(1 + pc4)

for some c3, c4 ∈ Zp. Thus f(n) is not a square. We get a contradiction, so
b = 0.

(ii) Now let p = 2. Nonzero squares in Z2 are of the form

(5) 22k(1 + 8c1), where c1 ∈ Z2.

The proof in this case is analogous, with the following change.
If b = 22k(1 + 8c), then we choose n+ a of the form

n+ a = 2k+1(1 + 8c1), where c1 ∈ Z2.

Then

f(n) = (n+ a)2 + b = 22k(4 + 8c2) + 22k(1 + 8c) = 22k(5 + 8c3)

is not of the form (5).
Consequently, f(n) is not a square in Z2. We get a contradiction, which

implies that b = 0.

Theorem 3. In the ring Zp of p-adic integers there are arbitrarily long
finite nontrivial Büchi sequences.

Proof. For a fixed k ≥ 1 let

an :=
√
n2 + p2k+1.
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For n < pk we have vp(n) < k, hence vp(n2) ≤ 2k − 2. Therefore

n2 + p2k+1 = n2(1 + p3 · p2k−2/n2)

is a square in Zp.
Thus (a1, . . . , aM ), where M = pk − 1, is a nontrivial Büchi sequence of

length pk − 1 in Zp. Since k = 1, 2, . . . we get examples of arbitrarily long
nontrivial Büchi sequences.

Remark 3. 1. For n = pk+1 the number n2+p2k+1 is not a square in Zp,
since vp(n2 + p2k+1) = 2k + 1 is odd. Therefore an /∈ Zp.

2. From Theorems 2 and 3 it follows that in Zp there are arbitrarily long
finite nontrivial Büchi sequences, but there are no such infinite sequences.
Therefore Zp is an example of a ring of type 2.

3. More general local rings. Let F be a field complete with respect
to a discrete valuation and let OF be its ring of integers. Denote by π a
generator of the maximal ideal ofOF , and by vπ the corresponding valuation.

We shall use the following refinement of the Hensel lemma.

Lemma 2 ([4, p. 76]). Let h ∈ OF [x] be a monic polynomial and let
h(u) ≡ 0 (mod π) for some u ∈ OF . Assume that

(6) vπ

(
h(u)
h′(u)2

)
> 0.

Then there is w ∈ OF such that w ≡ u (mod π) and h(w) = 0. In other
words, u can be refined to a root of h(x) in OF .

Corollary 2. Assume that the residue characteristic of F is 2. Let e be
the ramification index of F over Q2. If u ∈ OF satisfies u ≡ 1 (mod π2e+1),
then u is a square in OF .

Proof. Let h(x) = x2 − u. Then vπ(h(u)) = vπ(u − 1) ≥ 2e + 1 and
vπ(h′(u)2) = vπ((2u)2) = 2e. Consequently, (6) holds. Then, by Lemma 2, u
can be refined to a root w ∈ OF of h(x). Hence u = w2 is a square in OF .

Theorem 4. If F is a finite ramified extension of the field Qp, and OF
its ring of integers, then in OF there are infinite nontrivial Büchi sequences.

Proof. (i) Assume that p is odd. Let π be a generator of the maximal
ideal of OF , and denote by vπ the corresponding valuation in F. We have
vπ(p) = e > 1, where e is the ramification index of F over Qp. Then e | vπ(n)
for every n ∈ N.

The sequence an :=
√
n2 + π2, n ∈ N, is a nontrivial infinite Büchi

sequence, which is easy to verify.
It remains to prove that an ∈ OF , or equivalently that n2+π2 is a square

in OF for n ∈ N.
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If vπ(n) = 0, then

n2 + π2 = n2(1 + (π/n)2) and vπ(π/n) = vπ(π) = 1 > 0.

Hence n2 + π2 is a square in OF .
If vπ(n) > 0, then vπ(n) ≥ e, and

n2 + π2 = π2(1 + (n/π)2), where vπ(n/π) ≥ e− 1 > 0.

Consequently, n2 + π2 is a square in OF .
(ii) Let p = 2. We shall prove that

f(n) := (n+ π)2 + π2e+3

is a square in OF for every n ∈ N.
If n is odd, then v(n+ π) = 0. Hence

f(n) = (n+ π)2
(

1 +
π2e+3

(n+ π)2

)
,

and 1 + π2e+3/(n+ π)2 is a square in OF , by Corollary 2.
If n is even, then n = πen′ for some n′ ∈ OF , since 2OF = πeOF . We

have v(n+ π) = v(πen′ + π) = 1, since e > 1.
Consequently,

f(n) = (n+ π)2
(

1 +
π2e+1

(πe−1n′ + 1)2

)
,

and 1 + π2e+1/(πe−1n′ + 1)2 is a square in OF , by Corollary 2.

Theorem 5. Let F be a finite unramified extension of Qp of degree
> 1, and let OF be the ring of integers of F. Then in OF there are infinite
nontrivial Büchi sequences.

Proof. It is sufficient to find elements a, b ∈ OF , b 6= 0, such that

f(n) := (n+ a)2 + b

is a square in OF for every n ∈ N.
(i) Let p be an odd prime. Since F is an unramified extension of Qp,

distinct from Qp, there is a canonical surjective homomorphism ν : OF →
Fq, where Fq is the residue field of F. Then (Fq : Fp) = (F : Qp) > 1, since
F is unramified.

Therefore there is an element a ∈ OF such that ν(a) /∈ Fp. As ν(n) ∈ Fp
for every n ∈ N, it follows that ν(n + a) /∈ Fp. Then ν(n + a) 6= 0, hence
v(n+ a) = 0.

Put b := p. Then ν(b) = 0, hence

ν(f(n)) = (ν(n+ a))2 ∈ F∗2q .
By Hensel’s lemma it follows that f(n) is a square in OF for every n ∈ N.

(ii) Let p = 2. As above, we choose a ∈ OF such that ν(a) /∈ F2. Then
v2(n+ a) = 0 for every n ∈ N.
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We shall prove that f(n) := (n + a)2 + 8 is a square in OF for every
n ∈ N.

We have

f(n) = (n+ a)2
(

1 +
8

(n+ a)2

)
and 1 + 8/(n+ a)2 is a square in OF , by Corollary 2.

Let us observe that in fields and rings considered above there is a non-
trivial infinite Büchi sequence iff the set N of positive integers is not dense
in the field or the ring in question. This seems to be a general property.

We leave it to the reader as an amusing exercise to prove analogous
results for general local fields and their rings of integers, namely for fields
complete with respect to a discrete valuation with an arbitrary residue field,
in particular in the case of equal characteristics.
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