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Summary. This paper is concerned with the convective Cahn–Hilliard equation. We
use a classical theorem on existence of a global attractor to derive that the convective
Cahn–Hilliard equation possesses a global attractor on some subset of H2.

1. Introduction. We consider the existence of a global attractor on
some subset of H2 for the following convective Cahn–Hilliard equation:

(1.1)
∂u

∂t
+ γ∆2u = ∆A(u) + β · ∇B(u), x ∈ Ω,

where Ω is a bounded domain in Rn (n ≤ 2), A(u) = γ2u
3 + γ1u

2 − u,
B(u) = −1

4u
4 + 1

2u
2, γ > 0, γ2 > 0 and γ1 are constants.

We assume that Ω = [0, L1]× [0, L2], L1, L2 > 0. On the basis of physical
considerations, as usual (1.1) is supplemented with the periodic boundary
condition

(1.2) ϕ|xi=0 = ϕ|xi=Li , i = 1, 2,

for u and the derivatives of u at least of order ≤ 3, and with the initial value
condition

(1.3) u(x, 0) = u0(x).

Equation (1.1) arises naturally as a continuous model for the formation
of facets and corners in crystal growth (see [11, 5]). Here u(x, t) denotes the
slope of the interface. The convective term β ·∇(−1

4u
4 + 1

2u
2) (see [5]) stems

from the effect of kinetics that provides an independent flux of the order
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parameter, similar to the effect of an external field in spinodal decomposition
of a driven system.

Recently there has been renewed interest in the convective Cahn–Hilliard
equation. It was K. H. Kwek [6] who first studied equation (1.1) for a special
case with a special convection, namely, B(u) = u. Based on the discontin-
uous Galerkin finite element method, he proved the existence of a classical
solution. In 2005, C. Liu [8] considered (1.1) with the first boundary con-
dition in one space dimension. Some results on the existence of classical
solutions and asymptotic behavior of solutions are established in his paper.
Eden and Kalantarov [3] considered the following convective Cahn–Hilliard
equation with periodic boundary conditions in one space dimension:

(1.4) ut − u · ∇u+∆(u− u3 +∆u) = 0.

They established the existence of a compact attractor and a finite-dimen-
sional inertial manifold that contains it. Moreover, the Gevrey regularity of
solutions on the attractor was established and used to prove that four nodes
are determining for each solution on the attractor. Moreover, in [4] equation
(1.4) with periodic boundary conditions in 3D was considered by Eden and
Kalantarov; they considered the corresponding continuous dynamical system
on L̇2(Ω), and proved that for (1.4) there exist absorbing balls in L̇2(Ω),
Ḣ1

per(Ω) and Ḣ2
per(Ω). Combining this with the compactness property of

the solution semigroup they deduced the existence of a global attractor for
(1.4) in L̇2(Ω). There is an extensive literature concerning the convective
Cahn–Hilliard equation; for more recent results we refer the reader to [9, 13]
and the references therein.

In this paper, we are interested in a global attractor of the problem
(1.1)–(1.3) in H2. The paper is organized as follows. In Section 2, we give
some preparations and state the main result about the existence of the global
attractor. In Section 3, we derive some estimates for the solutions and prove
our main result. Some ideas important for our paper come from [2, 7, 12],
etc.

2. Preliminaries. We point out one basic fact about (1.1)–(1.3): the
spatial average of any solution u is preserved, excluding the existence of an
absorbing set in H2(Ω). Indeed, we find

∂

∂t

�

Ω

u(x, t) dx = 0,(2.5)

�

Ω

u(x, t) dx =
�

Ω

u0 dx, ∀t > 0.(2.6)

We assume that the initial function satisfies
	
Ω u0(x) dx ≤ κ; then it follows

that
	
Ω u(x, t) dx ≤ κ for t > 0.
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For convenience, in this section we introduce a lemma concerning global
existence and uniqueness of the solution of problem (1.1)–(1.3).

Lemma 2.1. Suppose that u0 ∈ H2(Ω), Then problem (1.1)–(1.3) admits
a unique solution u such that

u ∈ L2([0, T ];H4(Ω)) ∩ L∞([0, T ];H2(Ω)), ∀T > 0.

We can obtain Lemma 2.1 by the standard Galerkin method as in [10,
1, 7]. Since the proof is easy, we omit it.

By Lemma 2.1, we can define the operator semigroup {S(t)}t≥0 in H2

by

(2.7) S(t)u0 = u(t), ∀u0 ∈ H2, t ≥ 0,

where u(t) is the solution of (1.1)–(1.3) corresponding to the initial value u0.
To study the existence of a global attractor, we have to find a complete

metric space and prove that there exists a global attractor in that complete
metric space. Notice that it is sufficient to consider the global existence
and uniqueness of the solution of problem (1.1)–(1.3) for any given initial
datum, as described in the previous lemma. However, because H2(Ω) is not
a proper phase space for our problem, we have to choose a complete metric
space to work with. On the other hand, since the total mass is conserved for
all time, it is not possible for us to have a global attractor in that metric
space without any constraints. Instead, we let

Uκ =
{
u
∣∣∣u ∈ H2(Ω),

∣∣∣ �
Ω

u dx
∣∣∣ ≤ κ},

where κ > 0 is a constant. It is sufficient to see that the restriction of {S(t)}
to Uκ is a well defined semigroup.

Now we can give the main result of this paper.

Theorem 2.1. Suppose that Ω is an open bounded domain in Rn

(n ≤ 2). Then for every κ chosen as above, the semiflow associated with
the solution u of problem (1.1)–(1.3) possesses in Uκ a global attractor Aκ

which attracts all the bounded sets in Uκ.

Throughout this paper we denote the L2, Lp and Hk (k = 1, 2, 3) norms
in Ω simply by ‖ · ‖, ‖ · ‖p and ‖ · ‖Hk .

3. Proof of Theorem 2.1. In order to prove Theorem 2.1, we establish
some a priori estimates for the solution u of problem (1.1)–(1.3). In this
section we always assume that {S(t)}t≥0 is the semigroup generated by the
weak solutions of (1.1) with initial data u0 ∈ H2(Ω). We have the following
lemma.

Lemma 3.1. There exists a bounded set B, whose size depends only on
κ and Ω, in Uκ such that for all the orbits starting from any bounded set
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B in Uκ, there exists t0 = t0(B) ≥ 0 such that for all t ≥ t0 all the orbits
enter B and remain there.

Proof. It suffices to prove that there is a positive constant C such that

‖u(t)‖H2 ≤ C, t ≥ t0(B).

We prove the lemma in the following steps.

Step 1: L2 norm estimate. Multiplying (1.1) with u and integrating
over Ω, we obtain

(3.1)
1
2
d

dt
‖u‖2 + γ‖∆u‖2 =

�

Ω

u∆A(u) dx+ β ·
�

Ω

u∇B(u) dx.

Hence

(3.2)
1
2
d

dt
‖u‖2 + γ‖∆u‖2 = −

�

Ω

A′(u)|∇u|2 dx− β ·
�

Ω

B(u)∇u dx.

Since γ2 > 0, a simple calculation shows that

A′(u) = 3γ2u
2 + 2γ1u− 1 ≥ −C0,

where C0 > 0. We also have
�

Ω

(
1
4
u4 − 1

2
u2

)
∇u dx = 0.

So it follows from (3.2) that

1
2
d

dt
‖u‖2 + γ‖∆u‖2 ≤ C0‖∇u‖2 ≤ C0‖u‖ · ‖∆u‖ ≤

C0

2
‖u‖2 +

C0

2
‖∆u‖2.

Thus

(3.3)
1
2
d

dt
‖u‖2 +

(
γ − C0

2

)
‖∆u‖2 ≤ C0

2
‖u‖2.

In addition, by Poincaré’s inequality for functions in Uk,

‖u‖2 ≤ C1‖∇u‖2 + C2,

where C1 and C2 depend only on n and Ω. We also have

C1‖∇u‖2 ≤ C1‖u‖ · ‖∆u‖ ≤
1
2
‖u‖2 +M‖∆u‖2,

where M is a positive constant. Hence

‖u‖2 ≤ 2M‖∆u‖2 + 2C2.

On the other hand, using (3.3), we finally arrive at

(3.4)
1
2
d

dt
‖u‖2 +

1
2M

(
γ − C0

2

)
‖u‖2 ≤ C0

2
‖u‖2 +

C2

M

(
γ − C0

2

)
.
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Using (3.4), we obtain

d

dt
‖u‖2 +

(
γ

M
− C0

2M
− C0

)
‖u‖2 ≤ C2(2γ − C0)

M
.

Taking γ satisfying γ
M −

C0
2M − C0 > 0 gives

‖u‖2 ≤ e−( γ
M
− C0

2M
−C0)t‖u0‖2 +

2C2(2γ − C0)
2γ − C0 − 2C0M

.

Thus, for initial data in any bounded set B ⊂ Uκ, there is a uniform time
t1(B) depending on B such that for t ≥ t1(B),

(3.5) ‖u(x, t)‖2 ≤ 4C2(2γ − C0)
2γ − C0 − 2C0M

.

Step 2: H1 norm estimate. Multiplying (1.1) with ∆u and integrating
over Ω, we obtain

(3.6)
1
2
d

dt
‖∇u‖2 + γ‖∇∆u‖2 = −

�

Ω

∆A(u)∆udx− β ·
�

Ω

∇B(u)∆udx.

Note that

∆A(u) = (3γ2u
2 + 2γ1u− 1)∆u+ (6γ2u+ 2γ1)|∇u|2.

Hence

(3.7)
1
2
d

dt
‖∇u‖2 + γ‖∇∆u‖2 + γ2‖u∆u‖2

= −
�

Ω

(2γ2u
2 + 2γ1u− 1)|∆u|2 dx− β ·

�

Ω

(
1
4
u4 − 1

2
u2

)
∇∆udx

−
�

Ω

2γ1|∇u|2∆udx− 6
�

Ω

γ2u|∇u|2∆udx

≤ γ2

�

Ω

u2|∆u|2 dx+ C
�

Ω

|∇u|4 dx+ C
�

Ω

|∆u|2 dx

+
γ

8

�

Ω

|∇∆u|2 dx+ C
�

Ω

(
1
4
u4 +

1
2
u2

)2

dx.

On the other hand, by Nirenberg–Gagliardo’s inequality, we have

‖∇u‖4 ≤ C1‖∇∆u‖1/3+n/12‖u‖2/3−n/12 + C2‖u‖ (n ≤ 2)(3.8)

and

‖u‖8 ≤ C1‖∇∆u‖n/8‖u‖1−n/8 + C2‖u‖ (n ≤ 2).(3.9)

By (3.8), (3.9) and Young’s inequality, we obtain

(3.10) C‖∇u‖44 ≤
γ

8
‖∇∆u‖2 + C ′0
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and

(3.11) C‖u‖88 ≤ C ′1‖∇∆u‖2 + C ′2.

Owing to (3.11), we see that

(3.12) C
�

Ω

(
1
4
u4 +

1
2
u2

)
dx ≤ γ

8
‖∇∆u‖2 + C3.

Using (3.5), we have�

Ω

|∇u|2 dx = −
�

Ω

u ·∆udx(3.13)

≤
( �
Ω

u2 dx
)1/2( �

Ω

|∆u|2 dx
)1/2

≤ C
( �
Ω

|∆u|2 dx
)1/2

,

and we also have�

Ω

|∆u|2 dx = −
�

Ω

∇u · ∇∆udx(3.14)

≤
( �
Ω

|∇u|2 dx
)1/2( �

Ω

|∇∆u|2 dx
)1/2

.

Hence

(3.15) C
�

Ω

|∆u|2 dx ≤ C
( �
Ω

|∇∆u|2 dx
)2/3

≤ γ

8
‖∇∆u‖2 + C4.

Adding (3.7), (3.10), (3.12) and (3.15) together gives

(3.16)
1
2
d

dt
‖∇u‖2 +

γ

2
‖∇∆u‖2 ≤ C ′0 + C3 + C4.

On the other hand, by (3.13) and (3.14), we obtain

‖∇u‖2 ≤ C‖∇∆u‖2/3 ≤ C ′′‖∇∆u‖2 + C ′.

By the above inequality and using (3.16), we have

(3.17)
d

dt
‖∇u‖2 +

γ

C ′′
‖∇u‖2 ≤ 2(C ′0 + C3 + C4) +

γC ′

C ′′
,

which gives

‖∇u‖2 ≤ e−
γ
C′′ t‖∇u0‖2 +

2C ′′

γ
(C ′0 + C3 + C4) + C ′.

Thus for initial data in any bounded set B ⊂ Uκ, there is a uniform time
t2(B) depending on B such that for t ≥ t2(B),

(3.18) ‖∇u‖2 ≤ 4C ′′

γ
(C ′0 + C3 + C4) + 2C ′.

Adding (3.5) and (3.18) together, we have

(3.19) ‖u(t)‖H1 ≤ C.
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By Sobolev’s imbedding theorem, we finally arrive at

‖u(t)‖6 ≤ C and ‖u(t)‖12 ≤ C.
Step 3: H2 norm estimate. Multiplying (1.1) by ∆2u and integrating

the result over Ω, we obtain

(3.20)
1
2
d

dt
‖∆u‖2 + γ‖∆2u‖2 =

�

Ω

∆2u∆A(u) dx+ β ·
�

Ω

∆2u∇B(u) dx.

Hence

(3.21)
1
2
d

dt
‖∆u‖2 + γ‖∆2u‖2 ≤ C5‖∆A(u)‖2 + C6‖∇B(u)‖2 +

γ

2
‖∆2u‖2.

Note that

(3.22) ‖∆A(u)‖2 ≤ 2
( �

Ω

|A′(u)|2|∆u|2 dx+
�

Ω

|A′′(u)|2|∇u|4 dx
)

≤ 2
[( �

Ω

|A′(u)|3 dx
)2/3( �

Ω

|∆u|6 dx)1/3 +
( �
Ω

|A′′(u)|6 dx
)1/3( �

Ω

|∇u|6 dx
)2/3]

≤ C7

[( �
Ω

|∆u|6 dx
)1/3

+
( �
Ω

|∇u|6 dx
)2/3]

,

and

‖∇B(u)‖2 ≤
�

Ω

(u3 − u)2|∇u|2 dx(3.23)

≤ 1
2

�

Ω

(u3 − u)4 dx+
1
2

�

Ω

|∇u|4 dx ≤ C8 + ‖∇u‖44.

Using Nirenberg–Gagliardo’s inequality, we have

‖∇u‖4 ≤ C ′1‖∆2u‖n/12‖∇u‖1−n/12 + C ′2‖∇u‖ (n ≤ 2),

‖∇u‖6 ≤ C ′1‖∆2u‖n/9‖∇u‖1−n/9 + C ′2‖∇u‖ (n ≤ 2),

‖∆u‖6 ≤ C ′1‖∆2u‖(3+n)/9‖∇u‖1−(3+n)/9 + C ′2‖∇u‖ (n ≤ 2).

Using Young’s inequality, we have

‖∇u‖44 ≤ C ′3‖∆2u‖2/3 + C ′4 ≤ ε‖∆2u‖2 + Cε,

‖∇u‖46 ≤ C ′3‖∆2u‖8/9 + C ′4 ≤ ε‖∆2u‖2 + Cε,

‖∆u‖26 ≤ C ′3‖∆2u‖10/9 + C ′4 ≤ ε‖∆2u‖2 + Cε.

Thus, we finally arrive at

d

dt
‖∆u‖2 + γ‖∆2u‖2

≤ 2C5C7(‖∆u‖2L6 + ‖∇u‖4L6) + 2C6‖∇u‖44 + 2C6C8

≤ 4C5C7(ε‖∆2u‖2 + Cε) + 2C6ε‖∆2u‖2 + 2C6Cε + 2C6C8,
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which means

(3.24)
d

dt
‖∆u‖2 + (γ − 4C5C7ε− 2C6ε)‖∆2u‖2 ≤ C.

Taking ε small enough, we obtain
d

dt
‖∆u‖2 + C9‖∆2u‖2 ≤ C,

where C9 > 0 is a constant. By a Calderón–Zygmund type estimate, we have

(3.25)
d

dt
‖∆u‖2 + C ′C9(‖∆u‖2 + ‖∇∆u‖2) ≤ C.

By Gronwall’s inequality and ‖∆u(0)‖ ≤ R,

(3.26) ‖∆u‖2 ≤ e−C′C9t‖∆u0‖2 +
C

C ′C9
≤ e−C′C9tR2 +

C

C ′C9
≤ 2C
C ′C9

for t ≥ t3(B) = 1
C′C9

ln C′C9R2

C . Adding (3.19) and (3.26) together, we obtain

(3.27) ‖u(t)‖H2 ≤ C.
By Sobolev’s imbedding theorem, we obtain

‖u(t)‖L∞ ≤ C.
By setting t0(B) = max{t1(B), t2(B), t3(B)}, the lemma is proved.

The above lemma implies that {S(t)}t≥0 has a bounded absorbing set
in Uκ. In what follows we prove the precompactness of the orbit in Uκ.

Lemma 3.2. For initial data u0 varying in a bounded set B ⊂ Uκ, there
exists a t1(B) > 0 such that

‖u(t)‖H3 ≤ C, ∀t ≥ t1 > 0,

which shows that
⋃
t≥t1 u(t) is relatively compact in Uκ.

Proof. The uniform bound of the H2(Ω) norm of u(t) has been obtained
in the above lemma. In what follows we derive an estimate on the H3 norm.

Applying ∆ to equation (1.1), we obtain

(3.28)
∂∆u

∂t
+ γ∆3u = ∆2A(u) + β · ∇∆B(u)

with
ϕ|xi=0 = ϕ|xi=Li , i = 1, 2,

for u and the derivatives of u at least of order ≥ 2 and ≤ 5.
Multiplying (3.28) by ∆2u and integrating over Ω, we obtain

(3.29)
1
2
d

dt
‖∇∆u‖2 + γ

�

Ω

|∇∆2u|2 dx

−
�

Ω

∇∆A(u)∇∆2u dx− β ·
�

Ω

∆B(u)∇∆2u dx = 0.
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Note that
∇∆A(u) = ∇(A′(u)∆u+A′′(u)|∇u|2)

and
∆B(u) = ∇(B′(u)∇u).

Hence

(3.30)
∣∣∣ �
Ω

∇∆A(u) · ∇∆2u dx
∣∣∣

=
∣∣∣ �
Ω

∇(A′(u)∆u+A′′(u)|∇u|2)∇∆2u dx
∣∣∣

≤
( �

Ω

|A′(u)∇∆u∇∆2u| dx+ 3
�

Ω

|A′′(u)∇u∆u∇∆2u| dx

+
�

Ω

|A′′′(u)(∇u)3∇∆2u| dx
)

≤ C
( �

Ω

|∇∆u∇∆2u| dx+ 3
�

Ω

|∇u∆u∇∆2u| dx

+
�

Ω

|(∇u)3∇∆2u| dx
)

≤ C10(‖∇∆u‖2 + ‖∇u∆u‖2 + ‖∇u‖66) + C11‖∇∆2u‖2

and

(3.31)
∣∣∣ �
Ω

∆B(u)∇∆2u dx
∣∣∣ =

∣∣∣ �
Ω

∇(B′(u)∇u)∇∆2u dx
∣∣∣

≤
�

Ω

|B′(u)∆u∇∆2u| dx+
�

Ω

|B′′(u)(∇u)2|∇∆2u| dx

≤ C(
�

Ω

|∆u∇∆2u| dx+
�

Ω

|∇u|2|∇∆2u| dx)

≤ C12(‖∆u‖2 + ‖∇u‖44) + C13‖∇∆2u‖2.
On the other hand, by Nirenberg–Gagliardo’s inequality, when n ≤ 2, we
obtain

(3.32) C12‖∇u‖44 ≤ C(‖∇∆2u‖n/4‖∇u‖4−n/4 + ‖∇u‖4) ≤ ε‖∇∆2u‖2 + Cε,

and we also have

(3.33) C10‖∇u∆u‖2 ≤ C‖∇u‖2L∞‖∆u‖2 ≤ C14‖∇u‖2L∞ .
By Nirenberg–Gagliardo’s inequality again, we obtain

‖∇u‖2∞ ≤ C(‖∇∆2u‖n/4‖∇u‖2−n/4 + ‖∇u‖2)(3.34)

≤ ε‖∇∆2u‖2 + Cε (n ≤ 2)
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and

‖∇u‖66 ≤ C(‖∇∆2u‖n/2‖∇u‖6−n/2 + ‖∇u‖6)(3.35)

≤ ε‖∇∆2u‖2 + Cε (n ≤ 2).

Thus using (3.29)–(3.35), we obtain

1
2
d

dt
‖∇∆u‖2 + [γ − C11 − C13|β| − (C10 + C14 + |β|)ε]‖∇∆2u‖2

≤ C10‖∇∆u‖2 + C15.

Taking ε small enough and γ satisfying γ−C11−C13|β|− (C10 +C14 + |β|)ε
> 0, by Young’s inequality, we have

(3.36)
1
2
d

dt
‖∇∆u‖2 ≤ C10‖∇∆u‖2 + C15.

On the other hand, integrating (3.25) between t and t+ 1, using (3.26), we
have

(3.37) C ′C9

t+1�

t

‖∇∆u‖2dτ ≤ ‖∆u(t)‖2 + C ≤ C
(

2
C ′C9

+ 1
)
.

Owing to (3.36), (3.37) and the uniform Gronwall inequality in [10], we get

‖∇∆u‖2 ≤ C, t ≥ 1.

The lemma is proved.

Then by Theorem I.1.1 of [10], we immediately conclude that Aκ =
ω(B). The ω-limit set of the absorbing set B is a global attractor in Uκ.
By Lemma 3.2, this global attractor is a bounded set in H3(Ω). Thus the
proof of Theorem 2.1 is complete.
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