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Summary. We study properties of the signature function of the torus knot Tp,q. First we
provide a very elementary proof of the formula for the integral of the signature over the
circle. We also obtain a closed formula for the Tristram–Levine signature of a torus knot
in terms of Dedekind sums.

1. Preliminaries. Let K be a knot in S3 with a Seifert matrix S. Let
also z ∈ S1, z 6= 1, be a complex number. The Tristram–Levine signature
σ(z) is the signature of the hermitian form

(1− z)S + (1− z̄)ST .

This is obviously an integer-valued piecewise constant function. It does not
depend on the particular choice of Seifert matrix. For z = −1 we get an
invariant σord, which is called the (ordinary) signature. We also define the
integral

IK =
1�

0

σ(e2πix) dx.

Signatures are very strong knot cobordism invariants, which can be used
to bound the four-genus and the unknotting number of K. The integral IK
of the signature function is one of the so called ρ invariants of knots (see
[COT1, COT2]) and is of independent interest.

For a torus knot Tp,q, where gcd(p, q) = 1, the signature function can be
expressed in the following nice way (see [Li] or [Kau, Chapter XII]):
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Proposition 1.1. Let

(1.1) Σ =
{
k

p
+
l

q
: 1 ≤ k ≤ p− 1, 1 ≤ l ≤ q − 1

}
.

Then for any x ∈ (0, 1) \Σ we have

(1.2) σ(e2πix) = |Σ \ (x, x+ 1)| − |Σ ∩ (x, x+ 1)|,

where | · | denotes cardinality. In particular

σord = |Σ \ (1/2, 3/2)| − |Σ ∩ (1/2, 3/2)|.

Explicit formulae for σord and IK of torus knots have been known in the
literature for quite a long time. In fact, by a result of Viro (see (2.4)) σord

is equal to τ2, which was computed in [HZ] for p and q odd, and (denoted
as σ(f + z2)) in [Nem] in the general case. On the other hand, Kirby and
Melvin [KM, Remark 3.9] and [Nem, Example 4.3] provided a formula for IK .
Nevertheless, all the above-mentioned results are related more to singularity
theory and low-dimensional topology than to knot theory itself.

After the discovery of ρ invariants, the interest in computing IK for var-
ious families of knots grew significantly. Two independent new proofs of the
formula for IK of torus knots [Bo, Co] appeared in 2009. In particular [Bo]
provided a bridge between the IK and invariants of cuspidal singularities of
complex plane curves.

In this paper we present an elementary proof of the formula for IK
(Proposition 2.1). We also cite a formula of Némethi and draw some con-
sequences from it. In Section 4 we use a theorem of Rosen to obtain the
explicit value of the signature σ(z) of a torus knot not only for z = −1, but
also for almost every z ∈ S1 \ {1} (Proposition 4.3). This result seems to be
new. In Section 5 we show that the formula for σord(Tp,q) cannot be written
as a rational function of p and q.

2. Formula for the integral

Proposition 2.1. For a torus knot Tp,q we have

(2.1) I = −1
3

(
p− 1

p

)(
q − 1

q

)
.

This proposition was first proved in [KM, Remark 3.9]. We refer to [Nem,
Bo, Co] for other proofs.

Proof. Let f(x) = −σ(e2πix) and J =
	1
0 f(x) dx = −I. Then

f(x) =
∑
y∈Σ

1(x,x+1)(y)−
∑
y∈Σ

1R\(x,x+1)(y).
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(Here, for A ⊂ R, 1A denotes the function which is equal to 1 on A and 0
away from A.) Hence

J =
∑
y∈Σ

1�

0

(1(y−1,y)(x)− 1R\(y−1,y)(x)) dx =
∑
y∈Σ

(1− 2|y − 1|).

It follows that

J =
p−1∑
k=1

q−1∑
l=1

(
1− 2

∣∣∣∣kp +
l

q
− 1
∣∣∣∣).

As for any u, v ∈ R we have

1− 2|u+ v − 1| = 2 min(1− u, v) + 2 min(u, 1− v)− 1,

it follows that

J = 2
p−1∑
k=1

q−1∑
l=1

min
(
p− k
p

,
l

q

)
+ 2

p−1∑
k=1

q−1∑
l=1

min
(
k

p
,
q − l
q

)
− (p− 1)(q − 1)

= 4
p−1∑
k=1

q−1∑
l=1

min
(
k

p
,
l

q

)
− (p− 1)(q − 1)

=
4
pq

p−1∑
k=1

q−1∑
l=1

min(qk, pl)− (p− 1)(q − 1).

Now, obviously,

p−1∑
k=1

q−1∑
l=1

min(qk, pl)

=
∞∑
s=0

|{(k, l) ∈ {1, . . . , p− 1} × {1, . . . , q − 1} : qk > s and pl > s}|

=
pq−1∑
s=0

(p− 1− bs/qc)(q − 1− bs/pc).

We can multiply the expressions in parentheses. Then, as

pq−1∑
s=0

bs/pc = p

q−1∑
l=0

l =
1
2
pq(q − 1),
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we get

pq−1∑
s=0

(p− 1− bs/qc)(q − 1− bs/pc)

= pq(p− 1)(q− 1)− 1
2
pq(p− 1)(q− 1)− 1

2
pq(p− 1)(q− 1) +

pq−1∑
s=0

bs/pcbs/qc

=
pq−1∑
s=0

bs/pcbs/qc.

It remains to compute the last sum. To this end denote by Rp(s) the
remainder of s modulo p. Then

pq−1∑
s=0

bs/pcbs/qc =
pq−1∑
s=0

(
s−Rp(s)

p
· s−Rq(s)

q

)

=
1
pq

(pq−1∑
s=0

s2 −
pq−1∑
s=0

sRp(s)−
pq−1∑
s=0

sRq(s) +
pq−1∑
s=0

Rp(s)Rq(s)
)

=
1
3
p2q2 +

1
4
pq − 1

4
p2q − 1

4
pq2 − 1

12
p2 − 1

12
q2 +

1
12
,

where we used the fact that
pq−1∑
s=0

Rp(s)Rq(s) =
p−1∑
k=0

q−1∑
l=0

kl

by the Chinese remainder theorem.
Putting all the pieces together we obtain the desired formula.

Let us now present another proof, due to Némethi [Nem] (see also [Br,
HZ]). Before we do this, we recall some facts from topology.

Assume that the knot K is drawn on S3 = ∂B4 and consider a Seifert
surface F of K. Let us push it slightly into B4 and, for an integer m, let
Nm be the m-fold cyclic cover of B4 branched along F . Then the quantity
τm = σ(Nm) (here σ is the signature of a four-manifold with boundary) is
independent of the choices made. We have the following formula essentially
due to Viro (see [GLM, Section 2] or [Vi]):

(2.2) τm =
m−1∑
k=1

σK(ξk),

where ξ is a primitive root of unity of order m. In particular, since σ is a
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Riemann integrable function, we have

(2.3) I =
1�

0

σ(e2πix) dx = lim
m→∞

1
m
τm.

On the other hand

(2.4) τ2(K) = σord(K).

If K is a torus knot Tp,q and m, p, q are pairwise coprime, then the m-fold
cover of S3 branched along K is diffeomorphic to the Brieskorn homology
sphere B(p, q,m) (see [Br], [GLM, Section 5]). Then τm turns out [HZ, Sec-
tions 10.2 and 11] to be the signature of the manifold Xp,q,m defined as the
intersection of zp1 + zq2 + zm3 = ε with B(0, 1) ⊂ C3. In this context τm was
computed in [HZ, Formula (11), p. 122] and [Nem, Example 4.3]. Especially
the last formula is worth citing (Némethi uses m(S(f)) to denote the limit
(2.3)):

(2.5) I = −4(s(p, q) + s(q, p) + s(1, pq)).

Here s(a, b) is the Dedekind sum (see Section 3). As by elementary compu-
tations

s(1, pq) =
(pq − 1)(pq − 2)

12pq
,

we get

s(p, q) + s(q, p) = −I
4
− (pq − 1)(pq − 2)

12pq
.

Now we can view the above equation as defining I in terms of s(p, q)+s(q, p);
but if we know I, we know s(p, q)+s(q, p). In other words we get the following
observation.

Corollary 2.2. Any proof of Proposition 2.1 which does not involve
Dedekind sums provides a proof of the Dedekind reciprocity law.

3. Lattice points in the triangle. Let us recall basic definitions. For a
real number x, bxc denotes the integer part and {x} = x−bxc the fractional
part. The sawtooth function is defined by

〈x〉 =
{
{x} − 1/2, x 6∈ Z,
0, x ∈ Z.

Sometimes 〈x〉 is denoted ((x)). We prefer the former notation because it
does not lead to confusion with ordinary parentheses. We can now define the
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following functions (below p, q andm are integers and x, y are real numbers):

s(p, q) =
p−1∑
j=0

〈
j

q

〉〈
pj

q

〉
,

s(p, q;x, y) =
p−1∑
j=0

〈
j + y

q

〉〈
p
j + y

q
+ x

〉
.

s(p, q) is called the (ordinary) Dedekind sum, while s(p, q;x, y) is a gener-
alized Dedekind sum. These functions satisfy the following reciprocity laws
(see [RG, HZ]). If m, p and q are pairwise coprime, then

s(p, q) + s(q, p) =
1
12

(
p

q
+
q

p
+

1
pq

)
− 1

4
,(3.1)

s(p, q;x, y) + s(q, p; y, x) = −1
4
d(x)d(y) + 〈x〉〈y〉(3.2)

+
1
2

(
q

p
Ψ2(y) +

1
pq
Ψ2(py + qx) +

p

q
Ψ2(x)

)
.

Here

d(x) =
{

1 if x ∈ Z,
0 otherwise,

and

Ψ2(x) = B2({x}) = {x}2 − {x}+
1
6

is the second Bernoulli polynomial. Now for a fixed C ∈ [0, 1) and p, q
coprime, let

A(p, q;C) =
{

(k, l) ∈ Z2
≥0 : 0 ≤ k

p
+
l

q
< 1− C

}
and

N(p, q;C) = |A(p, q;C)|.

We have the following result due to Rosen [Ro, Theorem 3.4].

Proposition 3.1. In this case

N(p, q;C) =
(1− C)2

2
pq +

1− C
2

(p+ q) +
q

12p
+

p

12q
+K(3.3)

− s(p, q;Cp, 0)− s(q, p;Cq, 0) + 〈Cp〉+ 〈Cq〉

+ (1− C)〈Cpq〉 −
(

7
8
δ0 +

3
8
δ1 −

1
8
δ2

)
+

1
4
,
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where

K =


1

12pq
− 1

8
if Cpq ∈ Z,

1
2pq

Ψ2(Cpq) otherwise,

and for r = 0, 1, 2, δr is the number of non-negative integers k, l such that
k/p+ l/q + C = r.

This proposition has an important corollary [Ro, Corollary 3.5].

Corollary 3.2. If p and q are odd and coprime, then

(3.4) N

(
p, q;

1
2

)
=
pq

8
+
p+ q

4
+

q

6p
+

p

6q
+

1
24pq

− s(2p, q)− s(2q, p).

If p and q are coprime and q is even, then

(3.5) N

(
p, q;

1
2

)
=
pq

8
+
p+ q

4
− s(2p, q) + 2s(p, q).

We shall use these results to compute the signature of the torus knots.
We need the following trivial lemma:

Lemma 3.3. The number of points (k, l) ∈ A(p, q;C) such that kl = 0 is
equal to

Z(p, q;C) = b(1− C)pc+ b(1− C)qc+ 1− d((1− C)p)− d((1− C)q),

where d(x) is again 1 if x ∈ Z, and 0 otherwise.

If Cp and Cq are not integers, Lemma 3.3 says that

Z(p, q;C) = (1− C)(p+ q)− 〈(1− C)p〉 − 〈(1− C)q〉.

4. Explicit formulae for the signatures. We begin by computing the
value of the ordinary signature. As already mentioned, σord = τ2 (see (2.4))
so the first result below is in general known [HZ, Nem], but not necessarily
in the context of knot theory.

Proposition 4.1. If p and q are both odd and coprime, then the ordinary
signature of the torus knot Tp,q satisfies

σord(Tp,q) = −pq
2

+
2p
3q

+
2q
3p

+
1

6pq
− 4(s(2p, q) + s(2q, p))− 1,

where s(x, y) is the Dedekind sum (see Section 3 or [RG]; cf. [HZ, Formula
(11), p. 122]). If p is odd and q > 2 is even, then

σord(Tp,q) = −pq
2

+ 1 + 4s(2p, q)− 8s(p, q).

Proof. Let Σ be as in (1.1). We can write σord as

(4.1) σord = 4|Σ ∩ (0, 1/2)| − |Σ|.
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Since |Σ| = (p− 1)(q − 1), we need to find a closed formula for

S(p, q) = |Σ ∩ (0, 1/2)|(4.2)

=
∣∣∣∣{x =

k

p
+
l

q
: x <

1
2
, 1 ≤ k ≤ p− 1, 1 ≤ l ≤ q − 1

}∣∣∣∣.
From the definition we get immediately

S(p, q) = N(p, q; 1/2)− Z(p, q; 1/2).

Now Z(p, q; 1/2) = 1
2(p+ q) if p and q are both odd, and 1

2(p+ q − 1) if q is
even and q > 2. Hence, for p and q odd we have, by (3.4),

S(p, q) =
pq

8
− p+ q

4
− s(2p, q) + 2s(p, q),

while for q even we have, by (3.5),

S(p, q) =
pq

8
− p+ q

4
+

1
2
− s(2p, q) + 2s(p, q),

and using (4.1) we complete the proof.

Remark 4.2. Formula (4.2) can be rewritten as

(4.3) S(p, q) =
bp/2c∑
k=1

⌊
qp− 2kq

2p

⌋
,

which gives a formula for σord using ordinary sums, not Dedekind sums. On
the other hand [NY, Proposition 2.1] provides a different formula for σord

using ordinary sums. The latter is especially useful for providing explicit
formulae for σord(Tp,p+r) for small values of r.

To express explicitly the values of Tristram–Levine signatures at other
points let us assume that Cpq is not an integer (in particular C 6∈ Σ). Define

M(p, q;C) = N(p, q;C)− Z(p, q;C)

=
(1− C)2

2
pq − 1− C

2
(p+ q)

+
q

12p
+

p

12q
− s(p, q;Cp, 0)− s(q, p;Cq, 0) +

1
4

− 1
2

(〈Cp〉+ 〈Cq〉) + (1− C)〈Cpq〉+
1

2pq
Ψ2(Cpq).

Now it is a trivial consequence of Proposition 1.1 that if C ∈ [0, 1) and
e2πiC = z, then

σ(z) = −(p− 1)(q − 1) + 2M(p, q;C) + 2M(p, q; 1− C).

Since for any integer k and real x we have 〈(1−x)k〉+ 〈xk〉 = 0, the formula
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for M(p, q;C) +M(p, q; 1− C) can be simplified to

1− 2C + 2C2

2
pq− 1

2
(p+q)+

q

6p
+
p

6q
+(1−2C)〈Cpq〉+ 1

pq

(
〈Cpq〉2− 1

12

)
+

1
2

− s(p, q;Cp, 0)− s(q, p;Cq, 0)− s(p, q; (1− C)p, 0)− s(q, p; (1− C)q, 0).

Hence we obtain the following result.

Proposition 4.3. If z = e2πiC where C ∈ [0, 1) is such that Cpq is
not an integer, then the signature of the torus knot Tp,q can be given by the
following formula:

σ(z) = −2(C − C2)pq +
q

3p
+

p

3q
+ (2− 4C)〈Cpq〉+

2
pq

(
〈Cpq〉2 − 1

12

)
− 2(s(p, q;Cp, 0) + s(q, p;Cq, 0) + s(p, q; (1− C)p, 0) + s(q, p; (1− C)q, 0)).

In particular we see rigorously that for large p and q the shape of the
function σ(e2πix) resembles that of the function 2pq(x2 − x).

Remark 4.4. We can integrate the above formula over the interval [0, 1]
with respect to C. The term −2(C − C2)pq contributes −pq/3, and the
next two terms contribute q/3p and p/3q, respectively. A straightforward
computation gives

1�

0

C〈Cpq〉 dC =
1

12pq
and

1�

0

(
〈Cpq〉2 − 1

12

)
dC = 0.

All other integrals trivially vanish. We thus recover formula (2.1) from Propo-
sition 4.3.

5. Expressing σord(Tp,q) as a rational function

Proposition 5.1. There does not exist a rational function R(p, q) such
that for all odd and coprime positive integers p, q,

R(p, q) = σord(Tp,q).

Proof. Assume the contrary. Then S(p, q) = 1
4(R(p, q) + (p − 1)(q − 1))

is also a rational function.
If p | (q − 1) and p, q are both odd, the value of S(p, q) can be easily

computed using (4.3):

S(p, q) =
(p−1)/2∑
k=1

⌊
q

2
− qk

p

⌋
=

(p−1)/2∑
k=1

⌊
q − 1

2
− (q − 1)k

p
+
p− 2k

2p

⌋

=
(p−1)/2∑
k=1

(
q − 1

2
− kq − 1

p

)
=

(q − 1)(p− 1)2

8p
.
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Since for infinitely many values (p, q) with q = np+ 1 with p odd and n
even, we have p | (q − 1), it follows that

S(p, q) =
(q − 1)(p− 1)2

8p
on each line q = np + 1. Since these rational functions agree on infinitely
many lines, they must be equal.

Now assume that p = nq+1 for some even n. Similar arguments to those
above show that S(p, q) must also be identical to the function

(p− 1)(q − 1)2

8q
.

This is a contradiction, since these two rational functions are different.

Remark 5.2. We can also compute values of S(p, q) in many other cases,
like q = np−1, q = p+2. With more care we can prove that e.g. S(p, q)−bq/pc
is not a rational function.

The proof carries over to show that no such rational function exists for
the case p even and q odd. We leave the obvious details to the reader.
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