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Summary. A Weitzenböck formula for SL(q)-foliations is derived. Its linear part is a
relative trace of the relative curvature operator acting on vector valued forms.

1. Introduction. The aim of the paper is to get a Weitzenböck for-
mula for a wide class of foliations, so called SL(q)-foliations, in the algebra
of relative vector valued differential forms. For foliations and their basic
properties, see [1], [2], [3] and [5]. An SL(q)-foliation is a foliation satisfy-
ing the condition that its transversal volume form is closed. SL(q)-foliations
have been studied extensively in the broader, measure-theoretical, context
by Sacksteder [7], Plante [4] and others. They play an important role in many
contexts.

A question arises how restrictive the above condition is. The example in
Section 2 shows that, locally, every foliation can be made an SL(q)-foliation
by a suitable choice of a Riemannian metric. For SL(q)-foliations, one can
derive many nice properties of the differential, the codifferential and the
Hodge star operator. Notably, all three restrict to the leaves of the foliation
and preserve all their attributes (cf. Propositions 3–7). These properties are
derived thanks to our working in a very special coordinate system, called
F-normal. The description and the proof of existence of such a system can
be found in Section 2.

It is interesting that the Weitzenböck formula obtained in Section 6 is
similar to the classical one. The main difference is that traces are replaced
by relative traces, that is, taken with respect to frames tangent to the leaves.
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2. Basic notions. For the sake of simplicity, throughout our paper, we
will denote the spaces of smooth sections of bundles by the same symbols
as the bundles themselves, e.g., TM is, depending on context, the tangent
bundle or the space of vector fields, i.e., the space of sections of this bundle.
Let (M, g) be an oriented Riemannian manifold of dimension n, and let ∇g
be its Levi-Civita connection. Assume that F is a transversally oriented
p-dimensional foliation of M and q = n − p. Let Q be the normal bundle:
Q = TM/TF , and (E, h) an arbitrary Riemannian vector bundle over M of
rank r. Let ∇h be any covariant derivative in E which is compatible with the
metric h. The Riemannian structure and the orientations enable us to define
two forms ΩF , ΩQ on M as follows [9]. Let a ∈ M and let e1, . . . , en be an
orthonormal base in TaM∗ such that e1, . . . , ep is a base in TaF∗. Then, at a,

ΩF = e1 ∧ · · · ∧ ep, ΩQ = ep+1 ∧ · · · ∧ en.
It is clear that the above formulas define global forms onM called the tangent
and the transversal volume forms, respectively.

We say that F is an SL(q)-foliation (cf. Tondeur [8]) if the transversal
volume form is closed, i.e., dΩQ = 0.

It is easy to see that any foliation is locally (for a suitable choice of a
Riemannian metric) an SL(q)-foliation. Indeed, let φ : M → N be a sub-
mersion of an oriented manifold M to an oriented Riemannian manifold N .
There is a smooth distribution D on M such that for, each point x0 ∈ M ,
Tx0M = Tx0F+Dx0 , where F is the foliation given by φ. Moreover, dφ gives
an isomorphism between Dx0 and Tφ(x0)N . Let (Y1, . . . , Yq) be a local or-
thonormal frame in a neighborhood V of φ(x0) on N . Let (X1, . . . , Xn) be a
frame in a neighborhood U of x0 such that, for any x ∈ U , X1, . . . , Xp ∈ TF
and dφ|x0

(Xj) = Yj |φ(x0), j = p+ 1, . . . , n. Let fp+1, . . . , fn be any system
of smooth nonvanishing functions in U such that fp+1 · . . . · fn = 1. Let g be
the Riemannian metric on U such that X1, . . . , Xp, fp+1 ·Xp+1, . . . , fn ·Xn

form an orthonormal frame on U with respect to g. The foliation F is a
Riemannian foliation [3], [8] in U if and only if all the functions fp+1, . . . , fn
are identically 1 on U . In any other case, we get an SL(q)-foliation which is
not Riemannian.

We will work in a special coordinate system called an F-normal coordi-
nate system centered at a, a ∈M , described in the following

Proposition 1. For any point a ∈ M there exists a neighborhood U of
a and an F-integrating map x : U → Ip × Iq such that

g(∂i, ∂j) = δij , i, j = 1, . . . , n,
∇F∂i

∂j = 0, i, j = 1, . . . , p,
∇F∂i

gjk = 0, i, j, k = 1, . . . , p,

at a, where ∇F denotes the connection on leaves induced by ∇.
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Proof. Let x̃ : U → Ip × Iq be any F-integrating map such that x̃(a) =
(0, 0). We use this map to induce a Riemannian structure on the p-dimen-
sional manifold Na = x̃(La ∩ U). Let y : Na → Ip be a normal coordinate
system on Na with center at (0, 0). Thus, at (0, 0), we have

g(∂i, ∂j) = δij , ∇F∂i
∂j = 0, i, j = 1, . . . , p.

The metric and the Levi-Civita connection on the manifold Na are still
denoted by g and ∇F . Define x̌ : Ip × Iq → Ip × Iq by

x̌(u, v) = (y(u), v).

Observe that x̄ = x̌ ◦ x̃ is an F-integrating map such that

g(∂/∂x̄i, ∂/∂x̄j) = δij , i, j = 1, . . . , p,

∇F∂/∂x̄i
∂/∂x̄j = 0, i, j = 1, . . . , p,

at a.
Consider now a linear map x̂ of Rp × Rq such that x̂(·, 0) is the identity

on Rp, x̂({0} × Rq) is orthogonal to Rp × {0} and ∂j , j = p + 1, . . . , n,
are unit vectors mutually orthogonal at the origin. It is enough to define
x := x̂−1 ◦ x̄.

3. Operator dF . Let

Ik(Q) = {ω ∈ ΛkTM : ω(X1, . . . , Xk) = 0 for X1, . . . , Xk ∈ TF}
and

I(Q) =
n∑
k=0

Ik(Q).

Notice that I(Q) is an ideal in the exterior algebra of differential forms onM .
By the algebra of relative forms we mean the quotient algebra

ΛTF∗ = ΛTM∗/I(Q).

It is easy to see (by the Frobenius theorem) that d(I(Q)) ⊂ I(Q). In a
natural manner, we get the differential operator

dF : ΛTF∗ → ΛTF∗

given by

(1) dF [ω]F = [dω]F ,

where [ω]F is the class of ω in ΛTF∗.
The formula (1) suggests that, locally, in any integrating map, we can

drop the brackets and treat relative forms just as usual forms on M that do
not contain the differentials of transversal coordinates. More precisely, we
have the following description of local sections of ΛkTF∗.
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Proposition 2. Any integrating map (U ; (t, y)) induces a trivialization
of the bundle ΛkTF∗ over U . The trivialization defines the natural isomor-
phism of the modules of local sections:

ΛkTF∗|U ∼=
{
ω ∈ ΛkTM∗|U : ω =

∑
si1...ikdt

i1 ∧ · · · ∧ dtik
}
.

The isomorphism can also be described uniquely when a Riemannian
structure on M is given. Indeed, for every foliation F , we have a short exact
sequence

0→ TF → TM → Q→ 0.

Passing to duals, we have

0← T ∗F ← T ∗M ← Q∗ ← 0.

The metric g defines a natural splitting map ν : T ∗F → T ∗M such that

ν(T ∗F) = Q∗⊥.

So, we can view sections of the bundle ΛT ∗F as sections of ΛT ∗M . For our
further investigations, without ambiguity, we can omit the letter ν.

A similar construction can be made for sections of the bundle ΛkTF∗⊗E
of relative k-forms with values in E.

Indeed, let∇F : Γ (E)→ Γ (TF∗ ⊗ E) be the partial linear connection on
E induced by ∇h, e = (e1, . . . , er) a local moving frame of sections of E, and
e∗ = (e∗1, . . . , e∗r) the frame of duals. Then∇Fe = ω⊗e, where ω = (ωij)

q
i,j=1

with ωij relative scalar local 1-forms, i, j = 1, . . . , q. The curvature RF of
∇F is represented by a matrix Ω = [Ωi

j ]
q
i,j=1 with Ωi

j relative local 2-forms,
i, j = 1, . . . , q, as follows: RF =

∑q
i,j=1Ω

i
j ⊗ e∗j ⊗ ei.

The forms ω and Ω are related by the known structure equations:

Ω = dFω + ω ∧ ω, dFΩ = Ω ∧ ω − ω ∧Ω,
One can extend ∇F to the bundle ΛkTF∗⊗E of relative k-forms η with

values in E:

(∇Fη)(X0, . . . , Xk) = (∇FX0
η)(X1, . . . , Xk)

= ∇hX0
(η(X1, . . . , Xk))−

k∑
i=1

η(X1, . . . ,∇FX0
Xi, . . . , Xk).

We can define the operator of exterior differentiation for forms with values
in E, dF : ΛkTF∗ ⊗ E → Λk+1TF∗ ⊗ E, by

(dFη)(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i+1∇hXi
(η(X1, . . . , X̂i, . . . , Xk+1))

+
∑

1≤i<j≤k+1

(−1)i+jη([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1).
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Using the same symbol as for differentiation of scalar forms will not lead to
confusion since the operators in question have different domains.

One can check that, since ∇g is torsion free, dF is the antisymmetrization
of ∇F :

(dFη)(X1, . . . , Xk+1) =
k+1∑
i=1

(−1)i+1(∇FXi
η)(X1, . . . , X̂i, . . . , Xk+1).(2)

Notice that d2
Fη = RF ∧ η, so d2

F = 0 if ∇F is flat.

4. Relative Hodge star operator. In this section, we will define the
relative Hodge star operator for vector valued forms on foliated manifolds.
This operator has all the properties of the regular star operator. However,
to get the classical formulas for the codifferential operator d∗F , we have to
assume in the next sections that our foliation F is an SL(q)-foliation, i.e.,
the transversal volume form ΩQ is closed.

Definition 1. Let a ∈M . Set

(3) ∗F (ei1 ∧ · · · ∧ eik ⊗ s) := sgn(i1, . . . , ik, j1, . . . , jp−k)ej1 ∧ · · · ∧ ejp−k ⊗ s,
where (e1, . . . , ep) is an oriented orthonormal (o.n.) base in TaF∗ and where
(i1, . . . , ik, j1, . . . , jp−k) is a permutation of (1, . . . , p).

The formula (3) defines a linear operator

∗F : ΛkTaF∗ ⊗ E → Λp−kTaF∗ ⊗ E.
One can easily check that it has the following properties.

Proposition 3.

(a) ∗α = (∗Fα) ∧ΩQ,
(b) ∗(α ∧ΩQ) = (−1)(p−k)(n−p) ∗F α,
(c) α ∧ ∗Fβ = 〈α, β〉ΩF ,
(d) ∗2F |ΛkTF∗⊗E = (−1)k(p−k)IdΛkTF∗⊗E,

where α, β ∈ ΛkTF∗ ⊗ E.

5. Codifferential operator d∗F . In this section, we will assume that F
is an SL(q)-foliation. First, we prove the following proposition.

Proposition 4. If dΩQ = 0 then, for any relative form η ∈ ΛkT ∗F⊗E,
d(η ∧ΩQ) = (dFη) ∧ΩQ.

Proof. Let a ∈ M and let x = (x1, . . . , xn) be an F-normal coordinate
system in U centered at a. Let ei = dxi for i = 1, . . . , n. Without loss
of generality, we can assume that η = ei1 ∧ · · · ∧ eik ⊗ s on U . Then, by
Proposition 1, (e1, . . . , en) is an orthonormal base in TaM∗. Recall that F
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is an SL(q)-foliation and, at the point a, ΩQ = ep+1 ∧ · · · ∧ en, so, at this
point, we have

d(ei1 ∧ · · · ∧ eik ⊗ s ∧ΩQ) =
n∑
i=1

ei ∧ ei1 ∧ · · · ∧ eik ⊗∇h∂xi
s ∧ΩQ

=
p∑
i=1

ei ∧ ei1 ∧ · · · ∧ eik ⊗∇h∂xi
s ∧ΩQ = dF (ei1 ∧ · · · ∧ eik ⊗ s) ∧ΩQ.

As a direct consequence of Propositions 3 and 4, we obtain

Proposition 5.

∗d∗|ΛkTF∗⊗E = (−1)(k−1)(n−p)∗FdF∗F .(4)

The right hand side of formula (4) defines, up to sign, the operator for-
mally adjoint to dF on M (not only on the leaves) in the following sense:

Proposition 6.�

M

〈dFα, β〉ΩM =
�

M

〈α, (−1)pk+1∗FdF∗Fβ〉ΩM ,

provided α or β is of compact support, so the operator

d∗F = (−1)pk+1∗FdF∗F
is formally adjoint to dF .

Proof. Let α ∈ ΛkT ∗F ⊗ E and β ∈ Λk+1T ∗F ⊗ E. Assume α = ω ⊗ s
and β = η ⊗ t. Let

γ = h(s, t)ω ∧ ∗Fη.

Then

dFγ = dF (h(s, t)) ∧ ω ∧ ∗Fη
+ h(s, t) ∧ dFω ∧ ∗Fη + (−1)kh(s, t) ∧ dFω ∧ dF∗Fη.

Thus, after multiplying both sides by ΩQ we have

dFγ ∧ΩQ
= dF (h(s, t)) ∧ ω ∧ ∗Fη ∧ΩQ

+ h(s, t) ∧ dFω ∧ ∗Fη ∧ΩQ + (−1)kh(s, t) ∧ dFω ∧ dF∗Fη ∧ΩQ
= d(h(s, t)) ∧ ω ∧ ∗η + h(s, t) ∧ dω ∧ ∗η + (−1)kh(s, t) ∧ ω ∧ d∗η
= h(∇hs, t) ∧ ω ∧ ∗η + h(s,∇ht) ∧ ω ∧ ∗η + h(s, t) ∧ dω ∧ ∗η

+ (−1)kh(s, t) ∧ ω ∧ d∗η.
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Summing up the first and third summands, and then the second and fourth,
we get

dFγ ∧ΩQ = [h(∇hs, t) ∧ ω + h(s, t) ∧ dω] ∧ ∗η
+ (−1)k ∧ h(s,∇ht) ∧ ∗η + (−1)knh(s, t)ω ∧ ∗∗d∗η

= h(∇hs(·) ∧ ω + s⊗ dω, t⊗ η)ΩM
+ (−1)kn{ω ∧ ∗∗[h(s,∇ht(·)) ∧ ∗η] + h(s, t)ω ∧ ∗∗d∗η}

= 〈∇hs(·) ∧ ω + s⊗ dω, t⊗ η〉ΩM
+ (−1)kn〈ω ⊗ s, ∗[∇ht ∧ ∗η + t⊗ d ∗ η]〉ΩM

= 〈d(ω ⊗ s), η ⊗ t〉ΩM + (−1)kn〈ω ⊗ s, ∗d∗(η ⊗ t)〉ΩM .
By Proposition 5, the last two terms are equal to

〈dF (ω ⊗ s), η ⊗ t〉ΩM + (−1)kn〈ω ⊗ s, ∗FdF∗F (η ⊗ t)〉ΩM .
Integrating overM and applying Stokes’ theorem, we obtain the statement.

Proposition 7. If F is an SL(q)-foliation, (ei)i=1,...,p a base of TzF ,
Xj ∈ TF , j = 1, . . . , k − 1, and ρ ∈ ΛkTF∗ ⊗ E, then

(d∗Fρ)(X1, . . . , Xk−1) = −
p∑

s,t=1

gst(∇Fet
ρ)(es, X1, . . . , Xk−1).

Proof. Let x : U → Ip × Iq be an F-normal coordinate system centered
at x0. For σ ∈ Λk−1TF∗ ⊗ E, we have

〈dFσ, ρ〉 −
〈
σ,−

p∑
s=1

(∇Fs ρ)(∂s, ·)
〉

=
1
k!

p∑
i1,...,ik=1

h(dFσ(∂i1 , . . . , ∂ik), ρ(∂i1 , . . . , ∂ik))

+
1

(k − 1)!

p∑
s,i1,...,ik−1=1

h(σ(∂i1 , . . . , ∂ik−1
), (∇Fs ρ)(∂s, ∂i1 , . . . , ∂ik−1

)).

By (2) and the compatibility of the metric and the connection,

〈dFσ, ρ〉 −
〈
σ,−

p∑
s=1

(∇Fs ρ)(∂s, ·)
〉

=
1
k!

k∑
r=1

(−1)r+1
p∑

i1,...,ik=1

h((∇Firσ)(∂i1 , . . . , ∂̂ir , . . . , ∂ik), ρ(∂i1 , . . . , ∂ik))

+
1

(k − 1)!

p∑
s,i1,...,ik−1=1

h(σ(∂i1 , . . . , ∂ik−1
), (∇Fs ρ)(∂s, ∂i1 , . . . , ∂ik−1

))
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=
1

(k − 1)!

p∑
s,i1,...,ik−1=1

[h((∇Fs σ)(∂i1 , . . . , ∂ik−1
), ρ(∂s, ∂i1 , . . . , ∂ik−1

))

+ h(σ(∂i1 , . . . , ∂ik−1
), (∇Fs ρ)(∂s, ∂i1 , . . . , ∂ik−1

))]

=
p∑
s=1

∂s〈σ, ρ(∂s, ·)〉 = divF X,

where X =
∑p

s=1〈σ, ρ(∂s, ·)〉∂s. Observe now that since dΩQ = 0,

divX ΩM = LX(ΩF ∧ΩQ) = LX(ΩF ) ∧ΩQ
= divF X (ΩF ∧ΩQ) = divF X ΩM .

Therefore divF X = divX. Thus

〈dFσ, ρ〉 −
〈
σ,−

p∑
s=1

(∇Fs ρ)(∂s, ·)
〉

= divX.

6. Weitzenböck formula

Theorem 1 (Weitzenböck formula). Let (M, g) be a Riemannian man-
ifold, (E, h) a Riemannian vector bundle, and F an SL(q)-foliation. Then,
for any σ ∈ ΛkTF∗ ⊗ E,

∆Fσ = − traceF (∇F )2σ + SF (σ),

where

SF (σ)(X1, . . . , Xk) =
p∑
s=1

k∑
j=1

(−1)j(RF (es, Xj)σ)(es, X1, . . . , X̂j , . . . , Xk)

and
RF (es, Xj) = −∇Fes

∇FXj
+∇FXj

∇Fes
+∇F[es,Xj ],

for X1, . . . , Xk ∈ TF and (e1, . . . , ep) an o.n. base of TxF .
Proof. Let x0 ∈ M and let (x1, . . . , xn) be an F-normal integrating co-

ordinate system at x0. Observe that, by the definition of dF , Proposition 7
and the F-normality of the coordinate system, we have

(dFd∗Fσ)(∂i1 , . . . , ∂ik) =
k∑
j=1

(−1)j+1∇hij [(d∗Fσ)(∂i1 , . . . , ∂̂ij , . . . , ∂ik)]

=
k∑
j=1

(−1)j+1∇hij
[
−

p∑
s,t=1

gst(∇Ft σ)(∂s, ∂i1 , . . . , ∂̂ij , . . . , ∂ik)
]

=
p∑
s=1

k∑
j=1

(−1)j [∇Fij (∇Fs σ)](∂s, ∂i1 , . . . , ∂̂ij , . . . , ∂ik).
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On the other hand, using Proposition 7, the F-normality of the coordi-
nate system and formula (2), one can calculate

(d∗MF dFσ)(∂i1 , . . . , ∂ik) = −
p∑

s,t=1

gst(∇Ft dFσ)(∂s, ∂i1 , . . . , ∂ik)

= −
p∑
s=1

∇hs [(dFσ)(∂s, ∂i1 , . . . , ∂ik)] +
p∑
s=1

(dFσ)
(
��

��*0
∇Ft ∂s, ∂i1 , . . . , ∂ik

)

+
k∑
j=1

p∑
s=1

(dFσ)
(
∂s, ∂i1 , . . . ,��

��*
0

∇Ft ∂ij , . . . , ∂ik
)

= −
p∑
s=1

∇hs [(∇Fs σ)(∂i1 , . . . , ∂ik)]

−
p∑
s=1

∇F∂s

[ k∑
j=1

(−1)j(∇Fijσ)(∂s, ∂i1 , . . . , ∂̂ij . . . , ∂ik)
]

= −
p∑
s=1

[∇Fs (∇Fs σ)](∂i1 , . . . , ∂ik)

−
p∑
s=1

k∑
j=1

(−1)j [∇F∂s
(∇Fijσ)](∂s, ∂i1 , . . . , ∂̂ij . . . , ∂ik).

Thus

[(dFd∗F + d∗FdFσ)](∂i1 , . . . , ∂ik)

=
k∑
j=1

(−1)j
p∑
s=1

(∇Fij∇
F
s σ)(∂s, ∂i1 , . . . , ∂̂ij , . . . , ∂ik)

−
p∑
s=1

(∇Fs ∇Fs σ)(∂i1 , . . . , ∂ik)

−
k∑
j=1

(−1)j
p∑
s=1

(∇Fs ∇Fijσ)(∂s, ∂i1 , . . . , ∂̂ij , . . . , ∂ik).

This completes the proof of the theorem.

It is interesting to note that also a global (not foliated) version of the
Weitzenböck formula can be used to get some geometric properties of a
foliated manifold. E.g., Rummler [6] obtained that way some criteria for a
foliation to be geodesic or parallel.
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