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Summary. In the framework of ZF (Zermelo—Fraenkel set theory without the Axiom of
Choice) we provide topological and Boolean-algebraic characterizations of the statements

“9R is countably compact” and “2% is compact”.

1. Notation and terminology

1. Let X be a non-empty set. 2% will denote the Tychonoff product of
the discrete space 2 = {0,1}. Likewise, BX = {[p] : p € Fn(X,2)},
where Fn(X,2) is the set of all finite partial functions from X into 2
and

bl ={fe2*:pcf},

will denote the standard clopen (= simultaneously closed and open)
base for the topology on 2X. If A C X, and p € Fn(A,2), then
[pla={f €24 :pcC f}. Y C 2%, then BX|y = {ONY : O € BX}.
A non-empty collection H C P(X)\{0} has the finite intersection
property, FIP for abbreviation, if VQ € [H]|<%,( Q # 0.

2. Let (X,T) be a topological space.

(a) X is said to be compact if every open cover of X has a finite
subcover. Equivalently, X is compact iff for every family G of
closed subsets of X having the FIP, (G # 0.
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(b) X is said to be countably compact if every countable open cover
of X has a finite subcover. Equivalently, X is countably compact
iff for every countable family G of closed subsets of X having the
FIP, NG # 0.

(c) X is said to be Lindeldf if every open cover of X has a countable
subcover.

(d) Let £ C P(X)\{0}. A non-empty collection F C & is an E-filter iff

(i) if Fy, Fy € F then Iy N Fy € F,
(i) if FeF, F' € £ and F C F', then F' € F.

In particular, if £ is the collection of all non-empty closed (respec-
tively, clopen, open) sets of X, then we say that F is a closed (re-
spectively, clopen, open) filter. It £ = P(X) \ {0} then an E-filter
is called simply a filter on X. An E-filter F is free if (F = (.
An E-filter F is an &€-ultrafilter if for every E-filter G with F C G
we have F = G.

. If A and B are any sets, then |A| < |B| means that there exists a

one-to-one function f : A — B, and |A| = | B| means that there exists
a bijection f: A — B.

AC(R) (Form 79 in [1]): Every family of non-empty subsets of R has
a choice function.

CAC(R) (Form 94 in [1]): AC(R) restricted to countable families.

TP(2®): The Tychonoff product 2% is compact.

TPC(2®): The Tychonoff product 2% is countably compact.

Prx (2%): If G is a closed subset of 28 then {g|x : g € G} is a closed
subspace of 2%X.

Pr(2%): For all X C R, Prx(2%).

BPI(w) (Form 225 in [1]): Every proper filter of P(w) can be extended
to an ultrafilter.

Introduction and some preliminary results. The Tychonoff

product of Ny copies of the two-element set 2 = {0,1} with the discrete
topology, i.e., the Cantor cube K, = 2%, is a universal space in the sense
that every zero-dimensional, separable, metrizable space embeds into it. Like-
wise, the Cantor cube K = 28 of weight R is a universal space for the class
S of all zero-dimensional spaces of weight < [R|. It is well-known that ,, in
ZF, and Kg in ZFC, are compact spaces. In ZF, however, Kr need not be
compact. Indeed, in [4] we have shown:

THEOREM 1 ([4]). The following statements are equivalent in ZF:

(i) In a Boolean algebra B of size < |R| every filter can be extended to

an ultrafilter.
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(ii) BPI(w).
(iii) For every separable compact Ty space (X, T) the product X® is com-
pact.

(iv) The product [0,1]% is compact.

(v) Tychonoff products of finite subspaces of R are compact.

(vi) Kg is compact.

Since in Feferman’s model (Model M2 in [1]), w has no free ultrafilters, it
follows that “/Cr is compact” fails to hold in M2, and consequently it is not

a theorem of ZF. At this point one may ask whether the weaker statement
“Kr is countably compact” is a theorem of ZF. The answer is again no
(Theorem 7).

In this paper we shall continue the research of [4] and find equivalent
conditions under which “Kg is compact” or “/g is countably compact”.

THEOREM 2 (|5, Theorem 16.4(c)|). A product of Hausdorff spaces with
at least two points each is separable iff each factor is separable and there are
< |R| factors. In particular, if (X,T) is a separable Hausdorff space then,
in ZF, the product X® is separable.

PROPOSITION 3. (ZF) If |X| = |Y|, then the Tychonoff products 2%
and 2Y are homeomorphic.

Proof. Let h : X — Y be a bijection. Then H : 2%¥ — 2Y given by
H(f)(x) = f(h~!(x)) is easily seen to be a bijection. Since H([(z,i)]) =
[(h(z),7)] for all i € 2 and x € X, it follows that H maps a basic open set of
2X to a basic of set of 2¥. Thus, 2% and 2¥ are homeomorphic as required. m

THEOREM 4 (|3]). (ZF) For any well-ordered cardinal R, the Tychonoff
product 28 is compact.

THEOREM 5 ([2], Cantor—Bernstein theorem). (ZF) If |A| < |B| and
B < |A], then | 4] = |B].

3. Main results

THEOREM 6. In ZF, TPC(2R) implies that every family A={A,:n € w}
of non-empty finite subsets of P(R) such that | J.A is disjoint, has a choice
function.

Proof. This can be proved just as Theorem 2 in [3]. =
THEOREM 7. TPC(2R) is not provable in ZF.

Proof. In the second Cohen model (model M7 in [1]) there exists a count-
able family A = {4, : n € w} of two-element subsets of P(R) which admits
no choice function in the model. Therefore, we may assume without loss

of generality that for all n € w, if A, = {X,Y}, then X \Y # 0 and
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Y \ X # 0. Since |R x w| = |R|, we may view the family B = {B,, : n € w},

O {(Ua)\X) < mx e}

as a family of two-element subsets of P(R) such that (B is disjoint. It fol-
lows that B has no choice function in M7, hence by Theorem 6, TPC(2F)
fails to hold in M7. m

Clearly, for every t € R, the canonical projection of 2% on the ¢-th coordi-
nate is a closed map. However, the statement Pry (2®) need not be provable
in ZF. In particular, we show in Theorem 8 below that TPC(2%®) and Pr,, (2F)
are equivalent.

THEOREM 8. The following statements are equivalent in ZF:

(i) TPC(2F).
(ii) Let G be a closed subset of 2. Then every countable family F C
BR|g with the FIP has a non-empty intersection.
(iii) For every countably infinite subset X of R, Prx(2F.)

Proof. (i)—(ii). This is straightforward.

(ii)—(iii). Let X be a countable subset of R and let G be a closed subset
of 2%, Without loss of generality assume that X = w. Suppose that G, =
{glw : g € G} is not closed in 2¢, so let f € G, \ Gy, For every n € w\ {0},
let fn = fl{o1,..n—1}- Weset V, = [fo] NG and F = {V,, : n € w\ {0}}.
Clearly V,, # 0 for all n € w \ {0} and F has the FIP. By hypothesis there
exists g € (| F. But then f = g|, € G, which is a contradiction.

(iii)—(i). Suppose that 2% is not countably compact and let G = {G,, :
n € w\ {0}} be a descending family of closed subsets of 28 having empty
intersection. It is straightforward to verify that G = {g, € 2* : n € w} is
a closed subset of 2¢, where for every n € w \ {0}, g, is the characteristic
function of A,, = {n}, and go is the characteristic function of the empty set.
Since |R| = |R \ w| we may assume without loss of generality that G is a
family of closed subsets of 28\, For every n € w \ {0} put

By ={f€2%: (flo=9n) A (fIr\w € Gn)}-
CraM. The set H =J{B, :n € w\ {0}} is a closed subspace of 2%.

Proof of claim. Fix f € H¢. We consider the following cases:

(a) flw = gn for some n € w\{0}. Then f|g\, € G7,. Let p € Fn(R\w,?2)
be such that flg\, € [plr\w C Gy, Clearly, [g], where ¢ = pU {(n,1)}, is a
neighborhood of f avoiding H.

(b) flw # gn for all n € w. Since G is a closed subset of 2¢ it follows that
there exists a p € Fn(w, 2) such that f|, € [p]o C G°. Then f € [p] C HC.
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(¢) flw = go. Since G = 0 it follows that f|g\, € Gy, for some n € w.
Then [{(i,0) : i <n}Up|, where p € Fn(R\ w,2) and f|g\, € [plp\w C G},
is clearly a neighborhood of f avoiding H.

Thus, H is closed in 28 as required.

Clearly, the projection of H to 2¢ is G \ {go}, which is not closed in 2.
This contradiction finishes the proof. m

THEOREM 9. (ZF) Each of the following statements implies the one be-
neath it:

(i) TPC(2®).
(ii) 2R has no countably infinite closed relatively discrete subsets.
(iii) Every countable clopen cover of 2R has a finite subcover. (Equiva-
lently, every countable descending family of clopen subsets of 2% has
a non-empty intersection).
(iv) Ewvery countable family of clopen subsets of 2R having the FIP can
be extended to a clopen ultrafilter.

Proof. (i)—(ii). This is straightforward.

(ii)—(iii). Let G = {G,, : n € w} be a descending family of clopen
subsets of 2%. Assume that ()G = 0. Let D = {d,, : m € w} be a countable
dense subset of 2. Using the fact that D is countable we fix a d,,, €
(Gr,\ Gnt1) N D for each n € w. Since (G = 0, the set K = {d,,,, : n € w}
is a closed relatively discrete subset of 2%, contradicting (ii). Thus, (|G # 0.

(iii)—(iv). Let F = {F, : n € w} be a descending family of clopen
subsets of 2®. By our hypothesis there exists an f € F. Clearly, G =
{G c 2R : Gis clopen and f € G} is a clopen ultrafilter of 2% which in-
cludes . m

We next show that statements (iii) and (iv) of Theorem 9 are equivalent
in ZF. First we need the following lemma. We denote by S the standard
subbase of 2%, that is, S = {[(¢,4)] : (¢,4) € R x 2} U {0, 2%}.

LEMMA 10. (ZF)

(i) Every cover U of 2R consisting of standard subbasic open sets has a
finite subcover V with |V| < 2.
(ii) 2% has no free clopen ultrafilters.

Proof. (i) Let U C S be a cover of 2%. Suppose that 2% ¢ U. For each
t e R, put Uy = {i € {0,1} : [(¢,7)] € U}. We assert that there exists typ € R
such that U, = {0,1}. Assume not; then for each t € R consider the least
element f(t) € {0,1} \ U and let f = (f(t))ier. It is evident that f & JU,
a contradiction. Clearly {[(t0,0)], [(f0,1)]} is a finite subcover of U.
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(ii) Assume that 2% has a free clopen ultrafilter F. Let U = {C € S :
C ¢ F}. Since N F = 0, it follows that U is a cover of 2%, Indeed, let f € 2.
Then there exists an F' € F such that f ¢ F. Let O = [{(t1,41),..., (tn,in)}]
be a basic neighborhood of f such that O N F = (). Since O ¢ F and F is a
filter, it follows that [(¢;,7;)] & F for some j < n. Since f € [(¢;,4;)] we infer
that U is a cover of 2% as asserted. By (i), let V be a finite subcover of .
Since F is a clopen ultrafilter, V¢ € F for all V € V, and as F is a filter it
follows that 2% = | JV, a contradiction. =

THEOREM 11. The following statements are equivalent in ZF:

(i) Ewvery countable clopen cover of 2% has a finite subcover.
(ii) Every countable family of clopen subsets of 2% having the FIP can
be extended to a clopen ultrafilter.

Proof. (i)—(ii). This is shown in Theorem 9.

(ii)—(i). Let U = {U, : n € w} be a clopen cover of 2%. Assume that U/
has no finite subcover. Then V = {Uf : n € w} is a family of clopen subsets
of 2% having the FIP. By our hypothesis, V can be extended to a clopen
ultrafilter W. By Lemma 10(ii) we have (YW # (. Hence U is not a cover
of 2R a contradiction. m

THEOREM 12. The following statements are equivalent in ZF:
(i) TP(2R).

(ii) Ewvery closed filter of 2R can be extended to a closed ultrafilter.
(iii) Ewvery clopen filter of 2% can be extended to a clopen ultrafilter.
(iv) Every open filter of 2% can be extended to an open ultrafilter.

(v) Every regular-open filter of 2R can be extended to a regular-open

ultrafilter.
(vi) 2% is Lindeldf.
(vil) Every open cover of 2% has a well-ordered subcover.

Proof. (i)—(ii). Fix a filter C of closed subsets of 2%. Since 2 is compact
it follows that (\C # ). Fix g € (\C. Clearly, F = {F C 2% : F is closed and
g € F} is a closed ultrafilter of 2% including C.

(ii)—(iii). Let G be a family of clopen subsets of 2% having the FIP.
By hypothesis, let F be a closed ultrafilter of 2% which includes G. Clearly,
H ={F € F: Fis clopen} is a clopen ultrafilter extending G.

(iii)—(i). This can be proved as in (ii)— (i) of Theorem 11 using arbitrary
basic open covers.

(i)—(v). Let R be the complete Boolean algebra of all regular-open sub-
sets of 2%, Let D = {d,, : n € w} be a countable dense subset of 2% (see
Theorem 2). It is not hard to verify that the function f : R — P(D),
f(O) =0ND for all O € R, is one-to-one. Therefore, |[R| < |P(D)| = |R|.
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Since clopen sets are regular-open and the standard clopen base BX of 2F
has size |R|, it follows from Theorem 5 that |R| = |R|. The conclusion now
follows from Theorem 1.

(v)—(iv). Fix a filter G of open subsets of 2% and let H C R be the filter
generated by the family {int(G) : G € G}, where int(A) denotes the interior
of the set A. By hypothesis there exists an ultrafilter W of R which includes
H. Put

F={0 c2®:0is open and int(0) € W}.
In order to complete the proof of the implication, it suffices to show:
CLAIM. G C F and F is an open ultrafilter of 2%.

Proof of Clatm. The first assertion is straightforward. We next show that

F is filter. Fix O,Q € F. Then int(O) N int(Q) € W. We show that

(%) int(O) Nint(Q) = 0N Q.

The D inclusion is clear. Conversely, fix z € int(O) Nint(Q). Assume that
xz ¢ ON Q. Fix a neighborhood V,, of x such that V, N1 (O N Q) = () and let
W =V, N (int(O) Nint(Q)). Clearly, ) # W c ONQ. Fix y € W and let
Vy be a basic neighborhood of y such that V, C W. Then P =V, N O # 0.
Fix now z € P and let V. be a basic neighborhood of z such that V, C P.
Then V, C W (since P C W) and S =V, NQ # 0. It follows that S C V,
satisfies SN (0O N Q) # 0, contradicting V, N (O N Q) = 0; this proves (x).
Consequently, int(O)Nint(Q) = int(int(O) Nint(Q)) = int(O N Q), meaning
that ONQ € F.

Now fix O € F and let Q be an open set such that O C Q. Since int(O) C

int(Q) and int(O) € W, it follows that int(Q) € W and consequently Q € F.

We next show that F is not contained properly in any other open filter.
Let H be an open set of 2% such that H N O # () for all O € F. It can

be readily verified that int(H) N @Q # 0 for all Q@ € W, and since W is
not contained properly in any other regular-open ultrafilter, it follows that

int(H) € W. Hence, H € F and F is an open ultrafilter, finishing the proof
of the claim and of the implication.

(iv)—(iii). This can be proved similarly to (ii)—(iii).

(i)—(vi)—(vii). These are straightforward.

(vii)—(i). Fix a cover U C BR of 2%. By (vii) we may assume that U
is well-ordered. Clearly, A = [J{Dom(p) : [p] € U} is well-ordered (being
a well-ordered union of finite subsets of R). By Theorem 4, 24 is compact.
It is easy to see that Uy = {[p]a : [p] € U} is an open cover of 24. Let
Wa = {[pi]a : i < n} be a finite subcover. Clearly W = {[p;] : i < n} is a

finite subcover of U, and so 2% is compact as required. m
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REMARK 13. 1. Note that the complete Boolean algebra RO(2R®) of
all regular-open subsets of 28 does not coincide with the Boolean algebra
Clop(2¥) of all clopen subsets of 2%. Otherwise, 2% would be extremally dis-
connected (i.e., the closure of every open set would be open), which is not
true. Indeed, let

V={fe2®: f71(0)Nw # 0 and if n; is the least natural number
such that f(ny) =0, then f(n;+1) = 1}.

It is straightforward to verify that V is an open set of 2®. However, V =
VU{fec2®:(vnecw)(f(n)=1)} and the latter set is not open in 2%.

2. Clearly, one can prove in ZF that 2R has closed as well as clopen
ultrafilters. Indeed, for any f € 28, F = {G C 2% : G closed (resp., clopen)
and f € G} is a closed (resp., clopen) ultrafilter of 2%. If @ is a closed (resp.,
clopen) subset of 2 meeting non-trivially each member of F then f € Q. If
not then for some clopen neighborhood Vy of f we have Vy N Q = (), which
is a contradiction. Thus, @Q € F and F is a closed (resp., clopen) ultrafilter
of 2R, However, we cannot prove in ZF that 2% has an open ultrafilter. The
reason, as one can easily verify, is that in ZF an open ultrafilter F of 2F
is always free. (If \{F : F € F} # 0, then N{F : F € F} = {z}. Since
{z}¢ € F, we see that " F = 0.)

We leave the proofs of the next two theorems as an easy exercise for the
reader.

THEOREM 14. The following statements are equivalent in ZF:

(i) TPC(2®).
(ii) Ewvery countable family of closed subsets of 2% having the FIP can be
extended to a closed ultrafilter.

THEOREM 15. The following statements are equivalent in ZF:

(i) For every set X, the Tychonoff product 2% is compact.
(i) For every set X, every closed filter of 2% can be extended to a
closed ultrafilter.
(iii) For every set X, every clopen filter of 2% can be extended to a
clopen ultrafilter.
(iv) For every set X, every open filter of 2% can be extended to an open
ultrafilter.
(v) For every set X, every regular-open filter of 2X can be extended to
a reqular-open ultrafilter.
(vi) BPL
(vii) For every set X, 2% is Lindeléf + CACg, (= AC for countable
families of non-empty finite sets).
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(viii) For every set X, every open cover of 2% has a well-ordered subcover
+ AC(WO, < Rg) (= AC for well-ordered families of non-empty
finite sets).

In view of Theorem 1 we find that TP(2®) implies that every Boolean
algebra of size < |R| has an ultrafilter. In the following theorem we give a
characterization of the latter statement.

THEOREM 16. The following statements are equivalent in ZF:

(i) Ewvery Boolean algebra of size < |R| has an ultrafilter.

(ii) Every family B of regular-open (respectively, clopen, closed, open)
subsets of 28 which is closed under finite intersections contains a
B-ultrafilter.

Proof. (i)—(ii). Fix a non-empty family B of regular-open subsets of 2%
closed under finite intersections. Let B be the subalgebra of the Boolean alge-
bra of all regular-open subsets of 2% which is generated by B. By hypothesis
B has an ultrafilter F. Clearly, F N B is a B-ultrafilter.

(ii)—(i). Let (B,®,®) be a Boolean algebra of size < |R|. We shall show
that there exists a non-trivial homomorphism ¢ : B — 2. Then ¢~!(1) will
be the required ultrafilter. Let A = {4; : i € I C R} be the set of all finite
subalgebras of B. Without loss of generality we may assume that I = R.
Identify B and A with R and let

G ={[p] : 3K € [R]*¥,Dom(p) = J{{i} x 4; :i € K},
Vie K, p(i,-) : A; — 2 =1{0,1} is a non-trivial homomorphism,
and Vi, j € K, if A; C A then p(i,-) C p(j,-)} U {0}.

2]R><R

Clearly, G is a family of clopen subsets of closed under finite

intersections. By hypothesis, let F be a G-ultrafilter.
CLAIM 1. For every i € R there is a [p| € F with {i} x A; C Dom(p).

Proof of Claim 1. Assume that for some i € R and every [p] € F, {i} x
A; ¢ Dom(p). Then for every non-trivial homomorphism ¢ : 4; — 2 (4; is
a finite subalgebra and therefore such a ¢ exists), [{i} x ¢] € G meets non-
trivially each member of F. Since F is maximal it follows that [{i} x ¢] € F.
This is a contradiction.

Define g : B — 2 by setting g(b) = p((7,b)), where i € R is such that A;
is the subalgebra of B generated by {b} and [p] € F is such that {i} x A; C
Dom(p).

CLAIM 2. g s well-defined.

Proof of Claim 2. Let [p] and [g] in F be such that {i} x A; is included
in both Dom(p) and Dom(q). Since F is a filter, p and ¢ are compatible,
hence p((i,b)) = q((7,b)). Thus, g is well-defined as required.
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Since for every a,b € B, the Boolean subalgebra B(a,b) generated by
a and b is finite, it follows that B(a,b) = A; for some i € R. Fix [p] € F
with {i} x A; C Dom(p). Since p(i,-) : A; — 2 is a homomorphism, it
follows that g(a ® b) = p(i,a & b) = p(i,a) + p(i,b) = g(a) + g(b) and
gla ©®b) = p(i,a ®b) = p(i,a)p(i,b) = g(a)g(b). Thus, g : B — 2 is a
(non-trivial) homomorphism as required. =

4. Questions

1. Does TPC(2®) imply TP(2F) in ZF?
2. Is TPC(2¥) provable in ZF 4+ CAC(R)?
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