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Summary. In the framework of ZF (Zermelo�Fraenkel set theory without the Axiom ofChoi
e) we provide topologi
al and Boolean-algebrai
 
hara
terizations of the statements�2R is 
ountably 
ompa
t� and �2R is 
ompa
t�.1. Notation and terminology1. Let X be a non-empty set. 2X will denote the Ty
hono� produ
t ofthe dis
rete spa
e 2 = {0, 1}. Likewise, BX = {[p] : p ∈ Fn(X, 2)},where Fn(X, 2) is the set of all �nite partial fun
tions from X into 2and
[p] = {f ∈ 2X : p ⊂ f},will denote the standard 
lopen (= simultaneously 
losed and open)base for the topology on 2X . If A ⊂ X, and p ∈ Fn(A, 2), then

[p]A = {f ∈ 2A : p ⊂ f}. If Y ⊂ 2X , then BX |Y = {O∩Y : O ∈ BX}.A non-empty 
olle
tion H ⊂ P(X)\{∅} has the �nite interse
tionproperty , FIP for abbreviation, if ∀Q ∈ [H]<ω,
⋂

Q 6= ∅.2. Let (X, T ) be a topologi
al spa
e.(a) X is said to be 
ompa
t if every open 
over of X has a �nitesub
over. Equivalently, X is 
ompa
t i� for every family G of
losed subsets of X having the FIP, ⋂

G 6= ∅.2000 Mathemati
s Subje
t Classi�
ation: 03E25, 54A35, 54B10, 54D20, 54D30.Key words and phrases: axiom of 
hoi
e, weak axioms of 
hoi
e, Ty
hono� produ
ts,
ompa
t spa
es, 
ountably 
ompa
t spa
es, Lindelöf spa
es, Boolean algebras, �lters, ul-tra�lters. [293℄ 
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(b) X is said to be 
ountably 
ompa
t if every 
ountable open 
overof X has a �nite sub
over. Equivalently, X is 
ountably 
ompa
ti� for every 
ountable family G of 
losed subsets of X having theFIP, ⋂

G 6= ∅.(
) X is said to be Lindelöf if every open 
over of X has a 
ountablesub
over.(d) Let E ⊂P(X)\{∅}. A non-empty 
olle
tion F ⊂ E is an E-�lter i�(i) if F1, F2 ∈ F then F1 ∩ F2 ∈ F ,(ii) if F ∈ F , F ′ ∈ E and F ⊂ F ′, then F ′ ∈ F .In parti
ular, if E is the 
olle
tion of all non-empty 
losed (respe
-tively, 
lopen, open) sets of X, then we say that F is a 
losed (re-spe
tively, 
lopen, open) �lter. If E = P(X) \ {∅} then an E-�lteris 
alled simply a �lter on X. An E-�lter F is free if ⋂

F = ∅.An E-�lter F is an E-ultra�lter if for every E-�lter G with F ⊂ Gwe have F = G.3. If A and B are any sets, then |A| ≤ |B| means that there exists aone-to-one fun
tion f : A → B, and |A| = |B|means that there existsa bije
tion f : A → B.4. AC(R) (Form 79 in [1℄): Every family of non-empty subsets of R hasa 
hoi
e fun
tion.5. CAC(R) (Form 94 in [1℄): AC(R) restri
ted to 
ountable families.6. TP(2R): The Ty
hono� produ
t 2R is 
ompa
t.7. TPC(2R): The Ty
hono� produ
t 2R is 
ountably 
ompa
t.8. PrX(2R): If G is a 
losed subset of 2R then {g|X : g ∈ G} is a 
losedsubspa
e of 2X .9. Pr(2R): For all X ⊂ R, PrX(2R).10. BPI(ω) (Form 225 in [1℄): Every proper �lter of P(ω) 
an be extendedto an ultra�lter.2. Introdu
tion and some preliminary results. The Ty
hono�produ
t of ℵ0 
opies of the two-element set 2 = {0, 1} with the dis
retetopology, i.e., the Cantor 
ube Kω = 2ℵ0 , is a universal spa
e in the sensethat every zero-dimensional, separable, metrizable spa
e embeds into it. Like-wise, the Cantor 
ube KR = 2R of weight R is a universal spa
e for the 
lass
S of all zero-dimensional spa
es of weight ≤ |R|. It is well-known that Kω inZF, and KR in ZFC, are 
ompa
t spa
es. In ZF, however, KR need not be
ompa
t. Indeed, in [4℄ we have shown:Theorem 1 ([4℄). The following statements are equivalent in ZF:

(i) In a Boolean algebra B of size ≤ |R| every �lter 
an be extended toan ultra�lter.
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(ii) BPI(ω).
(iii) For every separable 
ompa
t T2 spa
e (X, T ) the produ
t XR is 
om-pa
t.
(iv) The produ
t [0, 1]R is 
ompa
t.
(v) Ty
hono� produ
ts of �nite subspa
es of R are 
ompa
t.
(vi) KR is 
ompa
t.Sin
e in Feferman's model (Model M2 in [1℄), ω has no free ultra�lters, itfollows that �KR is 
ompa
t� fails to hold in M2, and 
onsequently it is nota theorem of ZF. At this point one may ask whether the weaker statement�KR is 
ountably 
ompa
t� is a theorem of ZF. The answer is again no(Theorem 7).In this paper we shall 
ontinue the resear
h of [4℄ and �nd equivalent
onditions under whi
h �KR is 
ompa
t� or �KR is 
ountably 
ompa
t�.Theorem 2 ([5, Theorem 16.4(
)℄). A produ
t of Hausdor� spa
es withat least two points ea
h is separable i� ea
h fa
tor is separable and there are

≤ |R| fa
tors. In parti
ular , if (X, T ) is a separable Hausdor� spa
e then,in ZF, the produ
t XR is separable.Proposition 3. (ZF) If |X| = |Y |, then the Ty
hono� produ
ts 2Xand 2Y are homeomorphi
.Proof. Let h : X → Y be a bije
tion. Then H : 2X → 2Y given by
H(f)(x) = f(h−1(x)) is easily seen to be a bije
tion. Sin
e H([(x, i)]) =
[(h(x), i)] for all i ∈ 2 and x ∈ X, it follows that H maps a basi
 open set of
2X to a basi
 of set of 2Y . Thus, 2X and 2Y are homeomorphi
 as required.Theorem 4 ([3℄). (ZF) For any well-ordered 
ardinal ℵ, the Ty
hono�produ
t 2ℵ is 
ompa
t.Theorem 5 ([2℄, Cantor�Bernstein theorem). (ZF) If |A| ≤ |B| and
|B| ≤ |A|, then |A| = |B|.3. Main resultsTheorem 6. In ZF, TPC(2R) implies that every family A={An : n∈ω}of non-empty �nite subsets of P(R) su
h that ⋃

A is disjoint , has a 
hoi
efun
tion.Proof. This 
an be proved just as Theorem 2 in [3℄.Theorem 7. TPC(2R) is not provable in ZF.Proof. In the se
ond Cohen model (modelM7 in [1℄) there exists a 
ount-able family A = {An : n ∈ ω} of two-element subsets of P(R) whi
h admitsno 
hoi
e fun
tion in the model. Therefore, we may assume without lossof generality that for all n ∈ ω, if An = {X, Y }, then X \ Y 6= ∅ and
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Y \ X 6= ∅. Sin
e |R × ω| = |R|, we may view the family B = {Bn : n ∈ ω},where

Bn =
{((

⋃

An

)

\ X
)

× {n} : X ∈ An

}

,as a family of two-element subsets of P(R) su
h that ⋃

B is disjoint. It fol-lows that B has no 
hoi
e fun
tion in M7, hen
e by Theorem 6, TPC(2R)fails to hold in M7.Clearly, for every t ∈ R, the 
anoni
al proje
tion of 2R on the t-th 
oordi-nate is a 
losed map. However, the statement PrX(2R) need not be provablein ZF. In parti
ular, we show in Theorem 8 below that TPC(2R) and Prω(2R)are equivalent.Theorem 8. The following statements are equivalent in ZF:
(i) TPC(2R).
(ii) Let G be a 
losed subset of 2R. Then every 
ountable family F ⊂

BR|G with the FIP has a non-empty interse
tion.
(iii) For every 
ountably in�nite subset X of R, PrX(2R.)Proof. (i)→(ii). This is straightforward.(ii)→(iii). Let X be a 
ountable subset of R and let G be a 
losed subsetof 2R. Without loss of generality assume that X = ω. Suppose that Gω =

{g|ω : g ∈ G} is not 
losed in 2ω, so let f ∈ Gω \ Gω. For every n ∈ ω \ {0},let fn = f |{0,1,...,n−1}. We set Vn = [fn] ∩ G and F = {Vn : n ∈ ω \ {0}}.Clearly Vn 6= ∅ for all n ∈ ω \ {0} and F has the FIP. By hypothesis thereexists g ∈
⋂

F . But then f = g|ω ∈ Gω, whi
h is a 
ontradi
tion.(iii)→(i). Suppose that 2R is not 
ountably 
ompa
t and let G = {Gn :
n ∈ ω \ {0}} be a des
ending family of 
losed subsets of 2R having emptyinterse
tion. It is straightforward to verify that G = {gn ∈ 2ω : n ∈ ω} isa 
losed subset of 2ω, where for every n ∈ ω \ {0}, gn is the 
hara
teristi
fun
tion of An = {n}, and g0 is the 
hara
teristi
 fun
tion of the empty set.Sin
e |R| = |R \ ω| we may assume without loss of generality that G is afamily of 
losed subsets of 2R\ω. For every n ∈ ω \ {0} put

Bn = {f ∈ 2R : (f |ω = gn) ∧ (f |R\ω ∈ Gn)}.

Claim. The set H =
⋃

{Bn : n ∈ ω \ {0}} is a 
losed subspa
e of 2R.Proof of 
laim. Fix f ∈ Hc. We 
onsider the following 
ases:(a) f |ω = gn for some n ∈ ω\{0}. Then f |R\ω ∈ Gc
n. Let p ∈ Fn(R\ω, 2)be su
h that f |R\ω ∈ [p]R\ω ⊂ Gc

n. Clearly, [q], where q = p ∪ {(n, 1)}, is aneighborhood of f avoiding H.(b) f |ω 6= gn for all n ∈ ω. Sin
e G is a 
losed subset of 2ω it follows thatthere exists a p ∈ Fn(ω, 2) su
h that f |ω ∈ [p]ω ⊂ Gc. Then f ∈ [p] ⊂ Hc.
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(
) f |ω = g0. Sin
e ⋂

G = ∅ it follows that f |R\ω ∈ Gc
n for some n ∈ ω.Then [{(i, 0) : i ≤ n} ∪ p], where p ∈ Fn(R \ ω, 2) and f |R\ω ∈ [p]R\ω ⊂ Gc

n,is 
learly a neighborhood of f avoiding H.Thus, H is 
losed in 2R as required.Clearly, the proje
tion of H to 2ω is G \ {g0}, whi
h is not 
losed in 2ω.This 
ontradi
tion �nishes the proof.Theorem 9. (ZF) Ea
h of the following statements implies the one be-neath it :
(i) TPC(2R).
(ii) 2R has no 
ountably in�nite 
losed relatively dis
rete subsets.
(iii) Every 
ountable 
lopen 
over of 2R has a �nite sub
over. (Equiva-lently , every 
ountable des
ending family of 
lopen subsets of 2R hasa non-empty interse
tion).
(iv) Every 
ountable family of 
lopen subsets of 2R having the FIP 
anbe extended to a 
lopen ultra�lter.Proof. (i)→(ii). This is straightforward.(ii)→(iii). Let G = {Gn : n ∈ ω} be a des
ending family of 
lopensubsets of 2R. Assume that ⋂

G = ∅. Let D = {dm : m ∈ ω} be a 
ountabledense subset of 2R. Using the fa
t that D is 
ountable we �x a dmn
∈

(Gn \ Gn+1) ∩ D for ea
h n ∈ ω. Sin
e ⋂

G = ∅, the set K = {dmn
: n ∈ ω}is a 
losed relatively dis
rete subset of 2R, 
ontradi
ting (ii). Thus, ⋂

G 6= ∅.(iii)→(iv). Let F = {Fn : n ∈ ω} be a des
ending family of 
lopensubsets of 2R. By our hypothesis there exists an f ∈
⋂

F . Clearly, G =
{G ⊂ 2R : G is 
lopen and f ∈ G} is a 
lopen ultra�lter of 2R whi
h in-
ludes F .We next show that statements (iii) and (iv) of Theorem 9 are equivalentin ZF. First we need the following lemma. We denote by S the standardsubbase of 2R, that is, S = {[(t, i)] : (t, i) ∈ R × 2} ∪ {∅, 2R}.Lemma 10. (ZF)

(i) Every 
over U of 2R 
onsisting of standard subbasi
 open sets has a�nite sub
over V with |V| ≤ 2.
(ii) 2R has no free 
lopen ultra�lters.Proof. (i) Let U ⊂ S be a 
over of 2R. Suppose that 2R 6∈ U . For ea
h

t ∈ R, put Ut = {i ∈ {0, 1} : [(t, i)] ∈ U}. We assert that there exists t0 ∈ Rsu
h that Ut0 = {0, 1}. Assume not; then for ea
h t ∈ R 
onsider the leastelement f(t) ∈ {0, 1} \ Ut and let f = (f(t))t∈R. It is evident that f 6∈
⋃

U ,a 
ontradi
tion. Clearly {[(t0, 0)], [(t0, 1)]} is a �nite sub
over of U .
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(ii) Assume that 2R has a free 
lopen ultra�lter F . Let U = {C ∈ S :

C /∈ F}. Sin
e ⋂

F = ∅, it follows that U is a 
over of 2R. Indeed, let f ∈ 2R.Then there exists an F ∈ F su
h that f /∈ F . Let O = [{(t1, i1), . . . , (tn, in)}]be a basi
 neighborhood of f su
h that O ∩ F = ∅. Sin
e O /∈ F and F is a�lter, it follows that [(tj, ij)] 6∈ F for some j ≤ n. Sin
e f ∈ [(tj, ij)] we inferthat U is a 
over of 2R as asserted. By (i), let V be a �nite sub
over of U .Sin
e F is a 
lopen ultra�lter, V c ∈ F for all V ∈ V, and as F is a �lter itfollows that 2R 6=
⋃

V, a 
ontradi
tion.Theorem 11. The following statements are equivalent in ZF:
(i) Every 
ountable 
lopen 
over of 2R has a �nite sub
over.
(ii) Every 
ountable family of 
lopen subsets of 2R having the FIP 
anbe extended to a 
lopen ultra�lter.Proof. (i)→(ii). This is shown in Theorem 9.(ii)→(i). Let U = {Un : n ∈ ω} be a 
lopen 
over of 2R. Assume that Uhas no �nite sub
over. Then V = {U c

n : n ∈ ω} is a family of 
lopen subsetsof 2R having the FIP. By our hypothesis, V 
an be extended to a 
lopenultra�lter W . By Lemma 10(ii) we have ⋂

W 6= ∅. Hen
e U is not a 
overof 2R, a 
ontradi
tion.Theorem 12. The following statements are equivalent in ZF:
(i) TP(2R).
(ii) Every 
losed �lter of 2R 
an be extended to a 
losed ultra�lter.
(iii) Every 
lopen �lter of 2R 
an be extended to a 
lopen ultra�lter.
(iv) Every open �lter of 2R 
an be extended to an open ultra�lter.
(v) Every regular-open �lter of 2R 
an be extended to a regular-openultra�lter.
(vi) 2R is Lindelöf.
(vii) Every open 
over of 2R has a well-ordered sub
over.Proof. (i)→(ii). Fix a �lter C of 
losed subsets of 2R. Sin
e 2R is 
ompa
tit follows that ⋂

C 6= ∅. Fix g ∈
⋂

C. Clearly, F = {F ⊂ 2R : F is 
losed and
g ∈ F} is a 
losed ultra�lter of 2R in
luding C.(ii)→(iii). Let G be a family of 
lopen subsets of 2R having the FIP.By hypothesis, let F be a 
losed ultra�lter of 2R whi
h in
ludes G. Clearly,
H = {F ∈ F : F is 
lopen} is a 
lopen ultra�lter extending G.(iii)→(i). This 
an be proved as in (ii)→(i) of Theorem 11 using arbitrarybasi
 open 
overs.(i)→(v). Let R be the 
omplete Boolean algebra of all regular-open sub-sets of 2R. Let D = {dn : n ∈ ω} be a 
ountable dense subset of 2R (seeTheorem 2). It is not hard to verify that the fun
tion f : R → P(D),
f(O) = O ∩ D for all O ∈ R, is one-to-one. Therefore, |R| ≤ |P(D)| = |R|.
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Sin
e 
lopen sets are regular-open and the standard 
lopen base BR of 2Rhas size |R|, it follows from Theorem 5 that |R| = |R|. The 
on
lusion nowfollows from Theorem 1.(v)→(iv). Fix a �lter G of open subsets of 2R and let H ⊂ R be the �ltergenerated by the family {int(G) : G ∈ G}, where int(A) denotes the interiorof the set A. By hypothesis there exists an ultra�lter W of R whi
h in
ludes
H. Put

F = {O ⊂ 2R : O is open and int(O) ∈ W}.In order to 
omplete the proof of the impli
ation, it su�
es to show:
Claim. G ⊂ F and F is an open ultra�lter of 2R.Proof of Claim. The �rst assertion is straightforward. We next show that

F is �lter. Fix O, Q ∈ F . Then int(O) ∩ int(Q) ∈ W . We show that
(∗) int(O) ∩ int(Q) = O ∩ Q.The ⊇ in
lusion is 
lear. Conversely, �x x ∈ int(O) ∩ int(Q). Assume that
x /∈ O ∩ Q. Fix a neighborhood Vx of x su
h that Vx ∩ (O ∩ Q) = ∅ and let
W = Vx ∩ (int(O) ∩ int(Q)). Clearly, ∅ 6= W ⊂ O ∩ Q. Fix y ∈ W and let
Vy be a basi
 neighborhood of y su
h that Vy ⊂ W . Then P = Vy ∩ O 6= ∅.Fix now z ∈ P and let Vz be a basi
 neighborhood of z su
h that Vz ⊂ P .Then Vz ⊂ W (sin
e P ⊂ W ) and S = Vz ∩ Q 6= ∅. It follows that S ⊂ Vxsatis�es S ∩ (O ∩ Q) 6= ∅, 
ontradi
ting Vx ∩ (O ∩ Q) = ∅; this proves (∗).Consequently, int(O)∩ int(Q) = int(int(O) ∩ int(Q)) = int(O ∩ Q), meaningthat O ∩ Q ∈ F .Now �x O ∈ F and let Q be an open set su
h that O ⊂ Q. Sin
e int(O) ⊂
int(Q) and int(O) ∈ W , it follows that int(Q) ∈ W and 
onsequently Q ∈ F .We next show that F is not 
ontained properly in any other open �lter.Let H be an open set of 2R su
h that H ∩ O 6= ∅ for all O ∈ F . It 
anbe readily veri�ed that int(H) ∩ Q 6= ∅ for all Q ∈ W , and sin
e W isnot 
ontained properly in any other regular-open ultra�lter, it follows that
int(H) ∈ W . Hen
e, H ∈ F and F is an open ultra�lter, �nishing the proofof the 
laim and of the impli
ation.(iv)→(iii). This 
an be proved similarly to (ii)→(iii).(i)→(vi)→(vii). These are straightforward.(vii)→(i). Fix a 
over U ⊂ BR of 2R. By (vii) we may assume that Uis well-ordered. Clearly, A =

⋃

{Dom(p) : [p] ∈ U} is well-ordered (beinga well-ordered union of �nite subsets of R). By Theorem 4, 2A is 
ompa
t.It is easy to see that UA = {[p]A : [p] ∈ U} is an open 
over of 2A. Let
WA = {[pi]A : i ≤ n} be a �nite sub
over. Clearly W = {[pi] : i ≤ n} is a�nite sub
over of U , and so 2R is 
ompa
t as required.
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Remark 13. 1. Note that the 
omplete Boolean algebra RO(2R) ofall regular-open subsets of 2R does not 
oin
ide with the Boolean algebra

Clop(2R) of all 
lopen subsets of 2R. Otherwise, 2R would be extremally dis-
onne
ted (i.e., the 
losure of every open set would be open), whi
h is nottrue. Indeed, let
V = {f ∈ 2R : f−1(0) ∩ ω 6= ∅ and if nf is the least natural numbersu
h that f(nf ) = 0, then f(nf + 1) = 1}.It is straightforward to verify that V is an open set of 2R. However, V =

V ∪ {f ∈ 2R : (∀n ∈ ω)(f(n) = 1)} and the latter set is not open in 2R.2. Clearly, one 
an prove in ZF that 2R has 
losed as well as 
lopenultra�lters. Indeed, for any f ∈ 2R, F = {G ⊂ 2R : G 
losed (resp., 
lopen)and f ∈ G} is a 
losed (resp., 
lopen) ultra�lter of 2R. If Q is a 
losed (resp.,
lopen) subset of 2R meeting non-trivially ea
h member of F then f ∈ Q. Ifnot then for some 
lopen neighborhood Vf of f we have Vf ∩ Q = ∅, whi
his a 
ontradi
tion. Thus, Q ∈ F and F is a 
losed (resp., 
lopen) ultra�lterof 2R. However, we 
annot prove in ZF that 2R has an open ultra�lter. Thereason, as one 
an easily verify, is that in ZF an open ultra�lter F of 2Ris always free. (If ⋂

{F : F ∈ F} 6= ∅, then ⋂

{F : F ∈ F} = {x}. Sin
e
{x}c ∈ F , we see that ⋂

F = ∅.)We leave the proofs of the next two theorems as an easy exer
ise for thereader.Theorem 14. The following statements are equivalent in ZF:
(i) TPC(2R).
(ii) Every 
ountable family of 
losed subsets of 2R having the FIP 
an beextended to a 
losed ultra�lter.Theorem 15. The following statements are equivalent in ZF:

(i) For every set X, the Ty
hono� produ
t 2X is 
ompa
t.
(ii) For every set X, every 
losed �lter of 2X 
an be extended to a
losed ultra�lter.
(iii) For every set X, every 
lopen �lter of 2X 
an be extended to a
lopen ultra�lter.
(iv) For every set X, every open �lter of 2X 
an be extended to an openultra�lter.
(v) For every set X, every regular-open �lter of 2X 
an be extended toa regular-open ultra�lter.
(vi) BPI.
(vii) For every set X, 2X is Lindelöf + CACfin (= AC for 
ountablefamilies of non-empty �nite sets).
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(viii) For every set X, every open 
over of 2X has a well-ordered sub
over
+ AC(WO, < ℵ0) (= AC for well-ordered families of non-empty�nite sets).In view of Theorem 1 we �nd that TP(2R) implies that every Booleanalgebra of size ≤ |R| has an ultra�lter. In the following theorem we give a
hara
terization of the latter statement.Theorem 16. The following statements are equivalent in ZF:

(i) Every Boolean algebra of size ≤ |R| has an ultra�lter.
(ii) Every family B of regular-open (respe
tively , 
lopen, 
losed , open)subsets of 2R whi
h is 
losed under �nite interse
tions 
ontains a

B-ultra�lter.Proof. (i)→(ii). Fix a non-empty family B of regular-open subsets of 2R
losed under �nite interse
tions. Let B be the subalgebra of the Boolean alge-bra of all regular-open subsets of 2R whi
h is generated by B. By hypothesis
B has an ultra�lter F . Clearly, F ∩ B is a B-ultra�lter.(ii)→(i). Let (B,⊕,⊙) be a Boolean algebra of size ≤ |R|. We shall showthat there exists a non-trivial homomorphism g : B → 2. Then g−1(1) willbe the required ultra�lter. Let A = {Ai : i ∈ I ⊂ R} be the set of all �nitesubalgebras of B. Without loss of generality we may assume that I = R.Identify B and A with R and let

G = {[p] : ∃K ∈ [R]<ω, Dom(p) =
⋃

{{i} × Ai : i ∈ K},

∀i ∈ K, p(i, ·) : Ai → 2 = {0, 1} is a non-trivial homomorphism,and ∀i, j ∈ K, if Ai ⊂ Aj then p(i, ·) ⊂ p(j, ·)} ∪ {∅}.Clearly, G is a family of 
lopen subsets of 2R×R 
losed under �niteinterse
tions. By hypothesis, let F be a G-ultra�lter.
Claim 1. For every i ∈ R there is a [p] ∈ F with {i} × Ai ⊂ Dom(p).Proof of Claim 1. Assume that for some i ∈ R and every [p] ∈ F , {i} ×

Ai 6⊂ Dom(p). Then for every non-trivial homomorphism q : Ai → 2 (Ai isa �nite subalgebra and therefore su
h a q exists), [{i} × q] ∈ G meets non-trivially ea
h member of F . Sin
e F is maximal it follows that [{i}× q] ∈ F .This is a 
ontradi
tion.De�ne g : B → 2 by setting g(b) = p((i, b)), where i ∈ R is su
h that Aiis the subalgebra of B generated by {b} and [p] ∈ F is su
h that {i} ×Ai ⊂
Dom(p).
Claim 2. g is well-de�ned.Proof of Claim 2. Let [p] and [q] in F be su
h that {i} × Ai is in
ludedin both Dom(p) and Dom(q). Sin
e F is a �lter, p and q are 
ompatible,hen
e p((i, b)) = q((i, b)). Thus, g is well-de�ned as required.
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Sin
e for every a, b ∈ B, the Boolean subalgebra B(a, b) generated by

a and b is �nite, it follows that B(a, b) = Ai for some i ∈ R. Fix [p] ∈ Fwith {i} × Ai ⊂ Dom(p). Sin
e p(i, ·) : Ai → 2 is a homomorphism, itfollows that g(a ⊕ b) = p(i, a ⊕ b) = p(i, a) + p(i, b) = g(a) + g(b) and
g(a ⊙ b) = p(i, a ⊙ b) = p(i, a)p(i, b) = g(a)g(b). Thus, g : B → 2 is a(non-trivial) homomorphism as required.4. Questions1. Does TPC(2R) imply TP(2R) in ZF?2. Is TPC(2R) provable in ZF + CAC(R)?
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