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Summary. Working in the framework of reverse mathemati
s, we 
onsider representa-tions of reals as rapidly 
onverging Cau
hy sequen
es, de
imal expansions, and two sortsof Dedekind 
uts. Converting single reals from one representation to another 
an alwaysbe 
arried out in RCA0. However, the 
onversion pro
ess is not always uniform. Convertingin�nite sequen
es of reals in some representations to other representations requires the useof WKL0 or ACA0.Early in the study of 
omputable analysis, several authors noted thatmany representations of 
omputable reals 
ould be 
omputably 
onvertedto other representations on a real by real basis [8℄, [7℄, [5℄. Mostowski [4℄observed that 
onverting 
ertain sequen
es of 
omputable reals between rep-resentations was not a 
omputable pro
ess. A more re
ent development ofrepresentations of sequen
es of reals from the viewpoint of 
omputable anal-ysis in the TTE (Type-2 Theory of E�e
tivity) framework appears in Chap-ter 4 of [11℄. Be
ause of the signi�
an
e of sequen
es of reals in 
omputableanalysis (see [6℄ and [11℄) and reverse mathemati
s (see [9℄), this is morethan an idle 
uriosity.We will analyze representations of reals using the te
hniques of reversemathemati
s. The subsystems used in this paper are RCA0, WKL0, and
ACA0. The systems di�er in the available set 
omprehension axioms. RCA0in
ludes the re
ursive 
omprehension axiom, whi
h essentially asserts theexisten
e of relatively 
omputable sets. WKL0 appends a weak version ofKönig's lemma that says that in�nite 0-1 trees have in�nite paths. ACA0adds a 
omprehension s
heme for arithmeti
ally de�nable sets. Simpson's2000 Mathemati
s Subje
t Classi�
ation: 03B30, 03F35, 03F60.Key words and phrases: real, analysis, Cau
hy sequen
e, Dedekind 
ut, de
imal ex-pansion, reverse mathemati
s, WKL, ACA.[303℄ 
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book [9℄ is an ex
ellent resour
e for 
omplete details about these subsys-tems.Se
tion 1 introdu
es the various representations 
onsidered here and no-tions of equality between reals. Se
tion 2 in
ludes 
onversion results that 
anbe proved in RCA0, in
luding 
onversions for single reals. Se
tion 3 presentsequivalen
e results showing the ne
essity of using stronger axiom systems forsome 
onversions. That se
tion ends with a table summarizing the results ofSe
tions 2 and 3. Se
tion 4 presents related results on sequen
es of irrationalnumbers and 
hange of basis for expansions.1. Representations of reals. We will 
onsider four ways of represent-ing reals and en
oding these representations in RCA0. The �rst is the usualrapidly 
onverging Cau
hy sequen
e used in reverse mathemati
s. A fun
tion
̺ : N → Q is a rapidly 
onverging Cau
hy sequen
e if ̺ satis�es

∀k ∀i |̺(k) − ̺(k + i)| ≤ 2−k.For our purposes, a de
imal expansion is a spe
ial sort of rapidly 
onvergingCau
hy sequen
e in whi
h δ(j) gives the �rst j de
imal pla
es of the de
imalrepresentation of the real. Thus, δ : N → Q is a de
imal expansion if δ(0) isan integer or the spe
ial digit −0, and
∀k ∃j ∈ {0, . . . , 9} (δ(k + 1) − δ(k) = sign(δ(0)) · j · 10−k−1).In this de�nition, de
imal expansions terminating in either repeating nines orrepeating zeros are allowed. We will treat these spe
ial 
ases in our dis
ussionof equality. To make the signs work 
orre
tly, we must distinguish between−0and 0 as a digit. For example, the �rst digit of an element of the interval

(−1, 0) will be −0. The �rst digit in a representation of 0 
ould be either −0or 0.The remaining two representations are forms of Dedekind 
uts. Sin
e
RCA0 proves that the 
omplement of any given subset of Q exists, we 
anen
ode a 
ut by spe
ifying just the elements of the lower set. To be pre
ise,a set λ ⊆ Q is a (lower) Dedekind 
ut if ∅ ( λ ( Q and

∀s ∈ Q ∀s′ ∈ Q ((s ∈ λ ∧ s′ /∈ λ) → s < s′).This de�nition is exa
tly like that in Se
tion IV of Dedekind [1℄ in that 
utsrepresenting a rational number may or may not 
ontain the rational. Manymodern analysis texts spe
ify the lo
ation of the rational in this 
ase. We 
anappend this requirement to the de�nition as follows. A set σ ⊂ Q is an open
ut if it is a Dedekind 
ut and ∀s ∈ σ ∃s′ ∈ σ (s < s′). This 
ompletes ourlist of representations of reals: rapidly 
onverging Cau
hy sequen
es, de
imalexpansions, Dedekind 
uts, and open 
uts.In reverse mathemati
s, equality of sets is de�ned extensionally fromequality on natural numbers. Similarly, equality of representations of reals
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requires de�nition. For example, following Simpson [9℄, if ̺ and τ are rapidly
onverging Cau
hy sequen
es, then we say that ̺ and τ are equal (and write
̺ = τ) if

∀k (|̺(k) − τ(k)| ≤ 2−k+1).Naïvely, we are saying that ̺ = τ if the sequen
es 
onverge to the same real.Te
hni
ally, we are abusing notation, sin
e we may write ̺ = τ (as reals)even when ̺ and τ are not equal as sets.Sin
e a de
imal expansion is a spe
ial sort of rapidly 
onverging Cau
hysequen
e, equality of de
imal expansions is de�ned as in the pre
eding para-graph. In RCA0 it is easy to prove that if ̺ and τ are de
imal expansions,then ̺ = τ if and only if either ̺ and τ agree in every digit, or else (sub-je
t to renaming ̺ and τ) there is a j su
h that ̺(i) = τ(i) for i < j,
|̺(j)| = |τ(j)| + 10j , and ̺(k) = 0 and τ(k) = 9 for k > j. Of 
ourse,sin
e de
imal expansions are rapidly 
onverging Cau
hy sequen
es, equalitybetween reals in these two representations is de�ned.Now we may turn to equality of 
uts. Two Dedekind 
uts are equal (asreals) if they di�er in at most one element. Sin
e open 
uts are Dedekind
uts, this de�nition extends to 
omparisons between open 
uts or betweenopen 
uts and other Dedekind 
uts. RCA0 
an prove that if two open 
utsare equal (as reals) then they must agree on all elements, and so are equalas sets also.Finally, suppose that λ is a Dedekind 
ut and ̺ is a rapidly 
onvergingCau
hy sequen
e. We say that λ and ̺ are equal (as reals) if

∀k ∀s ∀s′ ((s ∈ λ ∧ s′ /∈ λ) → [s, s′] ∩ [̺(k) − 2−k, ̺(k) + 2−k] 6= ∅).Intuitively, a rapidly 
onverging Cau
hy sequen
e 
an be viewed as spe
ify-ing a real as a nested sequen
e of 
losed intervals, and similarly, a Dedekind
ut 
an be viewed as spe
ifying a real as the interse
tion of a set of 
losedintervals. If the intervals all overlap, then the two representations must 
or-respond to the same real. It is also worth noting that the formula
[s, s′] ∩ [̺(k) − 2−k, ̺(k) + 2−k] 6= ∅
an be written as a 
omparison of rational endpoints,
¬(̺(k) + 2−k < s ∨ s′ < ̺(k) − 2−k),whi
h is a ∆0

0 formula. Thus the formula en
oding λ = ̺ is Π0
1, as are theformulas en
oding equality between rapidly 
onverging Cau
hy sequen
esand equality between 
uts.We have de�ned four representations of real numbers, and have de�nedequality between any possible pair of representations. With this terminology,we 
an dis
uss 
onversions between representations.
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2. Conversions in RCA0. In this se
tion, we will examine those situa-tions where it is possible to 
onvert a sequen
e of reals in one representationto a sequen
e in another representation while working within RCA0. By theend of the se
tion, we will be able to dispense with 
onversions of singlereals. Conversions that require stronger axiom systems will be presented inthe next se
tion. In the statement of the following theorems, the notation(RCA0) indi
ates that the result is provable in RCA0.Theorem 1 (RCA0). If 〈λi〉i∈N is a sequen
e of Dedekind 
uts, thenthere is a sequen
e 〈δi〉i∈N of de
imal expansions su
h that for ea
h i ∈ N,

λi = δi.Proof. Suppose 〈λi〉i∈N is a sequen
e of Dedekind 
uts. We will indi
atehow to 
ompute δi(j), the jth element of the ith de
imal expansion.For j = 0, let z be the greatest integer in λi. Note that z exists be
ause
λi 6= Q and the 
omplement of λi is 
losed upward. If z ≥ 0, then δi(0) = z.If z < 0, then δi(0) = z + 1, where −1 + 1 is taken to be −0.Suppose δi(j) has been 
omputed. If δi(0) ≥ 0, let d be the greatestelement of K = {k · 10j+1 | k ∈ {0, . . . , 9}} su
h that δi(j) + d ∈ λi, and set
δi(j + 1) = δi(j) + d. If δi(0) < 0, let d be the greatest element of K su
hthat δi(j) − d /∈ λi, and set δi(j + 1) = δi(j) − d.The pre
eding 
omputation shows that the proof of the existen
e of
〈δi〉i∈N 
an be 
arried out in RCA0. The 
laim that λi = δi for all i ∈ Nfollows immediately from the de�nition of equality between Dedekind 
utsand rapidly 
onverging Cau
hy sequen
es.Sin
e every open 
ut is a Dedekind 
ut and every de
imal expansion is arapidly 
onverging Cau
hy sequen
e, Theorem 1 has the following 
orollary.Corollary 2 (RCA0). If 〈µi〉i∈N is a sequen
e of reals in a representa-tion in the following list , then for any representation appearing lower in thelist there is a sequen
e 〈τi〉i∈N in that representation su
h that for all i ∈ N,
µi = τi:

• open 
uts,
• Dedekind 
uts,
• de
imal expansions,
• rapidly 
onverging Cau
hy sequen
es.With one additional result, we 
an resolve the 
onversion problem for allsingle reals.Theorem 3 (RCA0). Suppose ̺ is a rapidly 
onverging Cau
hy sequen
e.Then there is an open 
ut σ su
h that ̺ = σ.Proof. Let ̺ be a rapidly 
onverging Cau
hy sequen
e. Either ̺ repre-sents a rational or it does not. (This assertion is not uniform.) If ̺ repre-
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sents the rational r, then let λ = {q ∈ Q | q < r}. Otherwise, ̺ is notequal to any rational. Consequently, for any q ∈ Q, there is a k ∈ N su
hthat ̺(k) + 2−k < q or ̺(k) − 2−k > q. The open 
ut λ is 
onstru
ted byex
luding q when ̺(k) + 2−k < q and in
luding q when ̺(k) − 2−k > q.Combining Theorem 3 and Corollary 2 for 
onstant sequen
es yields thefollowing 
orollary showing that for single reals all 
onversions 
an be 
arriedout in RCA0. The 
omputability-theoreti
 analog of this result was observedby Robinson [8℄, Myhill [5℄, and Ri
e [7℄.Corollary 4 (RCA0). If µ is a single real in any of the four represen-tations, then there is a real τ in ea
h of the other representations su
h that
µ = τ .Proof. Theorem 3 allows 
onversions from the bottom of the list in Corol-lary 2 to the top.In the next se
tion we will see that the nonuniformity in the proof ofTheorem 3 is unavoidable. Consequently, proving the analog of Corollary 4for sequen
es of reals requires stronger axiom systems than RCA0.3. Conversions requiring WKL0 and ACA0. In this se
tion we willshow that 
onversions between some representations of reals require axiomsbeyond RCA0. Our work will be simpli�ed by the following te
hni
al lemma.This lemma extends a 
onservation result due to Kohlenba
h [3, Proposi-tion 3.1℄.Lemma 5 (RCA0). The following are equivalent :

(1) WKL0.
(2) If 〈fi〉i∈N and 〈gi〉i∈N are sequen
es of fun
tions with pairwise dis-joint ranges , that is, su
h that ∀i ∀n ∀m (fi(n) 6= gi(m)), thenthere is a sequen
e 〈Xi〉i∈N of sets su
h that for ea
h i, ∀n (fi(n) ∈

Xi ∧ gi(n) /∈ Xi).
(3) If 〈Ti〉i∈N is a sequen
e of in�nite 0-1 trees, then there is a sequen
e

〈Xi〉i∈N su
h that for ea
h i, Xi is an in�nite path through Ti.Proof. Sin
e the existen
e of a separating set for a single pair of fun
tionsimplies WKL0 [9, Lemma IV.4.4℄, as does the existen
e of an in�nite paththrough a single in�nite 0-1 tree, it su�
es to show that (2) and (3) followfrom WKL0.Suppose 〈fi〉i∈N and 〈gi〉i∈N are sequen
es of fun
tions with pairwise dis-joint ranges, as in (2). Fix a bije
tion between N × N and N, and identifyea
h ordered pair with its integer 
ode. De�ne fun
tions f and g by setting
f(i, n) = (fi(n), i) and g(i, n) = (gi(n), i). Sin
e we are viewing ordered pairsas being inter
hangeable with their integer 
odes, we may think of f and g
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as fun
tions from N to N. Note that if f(i, n) = g(j, m), then j = i and
fi(n) = gj(m) = gi(m), 
ontradi
ting the 
laim that the ranges of fi and giare disjoint. Thus f and g have disjoint ranges. WKL0 su�
es to prove theexisten
e of a separating set X for f and g [9, Lemma IV.4.4℄. For ea
h i,let Xi = {m | (m, i) ∈ X}. Then for all n, (fi(n), i) ∈ X so fi(n) ∈ Xi, and
(gi(n), i) /∈ X so gi(n) /∈ Xi. Thus WKL0 proves (2) as desired.Now we will use WKL0 to prove (3). Let 〈Ti〉i∈N be a sequen
e of in�nite
0-1 trees. Form a tree T of �nite sequen
es of natural numbers as follows.For j ∈ N, if for ea
h i < j we are given a sequen
e σi in Ti of length j − i,then form the sequen
e

σ = (σ0(0), (σ0(1), σ1(0)), . . . , (σ0(j − 1), . . . , σj−1(0))).By identifying the inner �nite sequen
es with their integer 
odes, σ 
an beviewed as a sequen
e of j natural numbers. Let T be the tree of all su
hsequen
es. Sin
e ea
h Ti is a 0-1 tree, σ(n) 
an take at most 2n+1 possiblevalues, so T is a bounded tree. WKL0 su�
es to prove the existen
e of anin�nite path through T [9, Lemma IV.1.4℄. Given a path X = (p0, p1, p2, . . .)through T , for ea
h i the sequen
e Xi = (pi(i), pi+1(i), pi+2(i), . . .) is a paththrough Ti. This 
ompletes the proof of (3)from WKL0.Now we 
an turn to the theorems on 
onverting representations. The nextthree theorems will enable us to 
ompletely analyze all possible 
onversions.Theorem 6 (RCA0). The following are equivalent :
(1) WKL0.
(2) If 〈̺i〉i∈N is a sequen
e of rapidly 
onverging Cau
hy sequen
es thenthere is a sequen
e 〈δi〉i∈N of de
imal expansions su
h that for ea
h

i ∈ N, ̺i = δi.Proof. To prove that (1) implies (2), assume WKL0 and let 〈̺i〉i∈N be asequen
e of rapidly 
onverging Cau
hy sequen
es. For ea
h ̺i, 
onstru
t atree Ti as follows. Put a sequen
e δ in Ti if δ is an initial segment of a de
imalexpansion and for ea
h j < lh(δ), ̺i(j) − 2−j+1 ≤ δ(j) ≤ ̺i(j) + 2−j+1. Forea
h k, ea
h initial segment of the sequen
e 
onsisting of the �rst k digits ofthe de
imal expansion of ̺i(k) satis�es these 
onditions, so Ti is an in�nitetree. If δi is an in�nite path through Ti, then from the de�nition of equalityfor rapidly 
onverging Cau
hy sequen
es, ̺i = δi. RCA0 su�
es to prove thatthe sequen
e 〈Ti〉i∈N exists, and by Lemma 5, WKL0 proves the sequen
e
〈δi〉i∈N exists.To prove the reversal, it su�
es to use RCA0 and (2) to separate theranges of disjoint fun
tions [9, Lemma IV.4.4℄. The 
omputable analysis
ounterexample 
orresponding to this impli
ation appears as part of Theo-rem 4 of [4℄. Suppose f and g are inje
tions su
h that ∀n ∀m (f(n) 6= g(m)).De�ne a sequen
e of rapidly 
onverging Cau
hy sequen
es as follows. For
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ea
h i and j, let

̺i(j) =







1 if ∀k < j (f(k) 6= i ∧ g(k) 6= i),
1 + 2−k if k < j ∧ f(k) = i,
1 − 2−k if k < j ∧ g(k) = i.By the re
ursive 
omprehension axiom, 〈̺i〉i∈N exists. Apply (2) to obtain asequen
e 〈δi〉i∈N of de
imal expansions su
h that for all i ∈ N, ̺i = δi. Notethat if f(k) = i then δi(0) = 1, and if g(k) = i then δi(0) = 0. Thus thefun
tion χ(i) = δi(0) is the 
hara
teristi
 fun
tion for a separating set forthe ranges of f and g.Theorem 7 (RCA0). The following are equivalent :

(1) WKL0.
(2) If 〈δi〉i∈N is a sequen
e of de
imal expansions then there is a sequen
e

〈λi〉i∈N of Dedekind 
uts su
h that for ea
h i ∈ N, δi = λi.Proof. To prove that (1) implies (2), assume WKL0 and let 〈δi〉i∈N bea sequen
e of de
imal expansions. Fix an enumeration of Q. Note that thesign of a de
imal expansion δi 
an be determined from δi(0). For ea
h δkde�ne a pair of fun
tions fk and gk as follows. If δk is greater than 0 orequal to 0, let fk(m) = q, where q is the �rst element of Q that is not in
[fk(m)]∪[gk(m)] (the ranges of fk and gk on values less than m) that satis�es
q < δk(m). Let gk(m) = q where q is the �rst element of Q that is not in
[fk(m + 1)] ∪ [gk(m)] that satis�es q > δk(m) + 10−m. If δk is less than 0or equal to −0, let fk(m) = q where q is the �rst element of Q that is notin [fk(m)] ∪ [gk(m)] that satis�es q < δk(m) − 10−m. Let gk(m) = q where
q is the �rst element of Q that is not in [fk(m + 1)] ∪ [gk(m)] that satis�es
q > δk(m). RCA0 su�
es to prove the existen
e of the sequen
es 〈fk〉k∈N and
〈gk〉k∈N. By Lemma 5, WKL0 proves the existen
e of a sequen
e 〈λi〉i∈N su
hthat for ea
h k, λk 
ontains the range of fk and is disjoint from the rangeof gk.We will show that λk is a Dedekind 
ut and δk = λk. Suppose that δk(0)is greater than 0 or equal to 0. If q ∈ Q and q < δk, then for some m,
q < δk(m). Sin
e δk is an in
reasing fun
tion, for some n > m, fk(n) = q,so q ∈ λk. If q ∈ Q and q > δk, then for some m, q > δk(m) + 10−m. Sin
e
δk(j) + 10−j is a de
reasing fun
tion in j, for some n > m, gk(n) = q andso q /∈ λk. Thus λk is a Dedekind 
ut equal to δk. Sin
e λk is a separatingset, if δk is a rational then δk may or may not be an element of λk. Thus,we have not shown that λk is an open 
ut. The proof that λk is the desiredDedekind 
ut when δk(0) is negative or −0 is similar.It remains to show that (2) implies WKL0. As in the pre
eding theorem,we will use (2) to separate the ranges of disjoint fun
tions. Let f and g beinje
tions su
h that for all m and n, f(m) 6= g(n). For the following, let [d]n
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denote a string of n 
opies of the digit d. De�ne a sequen
e 〈δi〉i∈N of de
imalexpansions by setting

δk(n) =











.[1]t[2]n−t if t < n ∧ g(t) = k,

.[1]t[0]n−t if t < n ∧ f(t) = k,

.[1]n otherwise.Let 〈λi〉i∈N be a sequen
e of Dedekind 
uts su
h that for ea
h i ∈ N, δi = λi.Then the set S = {i | 1

9
∈ λi} 
ontains every element of the range of f andno elements of the range of g.Theorem 8 (RCA0). The following are equivalent :

(1) ACA0.
(2) If 〈λi〉i∈N is a sequen
e of Dedekind 
uts, then there is a sequen
e

〈σi〉i∈N of open 
uts su
h that for ea
h i ∈ N, λi = σi.Proof. First, assume (1) and let 〈λi〉i∈N be a sequen
e of Dedekind 
uts.For ea
h i ∈ N, if ∃q ∈ λi ∀q′ ∈ λi (q′ ≤ q), then let σi = λi−{q}. Otherwise,let σi = λi. ACA0 proves that the sequen
e 〈σi〉i∈N exists, and the omissionof maxima guarantees that ea
h σi is an open 
ut.To prove the 
onverse, we will use (2) to �nd the range of an inje
tion[9, Lemma III.1.3℄. Let f : N+ → N be an inje
tion. De�ne the sequen
e
〈λi〉i∈N of Dedekind 
uts by putting q ∈ Q in λi if and only if q ≤ 0 or

q > 0 ∧ (∃t < 1/q)
(

f(t) = i
)

.

RCA0 su�
es to prove that the sequen
e 〈λ〉i∈N exists and that ea
h λi isa Dedekind 
ut. (Indeed, ea
h λi is a 
losed lower Dedekind 
ut for somerational.) By (2), there is a sequen
e 〈σi〉i∈N of open 
uts satisfying σi =
λi for ea
h i ∈ N. Sin
e ∃t (f(t) = k) if and only if 0 ∈ σk, re
ursive
omprehension proves that the range of f exists.The remaining analysis of the 
onversions of the representations of se-quen
es of reals 
onsists of two easy 
orollaries to the pre
eding theorems.Corollary 9 (RCA0). The following are equivalent :

(1) WKL0.
(2) If 〈̺i〉i∈N is a sequen
e of rapidly 
onverging Cau
hy sequen
es, thenthere is a sequen
e 〈λi〉i∈N of Dedekind 
uts su
h that for all i ∈ N,

̺i = λi.Proof. To prove that (1) implies (2), 
on
atenate Theorems 6 and 7.Sin
e every de
imal expansion is a rapidly 
onverging Cau
hy sequen
e, (2)above implies (2) of Theorem 7, so WKL0 follows by Theorem 7.Corollary 10 (RCA0). The following are equivalent :
(1) ACA0.
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(2) If 〈δi〉i∈N is a sequen
e of de
imal expansions, then there is a se-quen
e 〈σi〉i∈N of open 
uts su
h that for all i ∈ N, δi = σi.
(3) If 〈̺i〉i∈N is a sequen
e of rapidly 
onverging Cau
hy sequen
es, thenthere is a sequen
e 〈σi〉i∈N of open 
uts su
h that for all i ∈ N,

̺i = σi.Proof. Sin
e ACA0 implies WKL0, the proof of (3) from (1) follows froma 
on
atenation of Theorems 6, 7, and 8. Sin
e every de
imal expansion is arapidly 
onverging Cau
hy sequen
e, (2) is a spe
ial 
ase of (3). It remains toshow that (2) implies (1). By Theorem 1, RCA0 proves that every sequen
e ofDedekind 
uts 
an be 
onverted to a sequen
e of de
imal expansions, so (2)above implies (2) of Theorem 8, and ACA0 follows by Theorem 8. (Theorem6 of [4℄ in
ludes a 
omputable analysis 
ounterexample 
orresponding to adire
t proof of (1) from (2).)We summarize the results of the pre
eding two se
tions in the followingtable. Ea
h table entry 
orresponds to a 
onversion from a sequen
e of therow type to a sequen
e of the 
olumn type. Row and 
olumn labels are:
• ̺: rapidly 
onverging Cau
hy sequen
e,
• δ: de
imal expansion,
• λ: Dedekind 
ut,
• σ: open 
ut.The 
onversion results are either provable in RCA0 (as shown in �2), orequivalent to the designated subsystem (as shown in this se
tion).

from\to ̺ δ λ σ

̺ RCA0 WKL0 WKL0 ACA0

δ RCA0 RCA0 WKL0 ACA0

λ RCA0 RCA0 RCA0 ACA0

σ RCA0 RCA0 RCA0 RCA04. Related results. As noted in the reversal of Theorem 8, 
onversionsfrom Dedekind 
uts to open 
uts require ACA0, even for sequen
es 
onsist-ing only of rationals. On the other hand, 
onversions of purely irrationalsequen
es 
an be 
arried out in RCA0, as shown by the following theoremand 
orollary.Theorem 11 (RCA0). If 〈̺i〉i∈N is a sequen
e of rapidly 
onvergingCau
hy sequen
es ea
h of whi
h 
onverges to an irrational number , thenthere is a sequen
e 〈σi〉i∈N of open 
uts su
h that for all i ∈ N, σi = ̺i.Proof. Given the sequen
e 〈̺i〉i∈N, determine if q ∈ Q is in σk as follows.Sin
e ̺k is irrational, ̺k 6= q. Find n so large that ̺k(n) − 2−n > q or
̺k(n) + 2−n < q. If the �rst inequality holds, in
lude q in σk. If the se
ond
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holds then ex
lude q from σk. RCA0 su�
es to prove that 〈σi〉i∈N exists, ea
h
σi is an open 
ut, and for ea
h i, σi = ̺i.Corollary 12 (RCA0). Any sequen
e of irrationals in any of the fourrepresentations 
an be 
onverted to a sequen
e in any other representation.Proof. Immediate from Corollary 2 and Theorem 11.In general, separating rationals and irrationals requires ACA0 as shownby the following theorem and 
orollary.Theorem 13 (RCA0). The following are equivalent :

(1) ACA0.
(2) If 〈σi〉i∈N is a sequen
e of open 
uts then the set {i ∈ N | σi ∈ Q}exists.Proof. First, assume (1) and suppose 〈σi〉i∈N is a sequen
e of open 
uts.Note that σi ∈ Q if and only if

∃q ∈ Q ∀q′ ∈ Q (q′ /∈ σi → q ≤ q′).Sin
e ea
h rational 
an be en
oded by a natural number, this formula isarithmeti
al. Thus, the desired set exists by arithmeti
al 
omprehension.To prove that (2) implies (1), assume RCA0 and let f be an inje
tion.In
lude q in σi if and only if
• ∃k (q < −2−k ∧ ∀t ≤ k (f(t) 6= i)), or
• ∃t (f(t) = i ∧ q < −2−t/π).
RCA0 su�
es to prove that 〈σi〉i∈N exists, that ea
h σi is an open 
ut, andthat σi = 0 if i /∈ Range(f) and σi is irrational otherwise. The 
omplementof {i ∈ N | σi ∈ Q} is the range of f , so an appli
ation of [9, Lemma III.1.3℄yields ACA0.Corollary 14 (RCA0). For any of the four representations of reals, thefollowing are equivalent.
(1) ACA0.
(2) If 〈τi〉i∈N is a sequen
e of reals in the spe
i�ed representation, thenthe set {i ∈ N | τi ∈ Q} exists.Proof. To prove that (1) implies (2), assume ACA0 and let 〈τi〉i∈N be asequen
e of reals. Apply results from Se
tion 3 to 
onvert 〈τi〉i∈N to open
uts. An appli
ation of Theorem 13 yields the desired set.To prove the 
onverse, assume RCA0 and suppose (2) holds. By Corol-lary 2, RCA0 proves that (2) above implies (2) of Theorem 13. ACA0 followsfrom Theorem 13.In Theorems 3 and 5 of [4℄, Mostowski analyzed 
hange of basis for se-quen
es of de
imal expansions in a 
omputable analysis setting. Theorems 16
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and 17 give the reverse mathemati
al analogs of his results. The followingterminology is useful in the proofs. A base b expansion is de�ned in the samemanner as a de
imal expansion, using b in pla
e of 10 and integers less than
b as digits. A base b expansion is terminating if there is some point afterwhi
h every digit is zero or every digit is b− 1. By the de�nition of equalitybetween rapidly 
onverging Cau
hy sequen
es, this means that a terminat-ing base b expansion is always equal to (but not ne
essarily the same as) anexpansion ending in zeros. The next lemma shows that termination may ormay not be 
onserved under 
hange of basis. For natural numbers a and b,we will use the notation a | b to denote �a divides b� and a ∤ b to denote �adoes not divide b.�Lemma 15 (RCA0). For all b and c, there is an n su
h that c | bn if andonly if every real with a terminating base c expansion has a terminating base
b expansion. In parti
ular , if for all n we have c ∤ bn, then the base b expansionof 1/c is nonterminating.Proof. Suppose that for some t and n, tc = bn. Let σ be a terminatingbase c expansion. We may assume that σ terminates in zeros, so for some j,

σ = σ(0) + sign(σ(0))

j
∑

i=1

σi

ciwhere 0 ≤ σi ≤ c − 1 for ea
h i ≤ j. Sin
e
σi

ci
=

tiσi

tici
=

tiσi

bni
,we have

σ = σ(0) + sign(σ(0))

j
∑

i=1

tiσi

bni
,so σ 
an be expressed as a terminating base b expansion.To prove the 
onverse, suppose that for every value of n, c ∤ bn. Supposeby way of 
ontradi
tion that 1/c has a terminating base b expansion. Thenwe may write

1

c
=

j
∑

i=1

βi

bi
=

t

bjfor some t ∈ N. Thus ct = bj , 
ontradi
ting our divisibility assumption.Thus, 1/c has no terminating base b expansion.Theorem 16 (RCA0). If c | bn for some n, then for every sequen
e 〈βi〉i∈Nof base b expansions there is a sequen
e 〈γi〉i∈N of base c expansions su
h thatfor all i ∈ N, βi = γi.
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Proof. This argument is essentially a formalization of the proof of The-orem 3 of [4℄. Suppose c | bn. By Lemma 15, whenever γ = β where γ isa base c expansion and β is a base b expansion, if γ terminates then sodoes β.Consider a single base b expansion; 
all it β. As usual, let β(k) de-note the result of trun
ating β after the �rst k digits to the right of thede
imal point. Let (β(k))c denote the base c expansion of β(k). Supposeby way of 
ontradi
tion that there is a j su
h that for all k, (β(k))c and

(β(k) + b−k)c disagree somewhere in the �rst j digits. In this 
ase thereare two base c expansions γ0 and γ1 su
h that β = γ0 = γ1 and γ0 and
γ1 disagree somewhere in the �rst j digits. This implies that γ0 and γ1must be terminating. Let γ denote the element of {γ0, γ1} that terminatesin zeros. Sin
e β = γ and γ terminates, β must terminate also, and wemay assume that β ends in zeros. Choose m so large that m > j andfor all k > m, β(k) = β(m) and γ(k) = γ(m). Choose p > m su
hthat for all k > p, b−k < c−m−1. Thus when k > p, (β(k))c = γ(m),
(β(k) + b−k)c < γ(m) + c−m−1, and (β(k))c must agree with (β(k) + b−k)con the �rst j digits, 
ontradi
ting our assumption. Thus for every j there isa k su
h that (β(k))c and (β(k) + b−k)c agree on the �rst j digits. Further-more, for any m greater than su
h k, (β(m))c and (β(k))c agree on the �rst
j digits.Now we 
an present the algorithm for 
onverting 〈βi〉i∈N to 〈γi〉i∈N. Forany i and j, �nd a k so large that (βi(k))c and (βi(k) + b−k)c agree on the�rst j digits. Let γi(j) 
onsist of those j digits. RCA0 su�
es to prove that
〈γi〉i∈N exists and is a sequen
e of base c expansions, and that βi = γi forall i ∈ N.Theorem 17 (RCA0). If for all n we have c ∤ bn, then the following areequivalent :

(1) WKL0.
(2) For every sequen
e 〈βi〉i∈N of base b expansions there is a sequen
e

〈γi〉i∈N of base c expansions su
h that for all i ∈ N, βi = γi.Proof. Suppose that for all n, c does not divide bn. Sin
e base b expan-sions are rapidly 
onverging Cau
hy sequen
es, and 10 
an be repla
ed by cin the proof of Theorem 6, the statement that (1) implies (2) 
an be provedby adapting the proof of Theorem 6.The proof of the 
onverse is essentially a formalization of the 
onstru
tionin Theorem 5 of [4℄. By Lemma 15, let β be the nonterminating base bexpansion of 1/c. Sin
e β does not terminate, after any given point in theexpansion a digit greater than 0 must o

ur and a digit less than b− 1 musto

ur. For any k, let nk > k be the �rst lo
ation to the right of the kth
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de
imal pla
e in β that has a value less than b − 1 and de�ne

β↑
k(j) =







β(j) for j < nk,
b − 1 for j = nk,
0 for j > nk.Note that β↑

k > 1/c. Similarly, when nk > k is the �rst lo
ation to the rightof the kth de
imal pla
e in β that has a value greater than 0, de�ne
β↓

k(j) =

{

β(j) for j < nk,
0 for j ≥ nk.Note that β↓

k < 1/c. Let f and g be fun
tions with disjoint ranges, and de�ne
〈βi〉i∈N by

βi(j) =











β↑
t (j) if t ≤ j and f(t) = i,

β↓
t (j) if t ≤ j and g(t) = i,

β(j) otherwise.Apply (2) to �nd a sequen
e 〈γi〉i∈N of base c expansions su
h that βi = γifor all i ∈ N. The set S = {i | γi(1) ≥ 1/c} is a separating set for the rangesof f and g.We 
lose by observing that many of the reversals of the results on se-quen
es 
an be 
onverted to arguments in 
onstru
tive analysis for negativestatements about single reals. As an example, 
onsider the proof of (2)⇒(1)in Theorem 17. To in
rease the 
on
reteness of the dis
ussion, suppose b = 2and c = 10. Thus β is the base 2 expansion of 1/10, that is, β = .0001100in standard base 2 notation. Let P denote a formal theory that is assumedto be 
onsistent and that has proofs that 
an be Gödel numbered. (A rea-sonable 
hoi
e would be Peano arithmeti
.) Let S denote a statement whosestatus is 
ompletely open. That is, S might or might not be provable in Pand ¬S might or might not be provable in P . (At the moment, S 
ould bethe Goldba
h 
onje
ture.) De�ne β0 by setting
β0(j) =











β↑
t (j) if some t ≤ j en
odes a proof of S in P ,

β↓
t (j) if some t ≤ j en
odes a proof of ¬S in P ,

β(j) otherwise.
β0 is a 
onstru
tive base 2 expansion. Note that if γ = β0 and γ is a base 10expansion, then γ(1) ≥ 1/10 implies there is no proof of the negation of S in
P and γ(1) < 1/10 implies there is no proof of S in P . Sin
e we la
k su�
ientinformation about the provability of S to determine the value of γ(1), thereis no 
onstru
tive base 10 expansion that is equal to β0. A 
onstru
tivistmight summarize by saying that some base 2 expansions 
annot be 
onvertedto base 10 expansions. For more on 
onstru
tive representations of reals,see [10℄.
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