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Summary. We prove that generating relations between the elements [r] = r> — r of a

commutative ring are the following: [r 4 s] = [r] 4 [s] + rs[2] and [rs] = r2[s] + s[r].

1. Introduction. Let R be a commutative ring with 1. In [2], the author
introduced the ideal I(R) = I3(R) generated by all elements of the form
r?2 — r, where r € R, and proved that it is precisely the intersection of all
maximal ideals of index 2 in R [2, Proposition 5.5]. This ideal is permanently
used in all considerations concerning relations satisfied by mappings of higher
degrees (see [2]-[5]). The motivation for this paper is also similar: the main
result will be used in [1] to find generating relations for mappings of degree 5;
however, it is fully independent of the theory of higher degree mappings. The

result is the following

THEOREM. Let C(R) be the R-module generated by the elements [r],
r € R, with relations
(1) [r+sl =[]+ [s]+7sl2, rseR,
(2) [rs] = r?[s] + s[r], r,s € R.
Then there exists an R-isomorphism P : C(R) — I(R) such that P([r]) =
r?2 —r forr € R.

First of all, observe that elements 72 — r satisfy relations (1)—(2). There-
fore there exists an R-epimorphism P : C(R) — I(R) defined by the above
formula and we must prove that it is injective. Moreover, note some conse-
quences of (1) and (2), pointed out in [5, Corollary 5.1.4]:
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LEMMA 1. For any r,s € R we have
(r? = r)[s] = (s> = 9)[r],
2[r] = (r* = r)[2], [2r] = (2* —7)[2],
[r]=[—r], [0]=[1] =0, [2] = [-1],

if r2 —r = 2s then [r] = s[2],
1
] =

AAA/_\A
~— — — ~— ~—

if s is invertible then [s~ —s573[s].

Proof. Relation (3) follows from the two symmetric versions of (2). The
first equality in (4) is obtained from (3), and gives the other one using (1).
(5) The equalities [0] = [1] = 0 follow from (2) for r,s = 0 or 1. Hence

by (1) and (3) we obtain
0=[]=[]+0~r]+(—r)2=[]+[1-r] =20 =[1-r]-[r].

This also gives [2] = [—1].

(6) Using (1) and (5) we get

[r=r=r*l—r]+ A =7)]=0*—r+ 1) =25+ 1[r].
On the other hand, [r — r%] = [2(—s)] = (25 + 5)[2] by (4), and hence
[r] = (25 + 5)[2] — 2s[r] = (25 + 5)[2] — s(r* —7)[2] = 5[2]

because of (4).

(7) Tt follows from (5) and (2) that 0 = [1] = [ss™!] = s?[s71] + s7![s]
and so [s71] = —573[s]. =

2. The functor C' and C-functions. Any unitary ring homomorphism
i : R — R induces the module homomorphism C(i) : C(R) — C(R’) over
i such that C(7)([r]) = [i(r)]. Then C is obviously a functor. We prove that
it commutes with localizations. First of all, define C-functions over R as
functions f : R — M, where M is an R-module, satisfying the conditions

(1) fr+s)=[f(r)+f(s)+rsf(2), rseR,
(2) frs) =72 f(s) +sf(r), r,s € R,
and consequently, the analogs of (3)—(7). Observe that C'(R) is a universal
object with respect to C-functions over R; this means that any C-function

can be uniquely expressed as a composition of the canonical C-function
c¢:R— C(R), c¢(r) =[r], and an R-homomorphism defined on C(R).

ExXAMPLE. The analog of (6) shows that any C-function f over the ring
Z of integers is of the form f(r) = Tz;’"a, where a = f(2). Since I(Z) = (2)
is a free Z-module, it follows from the universal property that the element a
can be chosen arbitrarily.

Let S be a multiplicatively closed set in R and let ¢ : R — Rg and
i: M — Mg be the canonical homomorphisms.
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LEMMA 2. For any C-function f : R — M there exists a unique C'-
function fs : Rg — Mg satisfying the condition fs(i(r)) = i(f(r)) for
r € R. It is given by the formula

()1 ()1

Proof. The condition means that fs(%) = @ forr € R. Let s € S. If

fs is a C-function tl;(zn) . ( ) ( (2)( ))
() (0)+ ()2

(2 ()

which gives the required formula. This proves the uniqueness of fg.

To prove that fg is properly defined, it suffices to check that the right
hand side of the formula remains the same if we replace r by rt and s by st
for any ¢t € S. By (2'), we compute that, in fact,

frt) <T_t>2f(8t) _ ) +tf(r) (g)QSzf(t) +tf(s)

st st st st st

S0 (g)zﬂs)_

S S S

. b .
It remains to prove (1') and (2') for fs. Let ¢ and ¢ be arbitrary elements

of Rg. Then
fs(9+9)=fs<“+"):f<a+b>_(a+b>2f<s>
S0 S0, e (| )+<b>+2_b>ﬁ

= +
- (2- <9>2ﬂ> L1 <9>2f(8)> L ab(2)ab2f(s)
(1) 58 - i

» |2

by (1') and the analogue of (4) for f, and
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52 53 S

s/) s\s 52 S

_ (an(b) +bf(a) d*f(b) bf a,)>
_ <a>29<9 f(s%) —sf(s) f(8)>

_a(s* = 5) () a%<682f<s> f(s))

s g2 S

— - =0

by (2) and the analogue of (3) for f. This completes the proof. =
Now we are ready to prove

PROPOSITION. There exists an Rg-isomorphism C(R)s ~ C(Rg) such
that
M 1]
s s|1

Proof. Applying Lemma 2 to the canonical C-function ¢ : R — C(R),
¢(r) = [r], we obtain a C-function cg : Rg — C(R)g over Rg,

cS(C) _ I (i)zﬂ

The universal property yields an Rg-homomorphism g : C(Rs) — C(R)s

such that )
()-8
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On the other hand, we have a homomorphism C(i) : C(R) — C(Rg) over
i : R — Rg defined by C(i)([r]) = [%], which gives an Rg-homomorphism
h:C(R)s — C(Rg) such that

Observe that h = ¢g—'. In fact,

o(1(5)) = 3e([i]) -

by (5). On the other hand, using (7) a
r T "\ [s

)-GO

315002 G-

Hence h is an isomorphism, as required. m

(-0 -
)

(2) we compute that

Finally, note that also I(R)s = I(Rg), as follows, for example, from |2,
Lemma 5.1].

3. Some lemmas about the kernel of P. Let us consider the kernel
of the R-homomorphism P : C(R) — I(R), P([r]) = r?> —r for r € R. Our

first observation is the following
LEMMA 3. I(R)Ker(P) = 0.

Proof. Let x = Y, a;[r;] € Ker(P), that is, Y, a;(r? — r;) = 0. Then
by (3) we obtain (r?—r)x =Y, a;(r?—r)[r;] = >, a;(r?—r;)[r] = 0[r] = 0. =

The next lemma plays a key role in our considerations.

LEMMA 4. Let x = ), a;[r;] € Ker(P), where one of the r; is 2. If all
a; belong to I(R)* for some k > 0 then x = 3", b;[r;] where all b; belong to
I(R)2k+1.

Proof. By the assumption, Y, a;r? = Y, a;r;. Observe that

{Zal ]:Z Za Z az—}—c
—Za r +7r;)[ri —|—Zr a;] + c[2
{Zam] :Z:am | +d[2 Zal T —i—Zr a;] + d[2
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— 2.2 _ :
where ¢ = >, . a;a;riri, d =3, ;aajrr;. Since the above two elements
are equal, we obtain

JJ:ZGH% Za 7" +ri)[ri] + (c — d)[2]
—Za r +7i)[r; —l—Zaza] 7’127' —riry)[2].

1<j

This completes the proof, because r? + r; and r? rj — rirj belong to I(R). m

The above lemma immediately yields the following

COROLLARY. Letx =), a;[r;] € Ker(P) and let M denote the submod-
ule of C(R) generated by all [r;] and [2]. Then x € (72, I(R)*M.

4. Proof of the theorem: noetherian case. Suppose that R is noethe-
rian. By the Proposition and the remark concluding Section 2 we can assume
that R is, in fact, local and noetherian. Then we have the following two
cases:

CASE 1: I(R) = R (this means that the quotient field of R has more
than two elements). Then Lemma 3 gives Ker(P) = 0.

CASE 2: I(R) is the maximal ideal (this means that the quotient field of
R has exactly two elements). Let x € Ker(P). Define the submodule M as in
the Corollary and observe that it is a finitely generated module over a local
noetherian ring. Then the intersection in the Corollary is zero by the Krull
intersection theorem, and consequently « = 0. This proves that Ker(P) = 0.

5. Proof of the theorem: general case. Let x =), a;[r;] € Ker(P).
Define the subring S of R generated by all the elements a; and r;. Since S is
a finitely generated ring, it is obviously noetherian, and hence the previous
part of the proof shows that P : C(S) — I(S) is iso. Let i : S — R
denote the injection. Then z = (C(4))(y), where y = ). a;[r;] € C(S). Since
P(y) = P(z) = 0 we conclude that y = 0 and consequently = = 0. This
completes the proof.
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