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LOCAL ANALYTIC GEOMETRY

Closure Theorem for Partially Semialgebraic Sets
by
|Stanistaw LOJASIEWICZ]| and Maria-Angeles ZURRO

Presented by Jozef SICIAK

Summary. In 1988 it was proved by the first author that the closure of a partially
semialgebraic set is partially semialgebraic. The essential tool used in that proof was the
regular separation property. Here we give another proof without using this tool, based
on the semianalytic L-cone theorem (Theorem 2), a semianalytic analog of the Cartan—
Remmert—Stein lemma with parameters.

The authors began work on this joint paper in September 2002, but in Novem-
ber 2002 a heart attack put an end to Stanistaw Lojasiewicz’s life. The second
author wishes to honour Professor Stanistaw fiojasiewicz with this paper.

1. Let M be an analytic manifold. If X is a finite-dimensional real vector
space of dimension n, then an analytic function f : M x X — R is said to be
an X -polynomaal if for an open neighborhood U of any point of M, in some
(and then any) linear coordinate system X — R} the restriction fyxx is a
polynomial in ¢ with coefficients analytic on U.

A subset E C M x X is said to be X-semialgebraic if every point a € M
has an open neighborhood U such that Ey is described in U x X by X-
polynomials. This definition implies that finite unions and finite intersections
of X-semialgebraic sets are X-semialgebraic.

When Y is another finite-dimensional real vector space, an analytic
mapping M x X — Y is said to be an X-polynomial mapping if in some
(and then any) linear coordinate system in Y its components are X-poly-
nomials.
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If N is a real analytic manifold, Y a finite-dimensional real vector space,
f : M — N an analytic mapping and g : M x X — Y an X-polynomial
mapping, then the inverse image under the mapping (z,v) — (f(x), g(x,v))
of a Y-algebraic subset of N x Y is an X-semialgebraic subset of M x X.

2. Let X be a topological space and let A be an algebra of continuous
real functions on it. We say that a subset F of X is described by A if

S T
E=J By
i=1j=1

where Eij is of the form {fzj > 0} or {fzj < 0} or {f”LJ = O} with fij e A

Let S(A) be the class of subsets of X which are described by .A. Note that
Alt] is an algebra of continuous real functions on X xR. Let 7 : X xR — X
be the natural projection.

The following facts have been proved in [2, pp. 105-110].

PROPOSITION 1. The connected components theorem for S(A) implies:

(1) The connected components theorem for S(A[t]).
(2) E € S(A[t]) = 7(E) € S(A).

Let Ay be the ring of analytic functions on a relatively compact neigh-
borhood U of a given point ¢ € M which have analytic extensions onto
neighborhoods of U. Then, by the connected components theorem, each set
in S(Ap) has a finite number of connected components. Hence, by induction,
we obtain the following statement:

(1) Each set in S(Aylt1,...,tn]) has a finite number of components.
(2) If E € S(Aulti,. .-, tm]), then m(E) is semianalytic in M, where
7 : M x R¥ — M is the natural projection for k =1,...,m.

As consequences, using linear coordinate systems, we obtain the following
connected components theorem and generalized Tarski-Seidenberg theorem.

Let X be a finite-dimensional real vector space. We say a family F of
subsets of M x X is locally X -finite if every point of M has a neighborhood U
such that the family of non-empty traces of the sets of 7 on U x X is finite.
Observe that the union of any locally X-finite family of X-semialgebraic
subsets of M x X is X-semialgebraic.

CONNECTED COMPONENTS THEOREM. All connected components of an
X -semialgebraic set E C M x X are X-semialgebraic and their family is
locally X -finite. Any open-closed subset of E is X -semialgebraic.

Now, let Y be a finite-dimensional real vector space and let 7w : M x X xY
— M x X be the natural projection.
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TARSKI-SEIDENBERG THEOREM. If E C M x X xY is (X xY)-
semialgebraic, then m(E) is X -semialgebraic (in M x X).

3. Let M be a real analytic manifold and let L be a finite-dimensional
real vector space. We say that a semianalytic set £ C M X L is an L-cone
if each fiber E, is a cone, for x € M. This is equivalent to saying that
cx(F) = FE for A > 0, where ¢\ =idy; x Aidp, : M x L — M x L.

We have the following straightforward properties:

(1) The closure of an L-cone is an L-cone.

(2) Finite unions, intersections and differences of L-cones are L-cones.

(3) The subset of points of dimension k of a semianalytic L-cone is a
semianalytic L-cone.

(4) The set of smooth points of dimension k of an L-cone is a semianalytic
L-cone.

We define an L-conical germ to be any set germ A at (a,0) € M x L
satisfying c)(A) = A for any A € R, A > 0. Clearly, the germ at (a,0), with
a € M, of any L-cone C' in M x L is L-conical, and we have dim, ) C =
dim C(4g). Observe that for L-cones C, D, we have

CCD & Cup) C D) for alla € M

and also
C=D & C(a,O) = D(a,O) for all a € M.

LEMMA 1. For any L-conical semianalytic germ A at (a,0) € M x L

there is a semianalytic L-cone C in U x L, where U is an open neighborhood
of a such that C(q 0y = A. If A is analytic, so is C.

Proof. Let E be a semianalytic representative of A in a neighborhood
U x 2 of (a,0). For any v € U and v € L with |v| = 1 there is a maximal
segment (0, 7(u,v))v which is contained in E, or disjoint from FE, (}). As A
is L-conical, we must have r = inf{r(u,v) : w € W, |v| = 1} > 0, with a rel-
atively compact semianalytic neighborhood W C U of a. Then, if 0 < s < 7,
the set

D=En(W x{|z|] <s})Cc M x L

is a union of some segments u x (0, s)v or u x [0, s)v, with |v| = 1. It follows
that C' = [Jy50cx(D) is a semianalytic L-cone (*) such that C(, ) = A.

We will need the following fact:

PROPOSITION 2. Any decreasing sequence E, of analytic subsets of M

18 locally stationary, tv.e. each point a € M has a neighborhood U such that
the sequence E, NU 1is stationary.

(*) Since E,, NRv is semianalytic.
(?) Its germ at any point is the germ of some cy (D) (at this point).
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Proof. Since at any point ¢ € M the ring A, of analytic germs at ¢
is noetherian, the sequence of germs (E,)o is stationary, i.e. for some p we
have (E,)o = (Ep)o for all v > p. Taking a stratification at ¢ compatible with
E, (®), i.e. such that E, N U is the union of some of its leaves, and using
a sort of the identity principle: if an open non-empty subset of a connected
analytic leaf A is contained in E,, then A C E,, we get the result.

We have the following real analog of the Cartan—Remmert—Stein lemma
with parameters.

We say that a subset E of M x L is L-algebraic if each a € M has an
open neighborhood U such that E is defined (by equalities) by polynomials
in z € L with coefficients analytic in U (it can always be defined by one
function).

THEOREM 1. Each analytic L-cone in M x L is L-algebraic.

Proof. Fix any a € M. Our L-cone F is defined in some open neighbor-
hood W = U x V of (a,0) by an analytic function f = > .2 h;, where h; is
a form of degree ¢ with coefficients analytic in U. For any (z,v) € U x V we
have the equivalence

flx,v) =0 < hi(z,v)=0,i=0,1,2,....

In fact, if f(z,v) = 0, then, as E is an L-cone, we have 0 = f(z,tv) =
S hi(x,v)t' for t > 0 small enough, hence h;(z,v) = 0, i = 0,1,....
The sequence of analytic sets Ej, = {(x,v) € U x V : hij(z,v) = 0,1 =
1,...,k} is decreasing, hence by Proposition 2, it must be locally stationary,
so, diminishing W, we have {f = 0} N W = Ej, for some k. Thus the sets F
and Ej are equal in W, and so, being L-cones, they must be equal in U X L.

PROPOSITION 3. For any semianalytic germ S at a point a € M, there
exists the smallest analytic germ at a which contains S. Moreover, it has the
same dimension as S.

Proof. Let A be the ring of germs of analytic functions at a and Z the
ideal of germs which vanish on S. As A is noetherian, the ideal Z is generated
by germs at a of some analytic functions fi,..., fs in a neighborhood of a.
Then the analytic germ

{fi=-=/fs=0}a

is as required. The second part follows by taking a normal stratification
compatible with a representative of S.

PROPOSITION 4. Any semianalytic L-cone is contained in an algebraic
L-cone of the same dimension.

(3) E.g. a normal one (see [4]).
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Proof. Let E be our semianalytic L-cone. Let a € M. By Proposition 3
we take the smallest analytic germ S which contains E(, ). It is L-conical
since also c)(.5) is such a germ (in view of c\(E(4,0)) = E(q,0))- By Lemma 1
there is an analytic L-cone C such that C(, ) = S. It has the same dimension
as F and it is algebraic, by Theorem 1.

4. We will now need some other facts from semianalytic geometry. For
any subset E of a topological space X, we define a decreasing sequence
of closed sets V; = VZ(_E), i =1,2,..., as follows. We define by recursion
Ey=FE and By = E; \ Ej, and we put V; = V;(F) = E;. In particular,
Vo=Fand VoD Vi D---.

LEMMA 2. If Vo, = @, then E = (Vb \ Vl) U---u (‘/QT_Q \ ‘/QT_I).

Proof. In fact, E; = E; \ E;;1, and also

(Vi\ Vi) U (Vit1 \ Eis1) = B \ Eipr.
Hence, for p even, we have
EQr—p = (‘/2r—p \ ‘/2r—p+1) U (V2r—p+2 \ Vér—p—i—3) U---u (‘/27“—2 \ ‘/27“—1)7
and we get the result for p = 2r.

PROPOSITION 5. A set E C M 1is semianalytic if and only if the sets
Vi = Vi(E) are closed semianalytic and Vs = () for some s. Then Vi1 is

nowhere dense in Vi, i = 0,1,..., so dimV; < dim E, and we have V; = ()
forv>n=dim M. If 2r > n, then
(%) E=Wo\V1))U---U(Vara\ Var1).

Observe that if E is a cone, so are the V;’s.

Proof. Indeed, by Lemma 2, the condition is sufficient. Now suppose that
the set F is semianalytic. Then the sets V; are semianalytic, V11 is nowhere
dense in V;, i = 0,1,..., and V; = () for i > n (see [4, IL.5, I1.7]). Applying
Lemma 2 we get (x). The last statement follows from the definition of V' (E).

PROPOSITION 6. If E is semianalytic in M, then the set
{r e M :dim, F =k}
18 semianalytic.

Proof. In fact, it is sufficient to take a distinguished (or normal) strat-
ification of an interval ), compatible with E (see [1]). Then the points of
our set in @ are precisely those which belong to closures (in Q) of leaves of
dimension £ and do not belong to the closure of any leaf of dimension > k.

REMARK 1. If a semianalytic set is of constant dimension k, then so is
its closure.
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5. We have the following semianalytic analog of the Cartan—-Remmert—
Stein lemma with parameters.

THEOREM 2. Any semianalytic L-cone is L-semialgebraic.

Proof. Let E be a semianalytic L-cone in M x L. We proceed by induction
on the dimension k of E. By Proposition 5, we have

E:(F()\Fl)U"'U<Fp—1\FP)7

where the F; are closed semianalytic L-cones of dimension < k. In view of
Proposition 6 and Remark 1, for each F' = F; we have

F=5.U---UJS,

with S; a closed semianalytic L-cone of constant dimension i.

By Proposition 4, any L-cone S; is contained in an L-algebraic L-cone
C; of dimension 7. Let S} the set of non-smooth points of S;. It is a closed
semianalytic L-cone of dimension < ¢ < k, and it is L-semialgebraic by the
induction hypothesis. Then S;\ S is an analytic submanifold of dimension i;
it is dense in S; (as the latter is of constant dimension ). Next the set C} of
points of C; which are not smooth of dimension i is a closed L-semialgebraic
L-cone of dimension < 4, and C; \ C; is an analytic submanifold.

The set T" = S; U C} is closed semialgebraic of dimension < ¢. Then
Si\ T is closed in C; \ T, but it is also open (in the latter set) as both are
analytic submanifolds of dimension i. Hence S; \ T is a locally L-finite union
of connected components of C; \ T, and so it is L-semialgebraic. Since S; is
the closure of S; \ T, it must be L-semialgebraic. Consequently, so are the
F;’s and F.

6. Let X, Y be finite-dimensional real vector spaces. Consider the hy-
perplane H = X XY x1 C X xY x R. Let F be a subset of X x Y, and
put

C(F) = U {$} X R+(y’ 1)7
(zy)eF
with Ry = (0,00). Hence, ¢(F)NH = F x 1.
REMARK 2. Let F C X XY be a Y-cone. Then
E={(z,y,2,t): (z,y) €B, 2=ty t >0} C X XY XY xR

is a (Y x R)-cone, and ¢(E) = u(FE), where p(z,y,z,t) = (z,2,t) for
(z,y,2,t) in X x Y xY x R. Thus, by the Tarski-Seidenberg theorem, if E
is a Y-semialgebraic Y-cone then ¢(F) is a Y-semialgebraic (Y x R)-cone.

REMARK 3. Let M = X XY x R, and consider E C X X Y. Then
ClM(C(E)) = C(CIXXY E)

This yields the following equivalence:
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PROPOSITION 7. Let E C X XY be any Y -cone. Then E is Y -semial-
gebraic if and only if ¢(E) is semianalytic.

Proof. Consider the (Y x R)-cone E as in Remark 2. It is (Y x Y)-

semialgebraic. By the Tarski-Seidenberg theorem p(FE) is Y-semialgebraic,
hence ¢(E) is semianalytic. Conversely, since ¢(E) N H = E x 1, the set F is
semianalytic. Hence, by Theorem 2, E is Y -semialgebraic.

CLOSURE THEOREM. The closure of any Y -semialgebraic subset of
X XY isY-semialgebraic.

Proof. Let A be aY-semialgebraic set. Put £ = ¢(A). Then E'is a Y-cone
and it is Y-semialgebraic. By Proposition 7, the cone ¢(FE) is semianalytic.

Thus ¢(E) is semianalytic (by the closure theorem for semianalytic sets, see
[4, I11.5, Cor. 5.2]). The set F is a Y-cone, and it is also Y-semialgebraic,

in view of Remark 3 and Proposition 7. Remark 3 implies that c(4) is Y-
semialgebraic. Hence so is A, since A = c¢(A)NH.
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