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Closure Theorem for Partially Semialgebrai
 SetsbyStanisªaw �OJASIEWICZ and María-Angeles ZURROPresented by Józef SICIAK
Summary. In 1988 it was proved by the �rst author that the 
losure of a partiallysemialgebrai
 set is partially semialgebrai
. The essential tool used in that proof was theregular separation property. Here we give another proof without using this tool, basedon the semianalyti
 L-
one theorem (Theorem 2), a semianalyti
 analog of the Cartan�Remmert�Stein lemma with parameters.The authors began work on this joint paper in September 2002, but in Novem-ber 2002 a heart atta
k put an end to Stanisªaw �ojasiewi
z's life. The se
ondauthor wishes to honour Professor Stanisªaw �ojasiewi
z with this paper.1. Let M be an analyti
 manifold. If X is a �nite-dimensional real ve
torspa
e of dimension n, then an analyti
 fun
tion f : M ×X → R is said to bean X-polynomial if for an open neighborhood U of any point of M , in some(and then any) linear 
oordinate system X → R

n
t the restri
tion fU×X is apolynomial in t with 
oe�
ients analyti
 on U .A subset E ⊂ M ×X is said to be X-semialgebrai
 if every point a ∈ Mhas an open neighborhood U su
h that EU is des
ribed in U × X by X-polynomials. This de�nition implies that �nite unions and �nite interse
tionsof X-semialgebrai
 sets are X-semialgebrai
.When Y is another �nite-dimensional real ve
tor spa
e, an analyti
mapping M × X → Y is said to be an X-polynomial mapping if in some(and then any) linear 
oordinate system in Y its 
omponents are X-poly-nomials.2000 Mathemati
s Subje
t Classi�
ation: Primary 32B20; Se
ondary 14P15, 32C25.Key words and phrases: semianalyti
 sets, 
losure theorem.Work supported by the European Community's Human Potential Programme under
ontra
t HPRN-CT-2001-00271, RAAG. [325℄ 
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If N is a real analyti
 manifold, Y a �nite-dimensional real ve
tor spa
e,

f : M → N an analyti
 mapping and g : M × X → Y an X-polynomialmapping, then the inverse image under the mapping (x, v) 7→ (f(x), g(x, v))of a Y -algebrai
 subset of N × Y is an X-semialgebrai
 subset of M × X.2. Let X be a topologi
al spa
e and let A be an algebra of 
ontinuousreal fun
tions on it. We say that a subset E of X is des
ribed by A if
E =

s⋃

i=1

r⋂

j=1

Eijwhere Eij is of the form {fij > 0} or {fij < 0} or {fij = 0} with fij ∈ A.Let S(A) be the 
lass of subsets of X whi
h are des
ribed by A. Note that
A[t] is an algebra of 
ontinuous real fun
tions on X ×R. Let π : X ×R → Xbe the natural proje
tion.The following fa
ts have been proved in [2, pp. 105�110℄.Proposition 1. The 
onne
ted 
omponents theorem for S(A) implies:(1) The 
onne
ted 
omponents theorem for S(A[t]).(2) E ∈ S(A[t]) ⇒ π(E) ∈ S(A).Let AU be the ring of analyti
 fun
tions on a relatively 
ompa
t neigh-borhood U of a given point a ∈ M whi
h have analyti
 extensions ontoneighborhoods of U . Then, by the 
onne
ted 
omponents theorem, ea
h setin S(AU ) has a �nite number of 
onne
ted 
omponents. Hen
e, by indu
tion,we obtain the following statement:(1) Ea
h set in S(AU [t1, . . . , tm]) has a �nite number of 
omponents.(2) If E ∈ S(AU [t1, . . . , tm]), then π(E) is semianalyti
 in M , where

π : M × R
k → M is the natural proje
tion for k = 1, . . . , m.As 
onsequen
es, using linear 
oordinate systems, we obtain the following
onne
ted 
omponents theorem and generalized Tarski�Seidenberg theorem.Let X be a �nite-dimensional real ve
tor spa
e. We say a family F ofsubsets of M×X is lo
ally X-�nite if every point of M has a neighborhood Usu
h that the family of non-empty tra
es of the sets of F on U ×X is �nite.Observe that the union of any lo
ally X-�nite family of X-semialgebrai
subsets of M × X is X-semialgebrai
.

Connected Components Theorem. All 
onne
ted 
omponents of an
X-semialgebrai
 set E ⊂ M × X are X-semialgebrai
 and their family islo
ally X-�nite. Any open-
losed subset of E is X-semialgebrai
.Now, let Y be a �nite-dimensional real ve
tor spa
e and let π : M×X×Y

→ M × X be the natural proje
tion.
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Tarski–Seidenberg Theorem. If E ⊂ M × X × Y is (X × Y )-semialgebrai
, then π(E) is X-semialgebrai
 (in M × X).3. Let M be a real analyti
 manifold and let L be a �nite-dimensionalreal ve
tor spa
e. We say that a semianalyti
 set E ⊂ M × L is an L-
oneif ea
h �ber Ex is a 
one, for x ∈ M . This is equivalent to saying that

cλ(E) = E for λ > 0, where cλ = idM ×λ idL : M × L → M × L.We have the following straightforward properties:(1) The 
losure of an L-
one is an L-
one.(2) Finite unions, interse
tions and di�eren
es of L-
ones are L-
ones.(3) The subset of points of dimension k of a semianalyti
 L-
one is asemianalyti
 L-
one.(4) The set of smooth points of dimension k of an L-
one is a semianalyti

L-
one.We de�ne an L-
oni
al germ to be any set germ A at (a, 0) ∈ M × Lsatisfying cλ(A) = A for any λ ∈ R, λ > 0. Clearly, the germ at (a, 0), with

a ∈ M , of any L-
one C in M × L is L-
oni
al, and we have dim(a,0) C =
dimC(a,0). Observe that for L-
ones C, D, we have

C ⊂ D ⇔ C(a,0) ⊂ D(a,0) for all a ∈ Mand also
C = D ⇔ C(a,0) = D(a,0) for all a ∈ M.Lemma 1. For any L-
oni
al semianalyti
 germ A at (a, 0) ∈ M × Lthere is a semianalyti
 L-
one C in U ×L, where U is an open neighborhoodof a su
h that C(a,0) = A. If A is analyti
, so is C.Proof. Let E be a semianalyti
 representative of A in a neighborhood

U × Ω of (a, 0). For any u ∈ U and v ∈ L with |v| = 1 there is a maximalsegment (0, r(u, v))v whi
h is 
ontained in Eu or disjoint from Eu (1). As Ais L-
oni
al, we must have r = inf{r(u, v) : u ∈ W, |v| = 1} > 0, with a rel-atively 
ompa
t semianalyti
 neighborhood W ⊂ U of a. Then, if 0 < s < r,the set
D = E ∩ (W × {|x| < s}) ⊂ M × Lis a union of some segments u× (0, s)v or u× [0, s)v, with |v| = 1. It followsthat C =

⋃
λ>0 cλ(D) is a semianalyti
 L-
one (2) su
h that C(a,0) = A.We will need the following fa
t:Proposition 2. Any de
reasing sequen
e Eν of analyti
 subsets of Mis lo
ally stationary , i.e. ea
h point a ∈ M has a neighborhood U su
h thatthe sequen
e Eν ∩ U is stationary.

(1) Sin
e Eu ∩ Rv is semianalyti
.
(2) Its germ at any point is the germ of some cλ(D) (at this point).
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Proof. Sin
e at any point c ∈ M the ring Ac of analyti
 germs at cis noetherian, the sequen
e of germs (Eν)0 is stationary, i.e. for some p wehave (Eν)0 = (Ep)0 for all ν ≥ p. Taking a strati�
ation at c 
ompatible with

Ep (3), i.e. su
h that Ep ∩ U is the union of some of its leaves, and usinga sort of the identity prin
iple: if an open non-empty subset of a 
onne
tedanalyti
 leaf Λ is 
ontained in Ep, then Λ ⊂ Ep, we get the result.We have the following real analog of the Cartan�Remmert�Stein lemmawith parameters.We say that a subset E of M × L is L-algebrai
 if ea
h a ∈ M has anopen neighborhood U su
h that E is de�ned (by equalities) by polynomialsin x ∈ L with 
oe�
ients analyti
 in U (it 
an always be de�ned by onefun
tion).Theorem 1. Ea
h analyti
 L-
one in M × L is L-algebrai
.Proof. Fix any a ∈ M . Our L-
one E is de�ned in some open neighbor-hood W = U × V of (a, 0) by an analyti
 fun
tion f =
∑

∞

i=0 hi, where hi isa form of degree i with 
oe�
ients analyti
 in U . For any (x, v) ∈ U × V wehave the equivalen
e
f(x, v) = 0 ⇔ hi(x, v) = 0, i = 0, 1, 2, . . . .In fa
t, if f(x, v) = 0, then, as E is an L-
one, we have 0 = f(x, tv) =∑

∞

i=0 hi(x, v)ti for t > 0 small enough, hen
e hi(x, v) = 0, i = 0, 1, . . . .The sequen
e of analyti
 sets Ek = {(x, v) ∈ U × V : hi(x, v) = 0, i =
1, . . . , k} is de
reasing, hen
e by Proposition 2, it must be lo
ally stationary,so, diminishing W , we have {f = 0} ∩W = Ek for some k. Thus the sets Eand Ek are equal in W , and so, being L-
ones, they must be equal in U ×L.Proposition 3. For any semianalyti
 germ S at a point a ∈ M , thereexists the smallest analyti
 germ at a whi
h 
ontains S. Moreover , it has thesame dimension as S.Proof. Let A be the ring of germs of analyti
 fun
tions at a and I theideal of germs whi
h vanish on S. As A is noetherian, the ideal I is generatedby germs at a of some analyti
 fun
tions f1, . . . , fs in a neighborhood of a.Then the analyti
 germ

{f1 = · · · = fs = 0}ais as required. The se
ond part follows by taking a normal strati�
ation
ompatible with a representative of S.Proposition 4. Any semianalyti
 L-
one is 
ontained in an algebrai

L-
one of the same dimension.

(3) E.g. a normal one (see [4℄).
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Proof. Let E be our semianalyti
 L-
one. Let a ∈ M . By Proposition 3we take the smallest analyti
 germ S whi
h 
ontains E(a,0). It is L-
oni
alsin
e also cλ(S) is su
h a germ (in view of cλ(E(a,0)) = E(a,0)). By Lemma 1there is an analyti
 L-
one C su
h that C(a,0) = S. It has the same dimensionas E and it is algebrai
, by Theorem 1.4. We will now need some other fa
ts from semianalyti
 geometry. Forany subset E of a topologi
al spa
e X, we de�ne a de
reasing sequen
eof 
losed sets Vi = Vi(E), i = 1, 2, . . . , as follows. We de�ne by re
ursion

E0 = E and Ei+1 = Ei \ Ei, and we put Vi = Vi(E) = Ei. In parti
ular,
V0 = E and V0 ⊃ V1 ⊃ · · · .Lemma 2. If V2r = ∅, then E = (V0 \ V1) ∪ · · · ∪ (V2r−2 \ V2r−1).Proof. In fa
t, Ei = Ei \ Ei+1, and also

(Vi \ Vi+1) ∪ (Vi+1 \ Ei+1) = Ei \ Ei+1.Hen
e, for p even, we have
E2r−p = (V2r−p \ V2r−p+1) ∪ (V2r−p+2 \ V2r−p+3) ∪ · · · ∪ (V2r−2 \ V2r−1),and we get the result for p = 2r.Proposition 5. A set E ⊂ M is semianalyti
 if and only if the sets

Vi = Vi(E) are 
losed semianalyti
 and Vs = ∅ for some s. Then Vi+1 isnowhere dense in Vi, i = 0, 1, . . . , so dimVi ≤ dimE, and we have Vi = ∅for i > n = dimM . If 2r > n, then
(∗) E = (V0 \ V1) ∪ · · · ∪ (V2r−2 \ V2r−1).Observe that if E is a 
one, so are the Vi's.Proof. Indeed, by Lemma 2, the 
ondition is su�
ient. Now suppose thatthe set E is semianalyti
. Then the sets Vi are semianalyti
, Vi+1 is nowheredense in Vi, i = 0, 1, . . . , and Vi = ∅ for i > n (see [4, II.5, II.7℄). ApplyingLemma 2 we get (∗). The last statement follows from the de�nition of V (E).Proposition 6. If E is semianalyti
 in M , then the set

{x ∈ M : dimx E = k}is semianalyti
.Proof. In fa
t, it is su�
ient to take a distinguished (or normal) strat-i�
ation of an interval Q, 
ompatible with E (see [1℄). Then the points ofour set in Q are pre
isely those whi
h belong to 
losures (in Q) of leaves ofdimension k and do not belong to the 
losure of any leaf of dimension > k.
Remark 1. If a semianalyti
 set is of 
onstant dimension k, then so isits 
losure.
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5. We have the following semianalyti
 analog of the Cartan�Remmert�Stein lemma with parameters.Theorem 2. Any semianalyti
 L-
one is L-semialgebrai
.Proof. Let E be a semianalyti
 L-
one in M×L. We pro
eed by indu
tionon the dimension k of E. By Proposition 5, we have

E = (F0 \ F1) ∪ · · · ∪ (Fp−1 \ Fp),where the Fi are 
losed semianalyti
 L-
ones of dimension ≤ k. In view ofProposition 6 and Remark 1, for ea
h F = Fi we have
F = Sk ∪ · · · ∪ S0,with Si a 
losed semianalyti
 L-
one of 
onstant dimension i.By Proposition 4, any L-
one Si is 
ontained in an L-algebrai
 L-
one

Ci of dimension i. Let S∗

i the set of non-smooth points of Si. It is a 
losedsemianalyti
 L-
one of dimension < i < k, and it is L-semialgebrai
 by theindu
tion hypothesis. Then Si\S∗

i is an analyti
 submanifold of dimension i;it is dense in Si (as the latter is of 
onstant dimension i). Next the set C∗

i ofpoints of Ci whi
h are not smooth of dimension i is a 
losed L-semialgebrai

L-
one of dimension < i, and Ci \ C∗

i is an analyti
 submanifold.The set T = S∗

i ∪ C∗

i is 
losed semialgebrai
 of dimension < i. Then
Si \ T is 
losed in Ci \ T , but it is also open (in the latter set) as both areanalyti
 submanifolds of dimension i. Hen
e Si \T is a lo
ally L-�nite unionof 
onne
ted 
omponents of Ci \ T , and so it is L-semialgebrai
. Sin
e Si isthe 
losure of Si \ T , it must be L-semialgebrai
. Consequently, so are the
Fi's and E.6. Let X, Y be �nite-dimensional real ve
tor spa
es. Consider the hy-perplane H = X × Y × 1 ⊂ X × Y × R. Let F be a subset of X × Y , andput

c(F ) =
⋃

(x,y)∈F

{x} × R+(y, 1),

with R+ = (0,∞). Hen
e, c(F ) ∩ H = F × 1.
Remark 2. Let E ⊂ X × Y be a Y -
one. Then

Ẽ = {(x, y, z, t) : (x, y) ∈ E, z = ty, t > 0} ⊂ X × Y × Y × Ris a (Y × R)-
one, and c(E) = µ(Ẽ), where µ(x, y, z, t) = (x, z, t) for
(x, y, z, t) in X × Y × Y × R. Thus, by the Tarski�Seidenberg theorem, if Eis a Y -semialgebrai
 Y -
one then c(E) is a Y -semialgebrai
 (Y × R)-
one.
Remark 3. Let M = X × Y × R+ and 
onsider E ⊂ X × Y . Then

clM (c(E)) = c(clX×Y E).This yields the following equivalen
e:
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Proposition 7. Let E ⊂ X × Y be any Y -
one. Then E is Y -semial-gebrai
 if and only if c(E) is semianalyti
.Proof. Consider the (Y × R)-
one Ẽ as in Remark 2. It is (Y × Y )-semialgebrai
. By the Tarski�Seidenberg theorem µ(Ẽ) is Y -semialgebrai
,hen
e c(E) is semianalyti
. Conversely, sin
e c(E)∩H = E × 1, the set E issemianalyti
. Hen
e, by Theorem 2, E is Y -semialgebrai
.
Closure Theorem. The 
losure of any Y -semialgebrai
 subset of

X × Y is Y -semialgebrai
.Proof. Let A be a Y -semialgebrai
 set. Put E = c(A). Then E is a Y -
oneand it is Y -semialgebrai
. By Proposition 7, the 
one c(E) is semianalyti
.Thus c(E) is semianalyti
 (by the 
losure theorem for semianalyti
 sets, see[4, II.5, Cor. 5.2℄). The set E is a Y -
one, and it is also Y -semialgebrai
,in view of Remark 3 and Proposition 7. Remark 3 implies that c(A) is Y -semialgebrai
. Hen
e so is A, sin
e A ≡ c(A) ∩ H.
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