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OPERATOR THEORY

A Class of Contra
tions in Hilbert Spa
e and Appli
ationsbyNi
k DUNGEYPresented by Jerzy ZABCZYK
Summary. We 
hara
terize the bounded linear operators T in Hilbert spa
e whi
h sat-isfy T = βI + (1 − β)S where β ∈ (0, 1) and S is a 
ontra
tion. The 
hara
terizationsin
lude a quadrati
 form inequality, and a domination 
ondition of the dis
rete semigroup
(T n)n=1,2,... by the 
ontinuous semigroup (e−t(I−T ))t≥0. Moreover, we give a strongerquadrati
 form inequality whi
h ensures that sup{n‖T n − T n+1‖ : n = 1, 2, . . .} < ∞.The results apply to large 
lasses of Markov operators on 
ountable spa
es or on lo
ally
ompa
t groups.1. Introdu
tion. Let H be a 
omplex Hilbert spa
e. In this note, we
hara
terize in several ways the bounded linear operators T ∈ L(H) whi
h
an be written in the form(1) T = βI + (1 − β)Swhere S is a 
ontra
tion (‖S‖ ≤ 1) and β ∈ (0, 1). In parti
ular, we showthat T has this form if and only if T is a 
ontra
tion whi
h satis�es thequadrati
 form inequality(2) ‖f‖2 − ‖Tf‖2 ≥ α Re((I − T )f, f)for some α > 0 and all f ∈ H; or, if and only if the spe
trum of T is 
ontainedin the unit disk {z ∈ C : |z| ≤ 1} and one has(3) ‖Tnf‖ ≤ ‖e−εn(I−T )f‖for some ε ∈ (0, 1) and all f ∈ H, n ∈ N := {1, 2, 3, . . .}. The 
ondition (3)is a type of domination of the dis
rete semigroup (Tn)n∈N by the 
ontinuoustime semigroup (e−t(I−T ))t≥0. We remark that (1) implies that the spe
trum2000 Mathemati
s Subje
t Classi�
ation: 47A30, 47A10, 60G50, 60G15.Key words and phrases: 
ontra
tion operator, Hilbert spa
e, Markov operator, 
onvo-lution operator. [347℄ 
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of T is 
ontained in a disk {z ∈ C : |z − β| ≤ 1 − β}. The above 
onditions(1), (2), (3), and further 
onditions on T , are studied in Se
tion 2 below.For operators in Bana
h spa
es, a generalization of (1) was 
onsideredby Nevanlinna, who obtained the following results (for details see [11, The-orem 8℄ and [9, Theorem 4.5.3℄).Theorem 1.1. For X a 
omplex Bana
h spa
e and T ∈ L(X ), the fol-lowing two 
onditions are equivalent.(I) There exist β ∈ (0, 1), S ∈ L(X) su
h that supn∈N ‖Sn‖ < ∞ and

T = βI + (1 − β)S.(II) There exist 
onstants c, α > 0 su
h that
‖ezT‖ ≤ ce|z|(1−αθ2)for all z ∈ C with z = |z|eiθ, θ ∈ [−π, π].Moreover , if these 
onditions hold , then(4) sup

n∈N

‖Tn‖ < ∞, sup
n∈N

n1/2‖Tn − Tn+1‖ < ∞.In parti
ular, (4) holds whenever T is given by (1) with S a 
ontra
tionin Hilbert spa
e. (Additional note: 
onversely, the author re
ently proved in[6℄ that in any Bana
h spa
e, 
onditions (4) imply the 
onditions (I) and(II), and gave further 
onditions equivalent to these.)The pre
eding results apply to very large 
lasses of Markov operatorsasso
iated with random walks, as we dis
uss in Se
tion 3 below. In parti
ular,it seems interesting that estimates of type (3) and (4) hold for many Markovoperators, a result whi
h we have not seen in the literature.Operators satisfying the estimate supn∈N(‖Tn‖ + n‖Tn − Tn+1‖) < ∞,whi
h is stronger than (4), have re
ently been well studied. See [1℄, [2℄,[5℄, [7℄, [9℄, [10℄, [11, Theorem 10℄ and referen
es therein. In Hilbert spa
e,Theorem 2.3 below shows that a simple quadrati
 form inequality is su�
ientfor that estimate.2. Proof of the main theorem. Let us �x some notation. For a ∈ C,
r ≥ 0, we set D(a; r) := {z ∈ C : |z−a| < r}, D(a; r) := {z ∈ C : |z−a| ≤ r}and D := D(0; 1) = {z ∈ C : |z| ≤ 1}. Let H be a 
omplex Hilbert spa
e. If
S ∈ L(H) and if F is a fun
tion holomorphi
 on an open neighborhood of thespe
trum σ(S), then the operator F (S) is de�ned by the Dunford fun
tional
al
ulus, and the spe
tral mapping theorem states that σ(F (S)) = F (σ(S))(see [13, Se
tion VIII.7℄). Von Neumann's inequality says that if ‖S‖ ≤ 1then

‖F (S)‖ ≤ ‖F‖L∞(D)whenever F is holomorphi
 on a neighborhood of D.
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Here is our main result.Theorem 2.1. Given T ∈ L(H), ea
h of the following 
onditions (I) to(VI) is equivalent.(I) There exists β ∈ (0, 1) su
h that ‖T −βI‖ ≤ 1−β; that is, (1) holdswith ‖S‖ ≤ 1.(II) ‖T‖ ≤ 1, and there exists α > 0 su
h that (2) holds for all f ∈ H.(III) There exists γ ∈ (0, 1) su
h that ‖Tf‖ ≤ ‖γf + (1 − γ)Tf‖ for all

f ∈ H.(IV) There exists β ∈ (0, 1) su
h that σ(T ) ⊆ D(β; 1 − β) and
‖F (T )‖ ≤ ‖F‖L∞(D(β;1−β))for all fun
tions F whi
h are de�ned and holomorphi
 on a neigh-borhood of D(β; 1 − β).(V) σ(T ) ⊆ D, and there exists ε ∈ (0, 1) su
h that (3) holds for all

f ∈ H and n ∈ N.(VI) σ(T ) ⊆ D, and there exists ε ∈ (0, 1) su
h that ‖Teε(I−T )‖ ≤ 1.Moreover , if these 
onditions hold , then supn∈N n1/2‖Tn − Tn+1‖ < ∞.
Remarks. In general, given T ∈ L(H), the real-valued quadrati
 forms

QT : H → R and Q′
T : H → R de�ned by

QT (f) := ‖f‖2 − ‖Tf‖2, Q′
T (f) := Re((I − T )f, f)are 
losely related to properties of the dis
rete semigroup (Tn)n∈N and the
ontinuous semigroup (e−t(I−T ))t≥0. For example, QT ≥ 0 if and only if Tis a 
ontra
tion, while Q′

T ≥ 0 if and only if the semigroup (e−t(I−T ))t≥0 is
ontra
tive. From this point of view, the equivalen
e of 
onditions (II) and(V) above is not so surprising.Note that QT ≤ 2Q′
T for arbitrary T ∈ L(H); this result is a 
onsequen
eof the identity(5) ‖f‖2 − ‖Tf‖2 + ‖(I − T )f‖2 = 2Re((I − T )f, f)valid for all f ∈ H. Observe also that there exist non-
ontra
tions T satis-fying QT ≥ αQ′

T for some α > 0; for example, take T = 2I, α = 3.Proof of Theorem 2.1. The statement that supn n1/2‖Tn − Tn+1‖ < ∞is a 
onsequen
e of 
ondition (I) and Theorem 1.1. Alternatively, this �nalstatement 
an be derived by applying 
ondition (IV) to the fun
tions z 7→
(1 − z)zn.Condition (I) means that ‖Tf − βf‖2 ≤ (1 − β)2‖f‖2 for all f ∈ H. Byexpanding

‖Tf − βf‖2 = ‖Tf‖2 − 2β Re(Tf, f) + β2‖f‖2
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and rearranging, we see that 
ondition (I) is equivalent to the inequality

2β Re((I − T )f, f) ≤ (1 − β)2‖f‖2 + 2β‖f‖2 − β2‖f‖2 − ‖Tf‖2

= ‖f‖2 − ‖Tf‖2.Thus 
ondition (I) implies (II) with α = 2β. Conversely, assume that 
ondi-tion (II) holds; then ‖T‖ ≤ 1 implies that Re((I − T )f, f) ≥ 0, and hen
eby de
reasing α if ne
essary we 
an assume that α ∈ (0, 2). Then 
ondition(I) holds with β = α/2.Next, 
ondition (III) implies that ‖Tf‖ ≤ γ‖f‖ + (1 − γ)‖Tf‖, so that
‖T‖ ≤ 1. Moreover, by squaring and expanding one rewrites 
ondition (III)as

‖Tf‖2 ≤ γ2‖f‖2 + (1 − γ)2‖Tf‖2 + 2γ(1 − γ) Re(Tf, f)or equivalently, after rearranging,
2(1 − γ)(2 − γ)−1 Re((I − T )f, f) ≤ ‖f‖2 − ‖Tf‖2for all f ∈ H. From this, it is easy to dedu
e that 
onditions (III) and (II)are equivalent.Let us derive 
ondition (IV) from 
ondition (I). One has

σ(T ) = β + σ(T − βI) ⊆ β + D(0; 1 − β) = D(β; 1 − β)by 
ondition (I). The desired estimate of ‖F (T )‖ is easily obtained by ap-plying von Neumann's inequality to the 
ontra
tion S := (1−β)−1(T −βI).Conversely, 
ondition (IV) implies (I) trivially, by 
onsidering the fun
-tion F (z) = z − β.Conditions (V) and (VI) are easily seen to be equivalent, sin
e eε(I−T ) isthe operator inverse to e−ε(I−T ).To show that 
ondition (IV) implies (VI) with ε = β, we 
he
k that theholomorphi
 fun
tion
Fβ(z) := zeβ(1−z)satis�es ‖Fβ‖L∞(D(β;1−β)) ≤ 1. For z ∈ D(β; 1−β), the inequality |z−β|2 ≤

(1 − β)2 implies that
|z|2 ≤ 1 − 2β(1 − Re(z)) ≤ e−2β(1−Re(z)) = |e−β(1−z)|2by the elementary estimate 1 − t ≤ e−t, t ∈ R. Thus |Fβ(z)| ≤ 1, and

‖Fβ‖L∞(D(β;1−β)) ≤ 1.Finally, we show that 
ondition (VI) implies (I). This proof 
an be 
om-pared with [7, Se
tion 2℄, where the inverse of the mapping z 7→ zez isused for a di�erent purpose. Take ε ∈ (0, 1) as in 
ondition (VI), and write
Fε(z) = zeε(1−z), z ∈ C. We need the following results on Fε.Lemma 2.2. Given ε ∈ (0, 1), put Aε := {z ∈ C : |z| ≤ 1, |Fε(z)| ≤ 1}.There exists a holomorphi
 fun
tion Wε de�ned on a neighborhood of D su
h
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that Wε(Fε(z)) = z for all z in some neighborhood of Aε. Moreover , thereexists a β = β(ε) ∈ (0, ε) su
h that D(ε; 1 − ε) ⊆ Aε ⊆ D(β; 1 − β) and(6) Wε(D) ⊆ D(β; 1 − β).Proof of Lemma 2.2. There exists a holomorphi
 fun
tion

W̃ : D(0; e−1) → Csu
h that W̃ (ze−z) = z for all z in some neighborhood of 0; see, for example,[7, p. 465℄. Then de�ning Wε : D(0; ε−1eε−1) → C by
Wε(w) := ε−1W̃ (εe−εw),one has Wε(Fε(z)) = z for all z in a neighborhood of 0. Be
ause ε−1eε−1 > 1,the domain of de�nition of Wε 
ontains D. After observing that Aε is a
ompa
t 
onne
ted region 
ontaining 0, one sees by analyti
 
ontinuationthat Wε(Fε(z)) = z for all z in a neighborhood of Aε.It is not di�
ult to show that Fε maps Aε bije
tively onto D, and that

Wε(D) = Aε. The in
lusion D(ε; 1−ε) ⊆ Aε was established in the argumentthat (IV) implies (VI).To 
omplete the proof of the lemma, we show that Aε ⊆ D(β; 1− β) forsome β ∈ (0, ε). Fixing c ∈ (0, 1) su
h that e−t ≤ 1 − ct for all t ∈ [0, 4], wehave
|z|2 ≤ e−2ε(1−Re(z)) ≤ 1 − 2cε(1 − Re(z))for all z ∈ Aε. Thus |z − cε|2 ≤ (1 − cε)2, and Aε ⊆ D(cε; 1 − cε).Continuing the notation of Lemma 2.2, assume that T satis�es 
ondition(VI). Then σ(T ) ⊆ D and, by the spe
tral mapping theorem, Fε(σ(T )) =

σ(Teε(I−T )) ⊆ D. Therefore σ(T ) ⊆ Aε. By Lemma 2.2 and the Dunfordfun
tional 
al
ulus we may write
T − βI = Wε(Teε(I−T )) − βI.The hypothesis ‖Teε(I−T )‖ ≤ 1 and von Neumann's inequality then yield

‖T − βI‖ ≤ sup
z∈D

|Wε(z) − β| ≤ 1 − βwith the last inequality by (6). This establishes 
ondition (I), and the proofof Theorem 2.1 is 
omplete.
Example. For a normal operator T ∈ L(H), it is easy to see that the
onditions of Theorem 2.1 hold if and only if σ(T ) ⊆ D(β; 1 − β) for some

β ∈ (0, 1). For self-adjoint T , the 
onditions hold if and only if σ(T ) ⊆ (−1, 1](and in that 
ase, the inequality (7) below is also satis�ed).To 
on
lude this se
tion, we des
ribe a quadrati
 form inequality whi
his stronger than (2) and implies that supn∈N n‖Tn − Tn+1‖ < ∞.
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Theorem 2.3. Let T ∈ L(H) be su
h that there exists α > 0 with(7) ‖f‖2 − ‖Tf‖2 ≥ α|((I − T )f, f)|for all f ∈ H. Then the 
onditions of Theorem 2.1 are satis�ed , and moreover

supn∈N n‖Tn − Tn+1‖ < ∞.Proof. Inequality (7) implies that ‖f‖2 − ‖Tf‖2 ≥ 0 so that T is a
ontra
tion. Thus (7) implies 
ondition (II) of Theorem 2.1. Also, (7) and(5) show that
|((I − T )f, f)| ≤ 2α−1 Re((I − T )f, f).This last inequality is a se
torial estimate whi
h implies (see for example [8,Theorem IX.1.24℄) that the semigroup (e−t(I−T ))t≥0 is bounded holomorphi
,hen
e one has an estimate ‖(I−T )e−t(I−T )‖ ≤ ct−1 for all t > 0. Then using(3) yields a bound

‖(I − T )Tn‖ ≤ ‖(I − T )e−εn(I−T )‖ ≤ c′n−1for all n ∈ N.In 
onne
tion with Theorem 2.3 and its proof, we mention the situa-tion in general Bana
h spa
es. For a bounded linear operator in Bana
hspa
e, the 
ondition supn∈N(‖Tn‖+n‖Tn −Tn+1‖) < ∞ holds if and only if
σ(T ) ⊆ D(0; 1) ∪ {1} and the semigroup (e−t(I−T ))t≥0 is bounded holomor-phi
 (see [10, Theorem 2.1℄ and [1, 2℄). The simple proof above of Theorem 2.3depended 
ru
ially on the estimate (3).3. Markov operators. This se
tion presents two distin
t settings ofMarkov operators where the pre
eding results apply.Markov operators on a 
ountable spa
e. Let T be a Markov operatoron a 
ountable set Ω. That is, we assume that there exists a Markov ker-nel (p(x, y))x,y∈Ω with p(x, y) ≥ 0, ∑

y∈Ω p(x, y) = 1, su
h that T a
ts onbounded fun
tions f : Ω → C by the formula
(Tf)(x) =

∑

y∈Ω

p(x, y)f(y)

for all x ∈ Ω. Suppose further that m is an invariant measure for p, meaningthat m : Ω → (0,∞) with ∑
x∈Ω m(x)p(x, y) = m(y) for all y ∈ Ω. Forsubsets A ⊆ Ω we set m(A) :=
∑

x∈A m(x). Then it is standard that T is a
ontra
tion in the Bana
h spa
es Lr(Ω; m), r ∈ [1,∞].Our result in this setting is the following.Proposition 3.1. Suppose there exists β ∈ (0, 1) su
h that(8) p(x, x) ≥ β
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for all x ∈ Ω. Then T satis�es the 
onditions of Theorem 1.1 in ea
h of theBana
h spa
es Lr(Ω; m), r ∈ [1,∞], and satis�es the 
onditions of Theo-rem 2.1 in the Hilbert spa
e L2(Ω; m).Proof. Observe from (8) that the operator S := (1 − β)−1(T − βI) isalso a Markov operator, 
orresponding to the Markov kernel q(x, y) := (1 −
β)−1(p(x, y) − βδx(y)) (where δx(y) is 1 or 0 a

ording as x = y or x 6= y).The measure m is invariant for q. Thus S is a 
ontra
tion in Lr(Ω; m),
r ∈ [1,∞], and the proposition follows from Theorems 1.1 and 2.1.The 
ondition (8) is not new and has been used in studying random walks;see, for example, [3℄ and referen
es therein, and see also [4, Lemma 1.3℄ for aresult essentially weaker than Proposition 3.1. While many authors assumethat p is reversible with respe
t to m, whi
h implies that T is self-adjoint in
L2(Ω; m), we make no reversibility assumption above.Markov 
onvolution operators on a lo
ally 
ompa
t group. Let G be alo
ally 
ompa
t, 
ompa
tly generated group, with a �xed left invariant Haarmeasure dg. (For ba
kground information, see [12℄ and [5℄.) We �x an open,relatively 
ompa
t neighborhood U of the identity e of G su
h that U = U−1and U generates G. The modulus ̺ = ̺U : G → N is de�ned by ̺(g) :=
inf{n ∈ N : g ∈ Un}, where Un ⊆ G denotes the set of all n-fold produ
ts ofelements of U .Given µ ∈ P(G), where P(G) is the set of regular Borel probability mea-sures on G, 
onsider the Markov 
onvolution operator Tµ given by Tµf :=
µ ∗ f for all f ∈ Lr := Lr(G; dg), r ∈ [1,∞]. The involute µ∗ ∈ P(G) of
µ is de�ned by µ∗(A) := µ(A−1) for Borel sets A ⊆ G. We say that µ isadapted if the smallest 
losed subgroup of G 
ontaining the support of µ is
G itself; alternatively, say that µ is aperiodi
 if the measure µ∗∗µ is adapted.Aperiodi
ity is a stronger 
ondition than adaptedness.Here is our result in this setting.Theorem 3.2. Let µ ∈ P(G) be aperiodi
, non-singular with respe
t toHaar measure dg, and su
h that TG dµ(g) ̺(g)2 < ∞. Then Tµ satis�es the
onditions of Theorem 2.1 in the Hilbert spa
e L2 = L2(G; dg).In the situation of Theorem 3.2, unlike that of Proposition 3.1, the op-erator S := (1− β)−1(Tµ − βI) is not ne
essarily a Markov operator for any
β ∈ (0, 1). For example, 
onsider the dis
rete group G = Z of integers andan aperiodi
 µ ∈ P(Z) whi
h satis�es µ({0}) = 0.The proof of Theorem 3.2 requires the following lemma whi
h is 
ontainedin, for example, [5, Propositions 3.2, 3.3℄; results in the same spirit are in[12, Chapters VI, VII℄.Lemma 3.3. Suppose that ν ∈ P(G) is symmetri
 (that is, ν∗ = ν),adapted , non-singular with respe
t to dg, and su
h that TG dν(g) ̺(g)2 < ∞.
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Write Γ (f) :=

T
U dg

T
G dh |f(gh)− f(h)|2. Then there exists c > 1 su
h that

c−1Γ (f) ≤ ((I − Tν)f, f) ≤ cΓ (f)for all f ∈ L2.Proof of Theorem 3.2. The measures ν1 := 2−1(µ + µ∗) ∈ P(G) and
ν2 := µ∗ ∗ µ ∈ P(G) satisfy the hypotheses of Lemma 3.3. Sin
e Tµ∗ is theadjoint operator of Tµ in L2, one �nds that

Re((I − Tµ)f, f) = 2−1((I − Tµ)f, f) + 2−1(f, (I − Tµ)f)

= ((I − Tν1)f, f)

≤ cΓ (f)

≤ c′((I − Tν2)f, f) = c′(‖f‖2
2 − ‖Tµf‖2

2)for all f ∈ L2. Thus 
ondition (II) of Theorem 2.1 is satis�ed.More re�ned L2 estimates depend on the notion of 
enteredness forprobability measures; see [5℄ for details. A
tually, if µ ∈ P(G) is as inTheorem 3.2 and is 
entered, then [5, Proposition 3.2℄ gives an estimate
|((I − Tµ)f, f)| ≤ cΓ (f), f ∈ L2, so that Tµ satis�es the inequality (7).
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