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OPERATOR THEORY

A Class of Contractions in Hilbert Space and Applications
by
Nick DUNGEY

Presented by Jerzy ZABCZYK

Summary. We characterize the bounded linear operators 71" in Hilbert space which sat-
isfy T'= BI + (1 — 3)S where 8 € (0,1) and S is a contraction. The characterizations
include a quadratic form inequality, and a domination condition of the discrete semigroup
(T™)p=1,2.... by the continuous semigroup (e *?=7)),5o. Moreover, we give a stronger
quadratic form inequality which ensures that sup{n||T™ — T"!||: n = 1,2,...} < oo.
The results apply to large classes of Markov operators on countable spaces or on locally
compact groups.

1. Introduction. Let H be a complex Hilbert space. In this note, we
characterize in several ways the bounded linear operators T' € L(H) which
can be written in the form

(1) T=08I+(1-p3)8S

where S is a contraction (||S|| < 1) and § € (0,1). In particular, we show
that T has this form if and only if T is a contraction which satisfies the
quadratic form inequality

(2) IFIIP = IT£II* > aRe((I = T)f, f)

for some o > 0 and all f € H; or, if and only if the spectrum of T is contained
in the unit disk {z € C: |z| < 1} and one has
(3) N7 f) < e g

for some € € (0,1) and all f € H, n € N:={1,2,3,...}. The condition (3)
is a type of domination of the discrete semigroup (7"),cn by the continuous
time semigroup (e */=7));5(. We remark that (1) implies that the spectrum
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of T is contained in a disk {z € C: |z — | < 1 — }. The above conditions
(1), (2), (3), and further conditions on 7', are studied in Section 2 below.

For operators in Banach spaces, a generalization of (1) was considered
by Nevanlinna, who obtained the following results (for details see [11, The-
orem 8| and |9, Theorem 4.5.3|).

THEOREM 1.1. For X a complex Banach space and T € L(X), the fol-
lowing two conditions are equivalent.

(I) There exist 3 € (0,1), S € L(X) such that sup,cy ||S"|| < oo and
T=pI4+(1-p)S.
(IT) There exist constants ¢, > 0 such that

”ezTH < ce\z|(17a02)
for all z € C with z = |z]€, 0 € [—, 7.
Moreover, if these conditions hold, then

(4) sup |[T"|| < o0,  supn'/?||T" — T"| < oo.
neN neN

In particular, (4) holds whenever T is given by (1) with S a contraction
in Hilbert space. (Additional note: conversely, the author recently proved in
[6] that in any Banach space, conditions (4) imply the conditions (I) and
(IT), and gave further conditions equivalent to these.)

The preceding results apply to very large classes of Markov operators
associated with random walks, as we discuss in Section 3 below. In particular,
it seems interesting that estimates of type (3) and (4) hold for many Markov
operators, a result which we have not seen in the literature.

Operators satisfying the estimate sup,,en(||T7] + n||T" — T ]) < oo,
which is stronger than (4), have recently been well studied. See [1], [2],
[5], [7], [9], [10], [11, Theorem 10] and references therein. In Hilbert space,
Theorem 2.3 below shows that a simple quadratic form inequality is sufficient
for that estimate.

2. Proof of the main theorem. Let us fix some notation. For a € C,
r>0,weset D(a;r) :={2€C: |z—a| <7}, D(a;7) :={2z €C: |z—a|] <71}
and D := D(0;1) = {z € C: |2| < 1}. Let H be a complex Hilbert space. If
S € L(H) and if F is a function holomorphic on an open neighborhood of the
spectrum o(S), then the operator F'(.S) is defined by the Dunford functional
calculus, and the spectral mapping theorem states that o(F(S)) = F(o(95))
(see [13, Section VIIL.7]). Von Neumann’s inequality says that if ||S] < 1
then

IES)] < 1Pl o)

whenever F is holomorphic on a neighborhood of D.
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Here is our main result.

THEOREM 2.1. Given T € L(H), each of the following conditions (I) to
(VI) is equivalent.

(I) There exists 3 € (0,1) such that ||T — BI|| < 1— 3; that is, (1) holds
with ||S|| < 1.
(IT) ||T|| < 1, and there exists o > 0 such that (2) holds for all f € H.
(IIT) There exists v € (0,1) such that |Tf]| < ||vf + (1 —~)Tf|| for all
femH.
(IV) There exists 3 € (0,1) such that o(T) C D(3;1 — 3) and
IE < 1Fl oo (51 ))
for all functions F' which are defined and holomorphic on a neigh-
borhood of D(3;1 — f3).
(V) o(T) C D, and there exists ¢ € (0,1) such that (3) holds for all
f€Handn eN.
(VI) o(T) C D, and there exists € € (0,1) such that ||Tec!=1)|| < 1.

Moreover, if these conditions hold, then sup, ey n'/?|T™ — T" || < oc.

REMARKS. In general, given T' € L(H), the real-valued quadratic forms
Qr: H — R and Q: H — R defined by

Qr(f) = IfI> = IITfI?,  Qp(f) :=Re((I = T)f. f)

are closely related to properties of the discrete semigroup (7"),cn and the
continuous semigroup (e_t(I _T))tzo. For example, Q7 > 0 if and only if T
is a contraction, while Q. > 0 if and only if the semigroup (e*t(I *T))tzo is
contractive. From this point of view, the equivalence of conditions (II) and
(V) above is not so surprising.

Note that Q7 < 2Q. for arbitrary T' € L(H); this result is a consequence
of the identity

(5) IFIP = ITFI* + (1 = T)fII* = 2Re((I = T)f, f)

valid for all f € H. Observe also that there exist non-contractions T satis-
fying Qr > aQ’ for some a > 0; for example, take T' = 21, o = 3.

Proof of Theorem 2.1. The statement that sup,, n'/?||T" — T"|| < oo
is a consequence of condition (I) and Theorem 1.1. Alternatively, this final
statement can be derived by applying condition (IV) to the functions z —
(1—2)z"

Condition (I) means that ||[Tf — 3f|> < (1 — 3)?||f||? for all f € H. By

expanding

ITf —Bf|I* = |TfII*> — 28Re(Tf, f) + 52| fII?
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and rearranging, we see that condition (I) is equivalent to the inequality

26Re((I = T)f, f) < (L= B2IIFI° + 281117 = B2IF11° = 1T
= [IFI1* = IT £

Thus condition (I) implies (IT) with o = 2. Conversely, assume that condi-
tion (II) holds; then ||T'|| < 1 implies that Re(( — T)f, f) > 0, and hence
by decreasing « if necessary we can assume that a € (0,2). Then condition
(I) holds with 5 = a/2.

Next, condition (III) implies that [|Tf] < || f|| + (1 — )| Tf]|, so that
IIT']] < 1. Moreover, by squaring and expanding one rewrites condition (IIT)
as

ITFI? < A2IFIP + (1 =) ITFI? +2y(1 = 7) Re(T'f, f)

or equivalently, after rearranging,

21 =72 =) Re((I = DVf, f) < IfI* = ITfI?

for all f € H. From this, it is easy to deduce that conditions (III) and (II)
are equivalent.

Let us derive condition (IV) from condition (I). One has

o(T)=p+o(T—pI)CB+D(0;1-p)=D(B1-7)

by condition (I). The desired estimate of ||F'(T')|| is easily obtained by ap-
plying von Neumann’s inequality to the contraction S := (1 — )~ (T — BI).

Conversely, condition (IV) implies (I) trivially, by considering the func-
tion F(z) =z — .

Conditions (V) and (VI) are easily seen to be equivalent, since e
the operator inverse to e ¢U~1).

To show that condition (IV) implies (VI) with e = 3, we check that the
holomorphic function

e(I-T) is

Fp(z) := zeP(1=2)
satisfies ||Fﬁ||Loo(5(ﬁ;1_ﬂ)) < 1. For z € D(3;1— ), the inequality |z — 3|? <
(1 — 3)? implies that
|Z|2 <1-— 26(1 o Re(z)) < e—2ﬁ(1—Re(z)) _ |€_6(1_Z)’2
by the elementary estimate 1 —¢ < e™*, ¢ € R. Thus |Fj(z)| < 1, and

HFﬁnL‘X’(E(ﬁ;l—ﬁ)) <1

Finally, we show that condition (VI) implies (I). This proof can be com-
pared with [7, Section 2|, where the inverse of the mapping z +— ze® is
used for a different purpose. Take ¢ € (0,1) as in condition (VI), and write
F.(z) = z¢¢(17%), 2 € C. We need the following results on Fy.

LEMMA 2.2. Given € € (0,1), put Ac := {z € C: [z| < 1, [F(2)| < 1}.
There exists a holomorphic function W, defined on a neighborhood of D such
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that W.(F:(z)) = z for all z in some neighborhood of A.. Moreover, there
exists a 3 = () € (0,¢) such that D(e;1 —¢) C A. C D(B;1 — 3) and

(6) W.(D) € D(B;1 - ).
Proof of Lemma 2.2. There exists a holomorphic function
w: D(0;e ) = C

such that W(zefz) = z for all z in some neighborhood of 0; see, for example,
[7, p. 465]. Then defining W, : D(0;e"'e*~1) — C by

We(w) == "W (ee *w),
one has W (F_(z)) = z for all z in a neighborhood of 0. Because e 1~ > 1,
the domain of definition of W, contains ID. After observing that A. is a
compact connected region containing 0, one sees by analytic continuation
that W(F:(z)) = z for all z in a neighborhood of A..

It is not difficult to show that F. maps A, bijectively onto D, and that
W.(D) = Ac. The inclusion D(g;1—¢) C A, was established in the argument
that (IV) implies (VI).

To complete the proof of the lemma, we show that A. C D(3;1 — 3) for
some 3 € (0,¢). Fixing ¢ € (0,1) such that e™* <1 — ct for all t € [0,4], we
have

2|2 < e72(7Re2) < 1 — 9¢e(1 — Re(2))
for all z € A.. Thus |z — cg|?> < (1 —ce)?, and A. C D(ce;1 —ce). =

Continuing the notation of Lemma 2.2, assume that 7" satisfies condition
(VI). Then o(T) C D and, by the spectral mapping theorem, F.(o(T)) =
o(Tec!=1)) C D. Therefore o(T) C A.. By Lemma 2.2 and the Dunford
functional calculus we may write

T — BI = W.(Tet'=1)y — 31.
The hypothesis || Te=!=7)|| < 1 and von Neumann’s inequality then yield
|7 — BI|| < sup|We(2) =B <10
z€D
with the last inequality by (6). This establishes condition (I), and the proof

of Theorem 2.1 is complete. =

EXAMPLE. For a normal operator T' € L(H), it is easy to see that the
conditions of Theorem 2.1 hold if and only if o(T) C D(83;1 — f3) for some
B € (0,1). For self-adjoint T', the conditions hold if and only if o(7") C (-1, 1]
(and in that case, the inequality (7) below is also satisfied).

To conclude this section, we describe a quadratic form inequality which
is stronger than (2) and implies that sup,,cyn||T™ — T < o0.
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THEOREM 2.3. Let T € L(H) be such that there exists o > 0 with
(7) IFI* = ITFI? = al((1 = T)f, f)

for all f € H. Then the conditions of Theorem 2.1 are satisfied, and moreover
sup,en n||T™ — T || < oo.

Proof. Inequality (7) implies that |[f||> — ||Tf||* > 0 so that T is a
contraction. Thus (7) implies condition (II) of Theorem 2.1. Also, (7) and
(5) show that

(I =T)f, f)] <2 Re((I - T)f, f).

This last inequality is a sectorial estimate which implies (see for example |8,
Theorem 1X.1.24]) that the semigroup (e~*!=7));5 is bounded holomorphic,
hence one has an estimate ||(I —T)e *U=T)|| < ¢t~! for all t > 0. Then using
(3) yields a bound

I(1 =TT < (I = T)e "D < 'n
foralln € N. =

In connection with Theorem 2.3 and its proof, we mention the situa-
tion in general Banach spaces. For a bounded linear operator in Banach
space, the condition sup,,cy([|T7| +n[|T™ — T™!||) < oo holds if and only if
o(T) € D(0;1) U {1} and the semigroup (e~*/=7)),54 is bounded holomor-
phic (see [10, Theorem 2.1] and [1, 2]). The simple proof above of Theorem 2.3
depended crucially on the estimate (3).

3. Markov operators. This section presents two distinct settings of
Markov operators where the preceding results apply.

Markov operators on a countable space. Let T be a Markov operator
on a countable set (2. That is, we assume that there exists a Markov ker-
nel (p(z,y))syen with p(z,y) > 0, 3, cop(x,y) = 1, such that T acts on
bounded functions f: {2 — C by the formula

(Tf)(z) = plw,y)f(y)
ye

for all z € §2. Suppose further that m is an invariant measure for p, meaning
that m: 2 — (0,00) with > __,m(x)p(z,y) = m(y) for all y € (2. For
subsets A C 2 we set m(A) := > ., m(z). Then it is standard that 7" is a
contraction in the Banach spaces L"(§2;m), r € [1, c0].

Our result in this setting is the following.

PROPOSITION 3.1. Suppose there exists 3 € (0,1) such that
(8) p(z,x) > 3
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for all x € 2. Then T satisfies the conditions of Theorem 1.1 in each of the
Banach spaces L"(£2;m), r € [1,00], and satisfies the conditions of Theo-
rem 2.1 in the Hilbert space L%(£2;m).

Proof. Observe from (8) that the operator S := (1 — 3)~Y(T — pI) is
also a Markov operator, corresponding to the Markov kernel ¢(z,y) := (1 —
B) L(p(x,y) — B:(y)) (where 6,(y) is 1 or 0 according as & = y or x # y).
The measure m is invariant for ¢. Thus S is a contraction in L"({2;m),
r € [1,00], and the proposition follows from Theorems 1.1 and 2.1. =

The condition (8) is not new and has been used in studying random walks;
see, for example, [3] and references therein, and see also [4, Lemma 1.3] for a
result essentially weaker than Proposition 3.1. While many authors assume
that p is reversible with respect to m, which implies that T is self-adjoint in
L?(£2;m), we make no reversibility assumption above.

Markov convolution operators on a locally compact group. Let G be a
locally compact, compactly generated group, with a fixed left invariant Haar
measure dg. (For background information, see [12] and [5].) We fix an open,
relatively compact neighborhood U of the identity e of G such that U = U~!
and U generates G. The modulus ¢ = gy: G — N is defined by po(g) :=
inf{n € N: g € U™}, where U™ C G denotes the set of all n-fold products of
elements of U.

Given p € P(G), where P(G) is the set of regular Borel probability mea-
sures on G, consider the Markov convolution operator T}, given by T),f :=
px f forall f € L™ := L"(G;dg), r € [1,00]. The involute pu* € P(G) of
p is defined by p*(A) := u(A~1) for Borel sets A C G. We say that p is
adapted if the smallest closed subgroup of G containing the support of p is
G itself; alternatively, say that u is aperiodic if the measure p* * u is adapted.
Aperiodicity is a stronger condition than adaptedness.

Here is our result in this setting.

THEOREM 3.2. Let u € P(G) be aperiodic, non-singular with respect to
Haar measure dg, and such that §, du(g) o(g)? < co. Then T), satisfies the
conditions of Theorem 2.1 in the Hilbert space L? = L?(G;dg).

In the situation of Theorem 3.2, unlike that of Proposition 3.1, the op-
erator S := (1 — 3)1(T, — BI) is not necessarily a Markov operator for any
B € (0,1). For example, consider the discrete group G = Z of integers and
an aperiodic p € P(Z) which satisfies u({0}) = 0.

The proof of Theorem 3.2 requires the following lemma which is contained
in, for example, [5, Propositions 3.2, 3.3]; results in the same spirit are in
[12, Chapters VI, VIIJ.

LEMMA 3.3. Suppose that v € P(G) is symmetric (that is, v* = v),
adapted, non-singular with respect to dg, and such that SG dv(g) o(g)? < oo.
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Write I'(f) := §,; dg § dh |f(gh) — f(R)|?. Then there exists c > 1 such that

'I(f) < (I =T)f f) < el ()
for all f € L.
Proof of Theorem 3.2. The measures vy := 27 (u + p*) € P(G) and

vy = p* x p € P(G) satisfy the hypotheses of Lemma 3.3. Since T),« is the
adjoint operator of 7}, in L?, one finds that

Re((I = T)f. f) =27 (I =T, ) +27(f. (I =T,)f)
= (I =T)f. 1)

cl'(f)

(I =Tw)f, ) =< (IF1I3 — I T.f11)

for all f € L2 Thus condition (II) of Theorem 2.1 is satisfied. m

<
<

More refined L? estimates depend on the notion of centeredness for
probability measures; see |5| for details. Actually, if p € P(G) is as in
Theorem 3.2 and is centered, then [5, Proposition 3.2] gives an estimate
(I =T f, £l <cl(f), f € L?, so that T, satisfies the inequality (7).
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