
BULLETIN OF THE POLISH

ACADEMY OF SCIENCES

MATHEMATICS

Vol. 55, No. 4, 2007

GENERAL TOPOLOGY

Group Stru
tures and Re
ti�ability in Powers of Spa
esbyG. J. RIDDERBOSPresented by Czesªaw BESSAGA
Summary. We prove that if some power of a spa
e X is re
ti�able, then X

πw(X) isre
ti�able. It follows that no power of the Sorgenfrey line is a topologi
al group andthis answers a question of Arhangel′ski��. We also show that in Mal′tsev spa
es of point-
ountable type, 
hara
ter and π-
hara
ter 
oin
ide.1. Introdu
tion. A spa
e X is said to be re
ti�able or to have a re
ti-�able diagonal if there is a homeomorphism Ψ : X2 → X2 and an element
e ∈ X su
h that π1 ◦ Ψ = π1 and for all x ∈ X, Ψ(x, x) = (x, e). Here
π1 : X2 → X is the proje
tion onto the �rst 
o-ordinate. We 
all the map-ping Ψ a re
ti�
ation of X, and the element e is 
alled a right unit element.We denote by πw(X) and w(X) the π-weight and weight of X respe
tively,and by πχ(X), χ(X) and d(X) the π-
hara
ter, 
hara
ter and density.Spa
es with a re
ti�able diagonal were introdu
ed by Uspenski�� [16, 17℄.Every topologi
al group is re
ti�able by means of the mapping Ψ(x, y) =
(x, xy−1). However, not every re
ti�able spa
e admits a group stru
ture: the
7-dimensional sphere S7 is re
ti�able but not a topologi
al group (see [17,�3℄). Gul′ko proved in [6℄ that some results on topologi
al groups generalizeto re
ti�able spa
es. For example, a re
ti�able spa
e is metrizable if andonly if it is �rst 
ountable. Furthermore, some 
ardinal fun
tions 
oin
ide onre
ti�able spa
es as they do on topologi
al groups (see [6, Theorem 3.3℄ formore details).The following question is due to A. V. Arhangel′ski�� [1℄ and it was broughtto my attention by T. Eisworth at the problem session of the Spring Topologyand Dynami
s Conferen
e 2007:2000 Mathemati
s Subje
t Classi�
ation: 54A25, 54B10, 54H11.Key words and phrases: topologi
al group, re
ti�able, Mal′tsev spa
e, produ
ts.[357℄ 
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Question 1.1. Is some power of the Sorgenfrey line a topologi
al group?The aim of this note is to answer this question negatively. In fa
t, we willshow that no power of the Sorgenfrey line is re
ti�able. We will prove that ifsome power of the spa
e X is either re
ti�able or a topologi
al group, then

Xπw(X) has the same property. Sin
e the Sorgenfrey line S has 
ountable
π-weight but S

ω is not re
ti�able, it follows that no power of S is re
ti�able(see Corollary 2.4 below).Our results are similar to those in [13℄. Re
all that a spa
e X is homo-geneous if for every x, y ∈ X there is a homeomorphism h of X su
h that
h(x) = y. A spa
e X is 
alled power homogeneous if Xµ is homogeneous forsome 
ardinal number µ. A spa
e of the form Xµ is 
alled ∆-homogeneousif for all points x and y on the diagonal of Xµ there is a homeomorphism
h of Xµ mapping x onto y. Here, the diagonal of Xµ 
onsists of all points
x ∈ Xµ su
h that xα = xβ for all α, β ∈ µ. Ridderbos proved in [13, Theo-rem 4.5℄ that if X is power homogeneous, then Xπw(X) is ∆-homogeneous.So the homogeneity of some (possibly very large) power of X implies the ex-isten
e of �many� homeomorphisms of Xπw(X). Sin
e every re
ti�able spa
eis homogeneous, the result of this paper may be seen as an improvement ofTheorem 4.5 from [13℄ for the 
lass of spa
es X that have a re
ti�able powerspa
e. It is unknown in general whether Xπw(X) is homogeneous whenever
X is power homogeneous (see [12, Question 2.4℄).We re
all from [6℄ that not every homogeneous spa
e is re
ti�able. Gul′koproved in [6℄ that no non-trivial spa
e with the �xed point property is re
-ti�able. So the Hilbert 
ube is an example of a homogeneous spa
e whi
his not re
ti�able. The 
onvergent sequen
e serves as an example of a non-homogeneous spa
e some power of whi
h is a topologi
al group and hen
ere
ti�able.2. Main result. All spa
es under 
onsideration are Hausdor�. All prod-u
t spa
es in this paper 
arry the usual produ
t topology. Fix a spa
e X. If µis an in�nite 
ardinal number and A ⊆ µ, then we denote by πA the proje
-tion of Xµ onto XA. If α ∈ µ, then we write πα instead of π{α}. Furthermore,if x ∈ Xµ then xA = πA(x) and xα = πα(x).For A, B ⊆ µ, we use πA,B to denote the proje
tion of Xµ × Xµ onto
XA×XB, i.e. πA,B(x, y) = (xA, yB). In this 
ase we also abbreviate πA,B(w)by wA,B , where w = (x, y) ∈ Xµ × Xµ.The following theorem was proved in [13℄.Theorem 2.1 ([13, Theorem 4.4℄). Let X be a topologi
al spa
e and sup-pose that πw(X) ≤ κ ≤ µ. Suppose further that h : Xµ → Xµ is a homeo-morphism. If B ∈ [µ]≤κ then there are an A ∈ [µ]≤κ and a homeomorphism
hA : XA → XA su
h that B ⊆ A and hA ◦ πA = πA ◦ h.



Group Stru
tures and Re
ti�ability in Powers 359
Now suppose that Xµ is re
ti�able with re
ti�
ation Ψ and πw(X) =

κ ≤ µ. Then it follows from the above theorem that there are A, B ∈ [µ]κand a homeomorphism ΨA,B : XA×XB → XA×XB su
h that ΨA,B ◦πA,B =
πA,B ◦ Ψ . To prove our main result, we need A = B. We prove that this ispossible in the following lemma.Lemma 2.2. Let X be a topologi
al spa
e and suppose that πw(X) ≤ κ

≤ µ. Suppose further that h : Xµ × Xµ → Xµ × Xµ is a homeomorphism.Then there are an A ∈ [µ]κ and a homeomorphism hA : XA×XA → XA×XAsu
h that hA ◦ πA,A = πA,A ◦ h.Proof. The proof is almost identi
al to the proof of Theorem 4.4 in [13℄.Applying [13, Theorem 4.3℄, we �nd sequen
es (An)n and (Bn)n su
h that(1) A0 = B0 ∈ [µ]κ are arbitrary and An, Bn ∈ [µ]κ for all n < ω,(2) An ∪ Bn ⊆ An+1 ∩ Bn+1,(3) for all w, z ∈ Xµ × Xµ,
wAn,Bn

= zAn,Bn
⇔ h(w)An,Bn

= h(z)An,Bn
.Finally, we let A =

⋃
n<ω An and B =

⋃
n<ω Bn. It follows from (2) that

A = B and by (3) we have, for all w, z ∈ Xµ × Xµ,
wA,A = zA,A ⇔ h(w)A,A = h(z)A,A.We now take any inje
tion i : XA → Xµ su
h that πA ◦ i = id and we let

hA = πA,A ◦ h ◦ (i × i). The proof that hA is a homeomorphism with thedesired properties is exa
tly as in the proof of [13, Theorem 4.4℄.We now 
ome to our main result.Theorem 2.3. Suppose that some power of X is either re
ti�able or atopologi
al group. Then Xπw(X) has the same property.Proof. Let πw(X) = κ and suppose that Xµ is either re
ti�able or atopologi
al group. It is easy to see that the produ
t of re
ti�able spa
es isagain re
ti�able, and the same is true for topologi
al groups (
f. [7, Theorem6.2℄). We may therefore assume without loss of generality that κ ≤ µ.We �rst deal with the re
ti�able 
ase. So assume that Ψ is a re
ti�
ationof Xµ with right unit element e ∈ Xµ. By Lemma 2.2 we �nd A ∈ [µ]κ anda homeomorphism ΨA on XA × XA su
h that
(†) ΨA ◦ πA,A = πA,A ◦ Ψ.It follows from (†) that ΨA is a re
ti�
ation on XA with right unit element
eA. To see this, �x any inje
tion i : XA → Xµ su
h that πA ◦ i = id. Thenif x ∈ XA is arbitrary, we have

ΨA(x, x) = ΨA ◦ πA,A(i(x), i(x)) = πA,A ◦ Ψ(i(x), i(x))

= πA,A(i(x), e) = (x, eA).
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Next, let π1

A and π1
µ be the proje
tions of XA × XA and Xµ × Xµ onto the�rst 
o-ordinate XA and Xµ respe
tively. Sin
e π1

µ ◦ Ψ = π1
µ, we also have

π1
A ◦ πA,A ◦ Ψ = π1

A ◦ πA,A. Hen
e
π1

A ◦ ΨA = π1
A ◦ ΨA ◦ πA,A ◦ (i × i) = π1

A ◦ πA,A ◦ Ψ ◦ (i × i)

= π1
A ◦ πA,A ◦ (i × i) = π1

A.This shows that ΨA is a re
ti�
ation on XA with unit element eA. Sin
e
|A| = πw(X), it follows that Xπw(X) is re
ti�able.Next we deal with the 
ase that Xµ is a topologi
al group with identity
e ∈ Xµ. We denote the group operation on Xµ by ⋆ and de�ne g : Xµ ×Xµ

→ Xµ×Xµ by g(x, y) = (x−1, x⋆y). Then g is a homeomorphism so we mayapply Lemma 2.2 to �nd A ∈ [µ]κ and a homeomorphism gA on XA × XAsu
h that
(††) gA ◦ πA,A = πA,A ◦ g.Next let π1

A and π2
A be the proje
tions of XA × XA onto the respe
tive
o-ordinates. We now de�ne a 
ontinuous binary operation ⋆A on XA asfollows: for x, y ∈ XA,

x ⋆A y := π2
A ◦ gA(x, y).It is not hard to dedu
e from (††) that

(†††) ⋆A ◦ πA,A = πA ◦ ⋆.We leave it to the reader to verify that ⋆A is a 
ontinuous group operationon XA with identity eA and inverses given by h where h(x) = π1
A ◦gA(x, eA).Sin
e |A| = πw(X), this 
ompletes the proof.It follows from the 
orollary below that no power of the Sorgenfrey line isre
ti�able; simply note that the π-weight of this spa
e is 
ountable whereasit has un
ountable weight. This also answers Question 1.1.Corollary 2.4. Suppose that some power of X is re
ti�able. Then:(1) w(X) = πw(X),(2) if the π-weight of X is 
ountable, then X is metrizable.Proof. It follows from the previous theorem that Xπw(X) is re
ti�able.Gul′ko proved in [6, Theorem 3.3℄ that the π-weight and weight 
oin
ide inre
ti�able spa
es. Sin
e w(Xπw(X)) = w(X) and πw(Xπw(X)) = πw(X) (
f.[8, 5.3℄), this proves the �rst statement.Next suppose that the π-weight of X is 
ountable. Then it follows from(1) and [8, 5.3℄ that the 
hara
ter of Xω is 
ountable. Sin
e Xω is re
ti�ableit follows from [6, Theorem 3.2℄ that Xω (and hen
e X) is metrizable.Van Mill noted in [9, Corollary 1.3℄ that if X is a homogeneous 
om-pa
tum, then assuming GCH, χ(X) ≤ πw(X). It follows from a result of
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Arhangel′ski��, van Mill and Ridderbos that the same statement holds if X isa power homogeneous 
ompa
tum (see [3, Corollary 2.5℄ and [11, Proposition2.1℄). If some power of X is re
ti�able, then we 
an drop the 
ompa
tnessassumption and GCH entirely, sin
e in this 
ase it follows from Corollary2.4(1) that χ(X) ≤ πw(X). Sin
e the π-
hara
ter and 
hara
ter 
oin
ide inre
ti�able spa
es by [6, Theorem 3.3℄, this raises the following question:Question 2.5. Suppose that some power of X is re
ti�able (or a topo-logi
al group). Is it the 
ase that πχ(X) = χ(X)?We will prove below that for spa
es of point-
ountable type, the answer tothis question is �YES�. Re
all that a spa
e X is 
alled aMal ′tsev spa
e if thereis a 
ontinuous fun
tion µ : X3 → X su
h that µ(x, x, y) = y = µ(y, x, x)for all x, y ∈ X. In this 
ase the fun
tion µ is 
alled a Mal ′tsev fun
tion.The 
lass of Mal′tsev spa
es is 
losed under taking retra
tions, and if Xis a topologi
al group, then the formula xy−1z de�nes a Mal′tsev fun
tionon X. So if a spa
e X is a retra
t of a topologi
al group, then it is a Mal′tsevspa
e. Conversely, it was shown by Sipa
heva in [15℄ that every 
ompa
tMal′tsev spa
e is also a retra
t of a topologi
al group (see [5, Corollary 6℄and [10, Theorem 1.6℄ for generalizations).Uspenski�� noted in [17, Proposition 14℄ that re
ti�able spa
es admit aMal′tsev operation. So if some power of a spa
e X is re
ti�able, then X isitself a Mal′tsev spa
e. Now let X be a 
ompa
t spa
e some power of whi
his re
ti�able. Then X is a 
ompa
t Mal′tsev spa
e and therefore χ(X) =
πχ(X). This follows from the fa
t that 
ompa
t Mal′tsev spa
es are dyadi
,whi
h was proved by Uspenski�� [17℄, and therefore weight and π-
hara
ter
oin
ide in 
ompa
t Mal′tsev spa
es (see [2, III, �1℄). We shall now givean elementary proof of the fa
t that 
hara
ter and π-
hara
ter 
oin
ide on
ompa
t Mal′tsev spa
es and in fa
t this is also true for Mal′tsev spa
es ofpoint-
ountable type. We �rst prove the following theorem.Theorem 2.6. Suppose that X is a 
ompa
t subset of a Mal ′tsev spa
e Z.Then for all x ∈ X, χ(x, X) ≤ πχ(x, Z).Proof. Fix a Mal′tsev fun
tion µ on Z. All 
losures are taken in Z. Fixa point x ∈ X and a lo
al π-base B at x in Z. For every B ∈ B, we pi
k
yB ∈ B. For y ∈ Z we de�ne fy : Z → Z by fy(z) = µ(y, x, z). Note that
fy(x) = y for every y ∈ Z.Let U = {X ∩ f−1

yB
[B] : B ∈ B}. We will show that this is a lo
al basis at

x in X. Sin
e |U| ≤ |B|, this su�
es to prove the theorem. Note in parti
ularthat U is a 
olle
tion of open neighbourhoods of x in X.So let U be some open neighbourhood of x in X. Then X \U is a 
ompa
tsubset of Z whi
h misses x and therefore we may �nd an open neighbourhood
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V of x in Z su
h that

X \ U ⊆ Z \ V .It follows that
{x} × {x} × (X \ U) ⊆ µ−1[Z \ V ].By a standard 
ompa
tness argument, we may �nd an open neighbourhood

W of x in Z su
h that
W × W × (X \ U) ⊆ µ−1[Z \ V ].Sin
e B is a lo
al π-base at x in Z, we may �nd B ∈ B su
h that B ⊆ W ∩V .We prove the following 
laim;

Claim 1. If y ∈ B, then X ∩ f−1
y [B] ⊆ U .Proof of Claim. Let z ∈ X ∩ f−1

y [B] and suppose that z 6∈ U . Then
z ∈ X \ U and sin
e x, y ∈ W , it follows that (y, x, z) ∈ W × W × (X \ U).This implies that fy(z) = µ(y, x, z) ∈ Z \V . So we have fy(z) ∈ B∩ (Z \V ).But B ⊆ V and therefore B ∩ (X \ V ) = ∅. This is a 
ontradi
tion.From the 
laim it follows that X ∩ f−1

yB
[B] is a neighbourhood of x in Xwhi
h is 
ontained in U . Sin
e U was arbitrary, we have proved that U is alo
al basis at x in X, and this 
ompletes the proof.Re
all that the point 
ompa
tness type of a spa
e X, pct(X), is de�nedas the least 
ardinal number κ with the property that for every x ∈ X, thereis a 
ompa
t subset F of X su
h that x ∈ F and χ(F, X) ≤ κ. A spa
e issaid to be of point-
ountable type if its point 
ompa
tness type is 
ountable.It follows from the 
orollary below that if X is of point-
ountable type andsome power of X is re
ti�able, then χ(X) = πχ(X).Corollary 2.7. If X is a Mal ′tsev spa
e, then χ(X) = πχ(X)pct(X).In parti
ular , if X is of point-
ountable type, then χ(X) = πχ(X).Proof. Fix x ∈ X and a 
ompa
t subset F of X su
h that x ∈ F and

χ(F, X) ≤ pct(X). We have just proved that χ(x, F ) ≤ πχ(x, X). Further-more, it is well known that χ(x, X) ≤ χ(x, F ) · χ(F, X) (see for example [4,3.1.E℄), so it follows that
χ(x, X) ≤ χ(x, F ) · χ(F, X) ≤ πχ(x, X)pct(X).This shows that χ(X) ≤ πχ(X)pct(X). The reverse inequality is alwaysvalid, so this 
ompletes the proof.The following 
orollary improves [6, Theorem 3.4℄.Corollary 2.8. If X is a Mal ′tsev spa
e of point-
ountable type, then

χ(X) = t(X).Proof. This follows from the previous 
orollary and the fa
t that πχ(X)
≤ t(X) for spa
es X of point-
ountable type (see [14, Theorem 1′℄).
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