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MANIFOLDS AND CELL COMPLEXES

There are no Phantom Pairs of Mappings to1-Dimensional CW-ComplexesbySibe MARDE�I�Presented by Czesªaw BESSAGASummary. Two mappings from a CW-
omplex to a 1-dimensional CW-
omplex are ho-motopi
 if and only if their restri
tions to �nite sub
omplexes are homotopi
.1. Introdu
tion. Let f, g : P → P ′ be two mappings between CW-
omplexes. Clearly, if f and g are homotopi
, f ≃ g, then for every �nitesub
omplex Q ⊆ P , the restri
tions f |Q, g|Q are also homotopi
. In thispaper we will prove that the 
onverse impli
ation holds provided P ′ hasdimension ≤ 1, i.e., we will prove the following theorem.Theorem 1. Let P, P ′ be CW-
omplexes and let f, g : P → P ′ be map-pings su
h that , for every �nite sub
omplex Q ⊆ P , the restri
tions f |Q, g|Qare homotopi
. If dimP ′ ≤ 1, then f ≃ g.In homotopy theory a mapping f : P → Y from a CW-
omplex P to atopologi
al spa
e Y is 
alled an essential phantom mapping of the se
ondkind provided f is essential, i.e., it is not homotopi
 to a 
onstant mapping,but its restri
tion to any �nite sub
omplex Q of P is homotopi
 to a 
on-stant mapping [5℄. A generalization of this notion is the notion of an essentialphantom pair of mappings of the se
ond kind. This is a pair of nonhomotopi
mappings f, g : P → Y whose restri
tions f |Q, g|Q to every �nite sub
om-plex Q of P are homotopi
. Consequently, Theorem 1 
an be restated asfollows.
Theorem 1′. There are no essential phantom pairs of mappings of these
ond kind from a CW-
omplex P to a CW-
omplex P ′ with dimP ′ ≤ 1.2000 Mathemati
s Subje
t Classi�
ation: 57M05, 55S37, 20E05.Key words and phrases: homotopy 
lassi�
ation of mappings, 1-dimensional CW-
omplexes, phantom pairs of mappings, fundamental group, free group.[365℄ 
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Remark 1. In Theorem 1 the assumption f |Q ≃ g|Q for �nite sub
om-plexes Q ⊆ P 
annot be repla
ed by the assumption that the restri
tions of

f and g to 1-
ells of P be homotopi
 (see Example 2 in Se
tion 4).2. Equivalent forms of Theorem 1. Theorem 1 is equivalent to thefollowing theorem (the author owes this remark to J. Dydak).Theorem 2. Let P, P ′ be 
onne
ted CW-
omplexes and let f, g : P → P ′be mappings su
h that , for every �nite sub
omplex Q ⊆ P , the restri
tions
f |Q, g|Q are homotopi
. If dimP = dimP ′ = 1, then f ≃ g.Obviously, Theorem 1 implies Theorem 2. To prove the 
onverse, 
onsider
f, g : P → P ′ su
h that f |Q ≃ g|Q for all �nite sub
omplexes Q of P .Sin
e every point u ∈ P belongs to a �nite sub
omplex Q of P , the points
f(u), g(u) belong to the same 
omponent of P ′. Hen
e, f and g map a
omponent of P to the same 
omponent of P ′. Therefore, it su�
es to proveTheorem 1 under the additional assumption that P and P ′ are 
onne
ted.If dim P ′ = 0, then P ′ is a point ∗′, and thus f = g. Therefore, it su�
esto 
onsider the 
ase when dimP ′ = 1. If dimP = 0, then P is a point ∗, andthus f = f |∗ ≃ g|∗ = g. Therefore, we 
an assume that dimP ≥ 1. Considerthe 1-skeleton P 1 of P . Clearly, the restri
tions f |P 1, g|P 1 : P 1 → P ′ satisfythe assumptions of Theorem 2, and therefore there exists a homotopy h1 :
P 1 × I → P ′ whi
h 
onne
ts f |P 1 and g|P 1.It is well known that every 
onne
ted CW-
omplex of dimension 1 is anEilenberg�Ma
Lane 
omplex of type K(G, 1) (see, e.g., [1, Example 1B.1℄).Therefore, the homotopy groups πn(P ′) are zero for n ≥ 2. Consequently,there are no obstru
tions to extending a homotopy hn−1 : Pn−1 × I → P ′of the (n − 1)-skeleton Pn−1 of P to a homotopy hn : Pn × I → P ′ ofits n-skeleton Pn (use, e.g., Lemma 4.7 of [1℄). Pro
eeding in this way oneobtains a homotopy 
onne
ting f to g.We will now prove that Theorem 2 is equivalent to the following theorem.Theorem 3. Let P, P ′ be 
onne
ted 1-dimensional CW-
omplexes hav-ing only one 0-
ell ∗ and ∗′, respe
tively and let f, g : P → P ′. If for every�nite sub
omplex Q ⊆ P the restri
tions f |Q, g|Q are homotopi
, then f ≃ g.Obviously, Theorem 2 implies Theorem 3. To prove the 
onverse, 
on-sider f, g : P → P ′ su
h that f |Q ≃ g|Q for all �nite sub
omplexes Q of P .It is well known that every 
onne
ted 1-dimensional CW-
omplex 
ontains amaximal tree (see, e.g., [1, Proposition 1A.1℄). Let T and T ′ be maximal treesin P and P ′, respe
tively. Sin
e the pair (P, T ) has the homotopy extensionproperty and T is 
ontra
tible, the quotient mapping q : P → P/T is a homo-topy equivalen
e, and thus admits a homotopy inverse r : P/T → P (see, e.g.,[1, Proposition 0.17℄). Analogously, the quotient mapping q′ : P ′ → P ′/T ′ ad-mits a homotopy inverse r′ : P ′/T ′ → P ′. If P ′ = T ′, then P ′ is 
ontra
tible,
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and thus f ≃ g. Otherwise, R′ = P ′/T ′ is a 
onne
ted 1-dimensional CW-
omplex having the point ∗′ = T ′ as its only 0-
ell. Analogously, if P = T ,then P 
ontra
ts to a point u0 ∈ P , whi
h is a 0-
ell of P . Consequently,
f is homotopi
 to the 
onstant f(u0) and g is homotopi
 to the 
onstant
g(u0). But f |u0 ≃ g|u0, and thus f ≃ g. Otherwise, R = P/T is a 
onne
ted1-dimensional CW-
omplex having the point ∗ = T as its only 0-
ell. To
omplete the proof it su�
es to 
onsider the 
ase when P = T and P ′ = T ′.Let f ′, g′ : R → R′ be de�ned by f ′ = q′fr and g′ = q′gr. If S ⊆ R is a�nite sub
omplex of R, then S and r(S) are 
ompa
t. Therefore, r(S) is
ontained in a �nite sub
omplex Q of P . By assumption, f |Q ≃ g|Q andthus also fr|S ≃ gr|S. It follows that f ′|S = q′fr|S ≃ q′gr|S = g′|S, i.e.,the restri
tions of f ′ and g′ to all �nite sub
omplexes of R are homotopi
.Now Theorem 3 shows that f ′ ≃ g′, i.e., q′fr ≃ q′gr. Sin
e q′ and r arehomotopy equivalen
es, it follows that also f ≃ g.3. A theorem on free groups. To prove Theorem 3 we need the fol-lowing theorem on free groups.Theorem 4. Let F be a free group and let (αi), (βi), i ∈ M , be two
olle
tions of elements from F . If for every �nite subset L ⊆ M , there existsan element γL ∈ F su
h that αi = γLβiγ

−1

L for every i ∈ L, then there existsan element γ ∈ F su
h that αi = γβiγ
−1 for every i ∈ M .In the proof of Theorem 4 we will use some well-known fa
ts 
on
erningfree groups. They are stated in the following proposition.Proposition 1. In a free group F the following statements hold :(i) If a ∈ F , a 6= 1, n ∈ Z and an = 1, then n = 0.(ii) If a, b ∈ F and m, n ∈ Z are integers di�erent from 0 su
h that amand bn 
ommute, then there exist an element c ∈ F and integers

r, s ∈ Z su
h that a = cr, b = cs.(iii) If a, b ∈ F , a 6= 1, b 6= 1 and n ∈ Z, n 6= 0, then an = bn implies
a = b.(iv) If a, b, c ∈ F are di�erent from 1, if a and b 
ommute and if b and
c 
ommute, then also a and c 
ommute.For a proof of (i) see [3, Corollary 1.2.2℄ or [2, Proposition 2.16℄. For (ii)see [3, 1.4, Problems 4 and 6℄ or [2, Proposition 2.17℄. For (iii) note that anand bn 
ommute, and therefore, by (ii), there exist c ∈ F and r, s ∈ Z su
hthat a = cr and b = cs. Consequently, cnr = cns, and thus cnr−ns = 1. Sin
e

c 6= 1, (i) implies that nr − ns = 0, and thus r = s, whi
h yields the desired
on
lusion that a = b. For (iv) see [2, Proposition 2.18℄.Proof of Theorem 4. For an arbitrary i ∈ M , 
onsider the singleton {i}and put γi = γ{i}. Note that αi = γiβiγ
−1

i . If for a given i ∈ M , βi = 1, then
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αi = 1, and thus αi = γβiγ

−1 for any γ ∈ F . Therefore, there is no loss ofgenerality in assuming that βi 6= 1 for all i ∈ M . Denote by B the subgroupof F generated by all βi, i ∈ M . Being a subgroup of a free group, B is alsoa free group (see [3, Corollary 2.9℄ or [2, Proposition 3.3℄). We distinguishtwo 
ases: I, when B is 
ommutative, and II, when B is not 
ommutative.In 
ase I, we �x an arbitrary k ∈ M . We will show that γ = γk is asrequired, i.e., αi = γkβiγ
−1

k
for all i ∈ M . Indeed, sin
e the only 
ommuta-tive group whi
h is free is the free 
y
li
 group (see [3, 2.4, Problem 2℄ or[2, Proposition 3.1℄), B is 
y
li
. Let {β} be a basis of B. Then every ele-ment βi, i ∈ M , is of the form βi = βri , where ri ∈ Z. By the assumptions ofTheorem 4, for an arbitrary i ∈ M and the �nite set L = {i, k} ⊆ M , thereexists γik = γ{i,k} ∈ F su
h that αi = γikβiγ

−1

ik and αk = γikβkγ
−1

ik . Sin
e
βi = βri , we see that

αi = γiβ
riγ−1

i = (γiβγ−1

i )ri and αi = γikβ
riγ−1

ik
= (γikβγ−1

ik
)ri .Therefore, (γiβγ−1

i )ri = (γikβγ−1

ik
)ri . Note that ri 6= 0, be
ause ri = 0 wouldimply βi = 1. Moreover, γiβγ−1

i 6= 1, be
ause γiβγ−1

i = 1 would imply
β = 1 hen
e, also βi = 1. Similarly, γikβγ−1

ik
6= 1. By Proposition 1(iii),one 
on
ludes that γiβγ−1

i = γikβγ−1

ik . An analogous argument shows that
γkβγ−1

k
= γikβγ−1

ik
. Consequently, γiβγ−1

i = γkβγ−1

k
, and thus (γiβγ−1

i )ri =

(γkβγ−1

k
)ri . Sin
e αi = (γiβγ−1

i )ri and γkβiγ
−1

k
= (γkβγ−1

k
)ri , we obtain thedesired relation αi = γkβiγ

−1

k for all i ∈ M .In 
ase II, B is not 
ommutative, so there exist k, l ∈ M su
h that βkand βl do not 
ommute. Consider the �xed subset {k, l} ⊆ M and put
γkl = γ{k,l}. For an arbitrary i ∈ M , 
onsider the subset {i, k, l} ⊆ M andput γikl = γ{i,k,l}. Let us show that

γikl = γkl for all i ∈ M .Indeed, sin
e k ∈ {k, l} ∩ {i, k, l}, we see that αk = γklβkγ
−1

kl and αk =

γiklβkγ
−1

ikl
. Consequently,

γklβkγ
−1

kl
= γiklβkγ

−1

ikl
.This shows that γ−1

kl γikl 
ommutes with βk. Analogously, γ−1

kl γikl 
ommuteswith βl. Re
all that βk 6= 1 and βl 6= 1. Therefore, if one would also have
γ−1

kl
γikl 6= 1, Proposition 1(iv) would imply that βk 
ommutes with βl, whi
his not the 
ase. We have thus proved that γ−1

kl γikl = 1, i.e., γkl = γikl, asdesired.Sin
e αi = γiklβiγ
−1

ikl
for all i ∈ M , the equality γikl = γkl implies that

αi = γklβiγ
−1

kl for all i ∈ M . Consequently, γ = γkl is as required.Example 1. Let F be the free group of rank 2 with basis {β1, β2}. Let
α1 = β−1

2
β1β2 and α2 = β−1

1
β2β1. Then there is no γ ∈ F su
h that αi =

γβiγ
−1 for i = 1, 2.
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To verify the assertion, assume that γ ∈ F is su
h that αi = γβiγ

−1 for
i = 1, 2, i.e.,

β−1

2
β1β2 = γβ1γ

−1 and β−1

1
β2β1 = γβ2γ

−1.The �rst of these relations shows that β2γ 
ommutes with β1. By Proposi-tion 1(ii), there exist ξ ∈ F and r, s ∈ Z su
h that β1 = ξr and β2γ = ξs.There is no loss of generality in assuming that r ≥ 0 (if not, repla
e ξ by ξ−1).Sin
e β1 belongs to a basis of F , one 
annot have r ≥ 2, and thus r = 1.Consequently, β2γ = (β1)
s. Analogously, there exists an integer s′ su
h that

β1γ = (β2)
s′ . It follows that

β−1

2
(β1)

s = γ = β−1

1
(β2)

s′ .However, this is impossible be
ause β−1

2
(β1)

s and β−1

1
(β2)

s′ are redu
edwords, beginning with β−1

2
and β−1

1
, respe
tively. Therefore, they 
annotrepresent the same element of F .4. Proof of Theorem 3. To prove Theorem 3, we will use Theorem 4and some elementary fa
ts 
on
erning the homotopy of loops in a pointedspa
e (Y, ∗′). In parti
ular, denote by (S1, ∗) the standard 1-sphere {z ∈ C :

|z| = 1} with the basepoint ∗ = 1 and let e : I → S1 be the exponentialmapping, e(t) = e2πit, t ∈ I = [0, 1]. By a loop a in Y , based at ∗′, we meana mapping a : S1 → Y su
h that a(∗) = ∗′. Note that a determines the path
ã = ae : I → Y , whi
h has the property that ã(0) = ã(1) = ∗′. Conversely,every path ã : I → S1 having the latter property determines a unique loop
a su
h that ã = ae. The 
omposition of two loops a1, a2 : S1 → Y , basedat ∗′, is the only loop a1a2 su
h that (a1a2)e = ã1ã2. We will say thatthe loops a, b, based at ∗′, are (freely) homotopi
 provided there exists ahomotopy H : S1 × I → Y su
h that H(u, 0) = a(u) and H(u, 1) = b(u) for
u ∈ S1. Note that the formula c̃(t) = H(∗, t) determines a path c̃ : I → Ysu
h that c̃(0) = H(∗, 0) = a(∗) = ∗′ and c̃(1) = H(∗, 1) = b(∗) = ∗′.Therefore, c̃ determines a loop c : S1 → Y based at ∗′. We will say that H isa c-homotopy and the loops a and b are c-homotopi
. Let α, β, γ ∈ π1(Y, ∗′)be the homotopy 
lasses of the loops a, b, c. Then the following elementarylemma holds (see [4, Theorem II.8.2℄).Lemma 1. Let a, b, c be loops in a pointed spa
e (Y, ∗′) and let α, β, γ bethe 
orresponding 
lasses in π1(Y, ∗′). Then the following two 
onditions areequivalent :(i) the loops a and b are c-homotopi
;(ii) α = γβγ−1.Proof. If (i) holds, then there is a c-homotopy H : S1 × I → Y whi
h
onne
ts a and b and H(∗, t) = c̃(t) for t ∈ I. Therefore, H̃ : I×I → Y givenby H̃ = H(e × 1) is a homotopy whi
h 
onne
ts ã to b̃. Moreover, H̃(0, t) =
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H(e(0), t) = H(∗, t) = c̃(t) and H̃(1, t) = H(e(1), t) = H(∗, t) = c̃(t). Clearly,
H̃ gives rise to a homotopy G̃ : I × I → Y whi
h 
onne
ts the loops ã and
c̃ b̃ c̃−1 and is �xed at the two end-points 0, 1, i.e., it is a homotopy rel ∂I.Now G̃ determines a homotopy G : S1 × I → Y su
h that G̃ = G(e × 1).Note that G 
onne
ts the loops a and cbc−1 and is �xed at the basepoint ∗,i.e., it is a homotopy rel ∗. Indeed, if s ∈ I and u = e(s), then

G(u, 0) = G(e(s), 0) = G̃(s, 0) = ã(s) = ae(s) = a(u).Similarly,
G(u, 1) = G(e(s), 1) = G̃(s, 1) = c̃ b̃ c̃−1(s) = cbc−1(e(s)) = cbc−1(u).Moreover, G(∗, t) = G(e(0), t) = G̃(0, t) = ∗′. It follows that α = γβγ−1, asrequired by (ii).To prove (ii)⇒(i), it su�
es to follow the steps of the above proof in theopposite order.Proof of Theorem 3. First note that every mapping f : P → P ′ is ho-motopi
 to a mapping f ′ : P → P ′ su
h that f ′(∗) = ∗′. Indeed, sin
e P ′ ispathwise 
onne
ted, there is a path ω : I → P ′ su
h that ω(0) = f(∗) and

ω(1) = ∗′. By the homotopy extension property for the pair (P, ∗), thereis a homotopy H : P × I → P ′ su
h that H(u, 0) = f(u) for u ∈ P and
H(∗, s) = ω(s) for s ∈ I. De�ne f ′ : P → P ′ by putting f ′(u) = H(u, 1).Clearly, f ≃ f ′ implies f ′|Q ≃ f |Q for every �nite sub
omplex Q ⊆ P .Moreover, f ′(∗) = H(∗, 1) = ω(1) = ∗′. Repeating the argument for g, wesee that there is no loss of generality in assuming that f and g preserve thebasepoints, i.e., f(∗) = g(∗) = ∗′.Being a 
onne
ted 1-dimensional CW-
omplex with a single 0-
ell ∗, P isthe wedge ∨

i∈M Pi of a 
olle
tion of 
opies (Pi, ∗i) of (S1, ∗), i ∈ M . It isobtained from the 
oprodu
t ⊔
i∈M Pi by identifying all the basepoints ∗i ∈

Pi to a single basepoint ∗ of P . Let ei : I → Pi, i ∈ M , denote the exponentialmappings. It is well known that π1(P, ∗) is a free group, having as a basisthe 
olle
tion [ei], i ∈ M , of homotopy 
lasses (rel ∂I) of the loops ei (see,e.g., [1, Proposition 1A.2℄). Analogous assertions hold for P ′ =
∨

i∈M ′ P ′
i .For every i ∈ M , 
onsider the loops ai = f |Pi and bi = g|Pi in P ′,based at ∗′. By the assumptions of Theorem 3, f |Q ≃ g|Q for every �nitesub
omplex Q of P . In parti
ular, this holds for Q = PL =

∨
i∈L Pi for any�nite subset L ⊆ M . Therefore, there exists a homotopy HL : PL × I → P ′whi
h 
onne
ts f |Q and g|Q. Let c̃L : I → P ′ be given by c̃L(t) = H(∗, t).Clearly, HL|Pi × I is a cL-homotopy 
onne
ting ai to bi. Therefore, theimpli
ation (i)⇒(ii) in Lemma 1 shows that the homotopy 
lasses αi =

[ai], βi = [bi], γL = [cL] ∈ π1(P
′, ∗′) satisfy αi = γLβiγ

−1

L for all i ∈ L. Now
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Theorem 4 shows that there exists γ ∈ π1(P

′, ∗′) su
h that αi = γβiγ
−1for all i ∈ M . Let c be a representative of the 
lass γ. Using the impli-
ation (ii)⇒(i) of Lemma 1, we 
on
lude that, for every i ∈ M , there isa c-homotopy Hi : Pi × I → P ′, whi
h 
onne
ts the loops ai and bi. Sin
e

Hi(∗, t) = c̃(t) does not depend on i, the homotopies Hi, i ∈ M , extend toa well-de�ned homotopy H : P × I → P ′ whi
h 
onne
ts f and g, be
ause
H|Pi × 0 = Hi|Pi × 0 = ai = f |Pi and H|Pi × 1 = Hi|Pi × 1 = bi = g|Pi.Example 2. Let P = P1 ∨ P2 be the wedge of two 
opies of S1. Let
αi, βi ∈ π1(P, ∗), i = 1, 2, be as in Example 1. Let ai, bi be loops in P , basedat ∗, su
h that αi = [ai], βi = [bi], i = 1, 2, and let f, g : P → P be de�nedby f |Pi = ai, g|Pi = bi for i = 1, 2. Then f |Pi ≃ g|Pi for i ∈ M , but f 6≃ g.Consider the loops c1 = b−1

2
and c2 = b−1

1
and the 
orresponding 
lasses

γ1 = [c1] and γ2 = [c2]. Sin
e α1 = γ1β1γ
−1

1
and α2 = γ2β2γ

−1

2
, Lemma 1shows that f |Pi ≃ g|Pi for i ∈ M . Now assume that f ≃ g. More pre
isely, let

g be c-homotopi
 to f , where c : I → P is a loop based at ∗. If γ denotes the
lass of c, Lemma 1 shows that αi = γβiγ
−1 for i = 1, 2, whi
h 
ontradi
tsthe assertions of Example 1.A
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