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Summary. Two mappings from a CW-complex to a 1-dimensional CW-complex are ho-
motopic if and only if their restrictions to finite subcomplexes are homotopic.

1. Introduction. Let f,g: P — P’ be two mappings between CW-
complexes. Clearly, if f and g are homotopic, f ~ g, then for every finite
subcomplex @@ C P, the restrictions f|Q, g|Q are also homotopic. In this
paper we will prove that the converse implication holds provided P’ has
dimension < 1, i.e., we will prove the following theorem.

THEOREM 1. Let P, P’ be CW-complexes and let f,g: P — P’ be map-
pings such that, for every finite subcomplex QQ C P, the restrictions f|Q, g|Q
are homotopic. If dim P’ <1, then f ~ g.

In homotopy theory a mapping f: P — Y from a CW-complex P to a
topological space Y is called an essential phantom mapping of the second
kind provided f is essential, i.e., it is not homotopic to a constant mapping,
but its restriction to any finite subcomplex ) of P is homotopic to a con-
stant mapping [5]. A generalization of this notion is the notion of an essential
phantom pair of mappings of the second kind. This is a pair of nonhomotopic
mappings f,g: P — Y whose restrictions f|Q, g|@ to every finite subcom-
plex @ of P are homotopic. Consequently, Theorem 1 can be restated as
follows.

THEOREM 1. There are no essential phantom pairs of mappings of the
second kind from a CW-complex P to a CW-complex P with dim P’ < 1.
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REMARK 1. In Theorem 1 the assumption f|Q ~ g|@ for finite subcom-
plexes () C P cannot be replaced by the assumption that the restrictions of
f and g to 1-cells of P be homotopic (see Example 2 in Section 4).

2. Equivalent forms of Theorem 1. Theorem 1 is equivalent to the
following theorem (the author owes this remark to J. Dydak).

THEOREM 2. Let P, P’ be connected CW-complexes and let f,g: P — P’
be mappings such that, for every finite subcomplex Q C P, the restrictions
f1Q, 9|Q are homotopic. If dim P = dim P’ =1, then f ~g.

Obviously, Theorem 1 implies Theorem 2. To prove the converse, consider
f,g: P — P’ such that f|Q ~ ¢|Q for all finite subcomplexes @ of P.
Since every point u € P belongs to a finite subcomplex @ of P, the points
f(u),g(u) belong to the same component of P’. Hence, f and g map a
component of P to the same component of P’. Therefore, it suffices to prove
Theorem 1 under the additional assumption that P and P’ are connected.

If dim P’ = 0, then P’ is a point *’, and thus f = g. Therefore, it suffices
to consider the case when dim P’ = 1. If dim P = 0, then P is a point *, and
thus f = f|* ~ g|* = g. Therefore, we can assume that dim P > 1. Consider
the 1-skeleton P! of P. Clearly, the restrictions f|P!, g|P': P! — P’ satisfy
the assumptions of Theorem 2, and therefore there exists a homotopy h':
P! x I — P’ which connects f|P! and g|P".

It is well known that every connected CW-complex of dimension 1 is an
Eilenberg—Mac Lane complex of type K(G, 1) (see, e.g., [1, Example 1B.1]).
Therefore, the homotopy groups 7, (P’) are zero for n > 2. Consequently,
there are no obstructions to extending a homotopy h"~': P»~1 x I — P/
of the (n — 1)-skeleton P"~! of P to a homotopy h": P" x I — P’ of
its n-skeleton P™ (use, e.g., Lemma 4.7 of [1]). Proceeding in this way one
obtains a homotopy connecting f to g.

We will now prove that Theorem 2 is equivalent to the following theorem.

THEOREM 3. Let P, P’ be connected 1-dimensional CW-complezes hav-
ing only one 0-cell x and %', respectively and let f,g: P — P'. If for every
finite subcomplex Q@ C P the restrictions f|Q, g|Q are homotopic, then f ~ g.

Obviously, Theorem 2 implies Theorem 3. To prove the converse, con-
sider f,g: P — P’ such that f|Q ~ ¢|Q for all finite subcomplexes @ of P.
It is well known that every connected 1-dimensional CW-complex contains a
maximal tree (see, e.g., [1, Proposition 1A.1]). Let T and T’ be maximal trees
in P and P’ respectively. Since the pair (P,T) has the homotopy extension
property and 7' is contractible, the quotient mapping ¢: P — P/T is a homo-
topy equivalence, and thus admits a homotopy inverse r: P/T — P (see, e.g.,
[1, Proposition 0.17]). Analogously, the quotient mapping ¢': P’ — P’/T" ad-
mits a homotopy inverse ': P'/T" — P'. If P =T’ then P’ is contractible,
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and thus f ~ g. Otherwise, R' = P’/T" is a connected 1-dimensional CW-
complex having the point ' = T” as its only 0-cell. Analogously, if P = T,
then P contracts to a point ug € P, which is a 0O-cell of P. Consequently,
f is homotopic to the constant f(up) and ¢ is homotopic to the constant
g(up). But flup =~ g|ug, and thus f ~ g. Otherwise, R = P/T is a connected
1-dimensional CW-complex having the point * = T as its only 0-cell. To
complete the proof it suffices to consider the case when P =T and P’ = T".
Let f',g': R — R be defined by f' = ¢'fr and ¢ = ¢/gr. If S C Ris a
finite subcomplex of R, then S and r(S) are compact. Therefore, r(5) is
contained in a finite subcomplex @ of P. By assumption, f|Q ~ ¢|Q and
thus also fr|S =~ gr|S. It follows that f'|S = ¢'fr|S ~ ¢'gr|S = ¢'|S, i.e.,
the restrictions of f’ and ¢’ to all finite subcomplexes of R are homotopic.
Now Theorem 3 shows that f' ~ ¢/, ie., ¢'fr ~ ¢ gr. Since ¢’ and r are
homotopy equivalences, it follows that also f ~ g.

3. A theorem on free groups. To prove Theorem 3 we need the fol-
lowing theorem on free groups.

THEOREM 4. Let F be a free group and let (o;),(8;), i € M, be two
collections of elements from F. If for every finite subset L C M, there exists
an element vr, € F such that o; = ’y[ﬁm;l for every i € L, then there exists
an element v € F such that a; = yB;v~" for every i € M.

In the proof of Theorem 4 we will use some well-known facts concerning
free groups. They are stated in the following proposition.

PROPOSITION 1. In a free group F' the following statements hold:

(i) If ae F,a#1,n€Z and a"™ =1, then n = 0.

(ii) If a,b € F and m,n € Z are integers different from 0 such that o™
and b" commute, then there exist an element ¢ € F and integers
r,s € Z such that a =", b = ¢°.

(i) If a,b € F,a# 1, b# 1 and n € Z, n # 0, then a™ = b™ implies
a=b.

(iv) If a,b,c € F are different from 1, if a and b commute and if b and
c commute, then also a and c commute.

For a proof of (i) see [3, Corollary 1.2.2] or [2, Proposition 2.16]. For (ii)
see [3, 1.4, Problems 4 and 6| or |2, Proposition 2.17|. For (iii) note that a™
and b" commute, and therefore, by (ii), there exist ¢ € F and r, s € Z such
that a = ¢" and b = ¢®. Consequently, " = ¢™®, and thus ¢""~™* = 1. Since
¢ # 1, (i) implies that nr —ns = 0, and thus r = s, which yields the desired
conclusion that a = b. For (iv) see |2, Proposition 2.18|.

Proof of Theorem 4. For an arbitrary ¢ € M, consider the singleton {7}
and put v; = ;. Note that a; = %ﬂi’yi_l. If for a given ¢ € M, 5; = 1, then
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a; = 1, and thus a; = 7B;y~! for any v € F. Therefore, there is no loss of
generality in assuming that 3; # 1 for all ¢ € M. Denote by B the subgroup
of F' generated by all 3;, ¢ € M. Being a subgroup of a free group, B is also
a free group (see [3, Corollary 2.9] or |2, Proposition 3.3]). We distinguish
two cases: I, when B is commutative, and II, when B is not commutative.

In case I, we fix an arbitrary k € M. We will show that v = ~; is as
required, i.e., o; = Y5, U for all i € M. Indeed, since the only commuta-
tive group which is free is the free cyclic group (see |3, 2.4, Problem 2| or
[2, Proposition 3.1]), B is cyclic. Let {} be a basis of B. Then every ele-
ment 5;, 7 € M, is of the form §; = "¢, where r; € Z. By the assumptions of
Theorem 4, for an arbitrary i € M and the finite set L = {i,k} C M, there
exists vix = Yiky € F such that a; = 7ikﬁi’yi7€1 and ap = ’yikﬁkfyi;l. Since
B; = B, we see that

a; =B = () and i = B = (B )"
Therefore, (%ﬁ’yi_l)” = (%kﬂvﬁcl)”. Note that r; # 0, because r; = 0 would
imply 3; = 1. Moreover, ~;37, L £ 1, because Y8, 1'= 1 would imply
B = 1 hence, also §; = 1. Similarly, ’yikﬁyizl # 1. By Proposition 1(iii),
one concludes that ~;3v; L= %‘kﬂ%}l- An analogous argument shows that
B ' = vinB;y, - Consequently, 73y, ' = w3y, ', and thus (y;0v; )" =
('ykﬁ'yk_l)”. Since o; = (’yzﬂ'yi_l)” and ’ykﬂfyk_l = ('ykﬁ’yk_l)”, we obtain the
desired relation o; = .3, Yforalli e M.

In case II, B is not commutative, so there exist k,I € M such that G
and (3 do not commute. Consider the fixed subset {k,l} € M and put
Ykt = V{k,}- For an arbitrary i € M, consider the subset {i,k,l} C M and
put ik = V(i k,1y- Let us show that

Ykl = Yy for all ¢ € M.
Indeed, since k € {k,l} N {i, k,1}, we see that ap = ’yklﬁkfyk_ll and ap =
Yikl 6;{%7611 Consequently,
VeB Ve = ikt B Vg -

This shows that ’Yk_ll%'kl commutes with ;. Analogously, ’yk_ll’yikl comimutes
with G;. Recall that 8 # 1 and ; # 1. Therefore, if one would also have
fyk_ll%-kl # 1, Proposition 1(iv) would imply that £ commutes with /3, which
is not the case. We have thus proved that Vk_ll%‘k;l =1, i.e., Yo = Yikl, as
desired.

Since a; = fyiklﬁmi;ll for all ¢ € M, the equality ;5 = i implies that
Q; = ’Yklﬂﬂk_ll for all ©« € M. Consequently, v = vy is as required. =

EXAMPLE 1. Let F be the free group of rank 2 with basis {31, B2}. Let
a1 = ﬁ;lﬁlﬁg and oy = ﬁflﬁgﬁl. Then there is no v € F such that a; =
VBt fori=1,2.
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To verify the assertion, assume that v € F is such that oy = y3;7 ! for
1=1,2,ie.,

By BB =By and  Br'BaB =By
The first of these relations shows that (27 commutes with ;. By Proposi-
tion 1(ii), there exist £ € F' and r,s € Z such that §; = £ and [ay = &°.
There is no loss of generality in assuming that 7 > 0 (if not, replace & by £71).
Since (1 belongs to a basis of F', one cannot have r > 2, and thus r = 1.

Consequently, S27 = (1)%. Analogously, there exists an integer s’ such that
Biy = (82)*. Tt follows that

By (B = =B (B)
However, this is impossible because 8, '(61)* and (7 '(B2)* are reduced

words, beginning with 3, L and By 1 respectively. Therefore, they cannot
represent the same element of F.

4. Proof of Theorem 3. To prove Theorem 3, we will use Theorem 4
and some elementary facts concerning the homotopy of loops in a pointed
space (Y, ). In particular, denote by (S!, ) the standard 1-sphere {z € C :
|z] = 1} with the basepoint * = 1 and let e: I — S! be the exponential
mapping, e(t) = e*™ t € I = [0,1]. By a loop a in Y, based at */, we mean
a mapping a: S' — Y such that a(*) = . Note that a determines the path
a = ae: I — Y, which has the property that a(0) = a(1) = . Conversely,
every path a: I — S! having the latter property determines a unique loop
a such that @ = ae. The composition of two loops ai,as: S' — Y, based
at *', is the only loop ajag such that (ajaz)e = ayas. We will say that
the loops a,b, based at «’, are (freely) homotopic provided there exists a
homotopy H: S! x I — Y such that H(u,0) = a(u) and H(u,1) = b(u) for
u € S'. Note that the formula ¢(t) = H(x,t) determines a path ¢: I — Y
such that ¢(0) = H(*,0) = a(x) = " and ¢(1) = H(x,1) = b(x) = .
Therefore, ¢ determines a loop c: S! — Y based at *'. We will say that H is
a c-homotopy and the loops a and b are c-homotopic. Let «, 3,7 € m1(Y, «')
be the homotopy classes of the loops a, b, c. Then the following elementary
lemma holds (see [4, Theorem I1.8.2]).

LEMMA 1. Let a,b,c be loops in a pointed space (Y,*') and let «, 3,7 be
the corresponding classes in m1(Y, ). Then the following two conditions are
equivalent:

(i) the loops a and b are c-homotopic;

(i) a=~6y"

Proof. Tf (i) holds, then there is a c-homotopy H: S' x I — Y which
connects a and b and H(%,t) = &(t) for t € I. Therefore, H: I x I — Y given
by H = H(e x 1) is a homotopy which connects @ to b. Moreover, H(0,t) =
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H(e(0),t) = H(x,t)=2¢(t) and H(1,t) = H(e(1),t) = H(x,t) = ¢(t). Clearly,
}N{ gives rise to a homotopy G: 1 x I — Y which connects the loops @ and
¢bc ! and is fixed at the two end-points 0, 1, i.e., it is a homotopy rel 1.
Now G determines a homotopy G: S' x I — Y such that G = G(e x 1).
Note that G connects the loops a and cbc™! and is fixed at the basepoint ,
i.e., it is a homotopy rel . Indeed, if s € I and u = e(s), then

G(u,0) = G(e(s),0) = G(s,0) =a(s) = ae(s) = a(u).
Similarly,
G(u,1) = Gle(s),1) = G(s,1) = ¢be *(s) = cbe ' (e(s)) = cbe ™ (u).

Moreover, G(*,t) = G(e(0),t) = G(0,t) = . Tt follows that o = y3vy~!, as
required by (ii).

To prove (ii)=-(i), it suffices to follow the steps of the above proof in the
opposite order. =

Proof of Theorem 3. First note that every mapping f: P — P’ is ho-
motopic to a mapping f': P — P’ such that f’(x) = «'. Indeed, since P’ is
pathwise connected, there is a path w: I — P’ such that w(0) = f(x) and
w(1) = . By the homotopy extension property for the pair (P,x), there
is a homotopy H: P x I — P’ such that H(u,0) = f(u) for v € P and
H(*,s) = w(s) for s € I. Define f': P — P’ by putting f'(u) = H(u,1).
Clearly, f ~ f’ implies f/'|Q ~ f|Q for every finite subcomplex Q C P.
Moreover, f'(x) = H(*,1) = w(1) = #'. Repeating the argument for g, we
see that there is no loss of generality in assuming that f and g preserve the
basepoints, i.e., f(x) = g(*) = *.

Being a connected 1-dimensional CW-complex with a single O-cell %, P is
the wedge \/;cps P of a collection of copies (P, ;) of (S*,*), i € M. It is
obtained from the coproduct | |;c,, P; by identifying all the basepoints *; €
P; to a single basepoint * of P. Let e;: I — P;, 1 € M, denote the exponential
mappings. It is well known that 71 (P, *) is a free group, having as a basis
the collection [e;], i € M, of homotopy classes (rel 9I) of the loops e; (see,
e.g., [1, Proposition 1A.2]). Analogous assertions hold for P’ =\/,_,, P;.

For every i € M, consider the loops a; = f|P; and b; = g|P; in P’,
based at *'. By the assumptions of Theorem 3, f|Q =~ g|@Q for every finite
subcomplex @ of P. In particular, this holds for Q = Py, = \/,.; P; for any
finite subset L C M. Therefore, there exists a homotopy Hy: Py, x I — P’
which connects f|Q and ¢|Q. Let ¢p: I — P’ be given by ¢1(t) = H(x,t).
Clearly, Hy|P; x I is a cp-homotopy connecting a; to b;. Therefore, the
implication (i)=-(ii) in Lemma 1 shows that the homotopy classes a; =
a;], Bi = [bi], 2 = [cr] € m(P', ) satisty a; = yBiy; " for all i € L. Now
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Theorem 4 shows that there exists v € w1 (P’,*') such that a; = y3y 1
for all ¢ € M. Let ¢ be a representative of the class v. Using the impli-
cation (ii)=-(i) of Lemma 1, we conclude that, for every i € M, there is
a c-homotopy H;: P; x I — P’, which connects the loops a; and b;. Since
H;(x,t) = ¢(t) does not depend on i, the homotopies H;, i € M, extend to
a well-defined homotopy H: P x I — P’ which connects f and g, because
fI|PZ><0:I‘IZ|P,L><0:CLZ:f|PZ andH|Pl><1:Hl]Pl><1:bZ:g|Pl u

EXAMPLE 2. Let P = P; V P, be the wedge of two copies of S*. Let
ai, B € T (P, %), i = 1,2, be as in Example 1. Let a;,b; be loops in P, based
at *, such that o;; = [a;], B; = [bi], i = 1,2, and let f,g: P — P be defined
by f|P; = ai, g|P; = b; fori=1,2. Then f|P; ~ g|P; fori € M, but f # g.

Consider the loops ¢1 = by Land ¢ = bfl and the corresponding classes
71 = [c1] and 2 = [e2]. Since a1 = 'ylﬁlyfl and oy = 7262751, Lemma 1
shows that f|P; ~ g|P; for i € M. Now assume that f ~ g. More precisely, let
g be c-homotopic to f, where ¢: I — P is a loop based at *. If v denotes the
class of ¢, Lemma 1 shows that a; = y3;7 ! for i = 1,2, which contradicts
the assertions of Example 1.
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