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Sharp Norm Inequalities for Martingalesand their Di�erential SubordinatesbyAdam OS�KOWSKIPresented by Stanisªaw KWAPIE�
Summary. Suppose f = (fn), g = (gn) are martingales with respe
t to the same �ltra-tion, satisfying

|fn − fn−1| ≤ |gn − gn−1|, n = 1, 2, . . . ,with probability 1. Under some assumptions on f0, g0 and an additional 
ondition thatone of the pro
esses is nonnegative, some sharp inequalities between the pth norms of
f and g, 0 < p < ∞, are established. As an appli
ation, related sharp inequalities forsto
hasti
 integrals and harmoni
 fun
tions are obtained.1. Introdu
tion. Let (Ω,F ,P) be a probability spa
e equipped with adis
rete �ltration (Fn)n≥0. Let f = (fn), g = (gn) be two adapted martin-gales taking values in a separable Hilbert spa
e H, with

fn =
n

∑

k=0

dfk, gn =
n

∑

k=0

dgk.A

ording to Burkholder, we say that f is di�erentially subordinate to g if
|dfn| ≤ |dgn|almost surely for any nonnegative n.As proved by Burkholder in [1℄, we have the following sharp estimate:(1.1) ‖fn‖p ≤ αp‖gn‖p, n = 0, 1, 2, . . . ,where αp = max{p, p/(p−1)}−1 for 1 < p <∞. If 0 < p ≤ 1, the inequalityfails to hold for any �nite αp.2000 Mathemati
s Subje
t Classi�
ation: Primary 60G42; Se
ondary 60H05, 31B05.Key words and phrases: martingale, di�erential subordination, sto
hasti
 integral,harmoni
 fun
tion, norm inequality.Partially supported by MEiN Grant 1 PO3A 012 29.[373℄ 
© Instytut Matematy
zny PAN, 2007



374 A. Os�kowski
The above inequalities were the subje
t of many papers in whi
h weakeror stronger assumptions on f , g were imposed and it was investigated how ita�e
ts the 
onstant αp (e.g. see [5℄ and the referen
es therein). In parti
ular,Burkholder [4℄ proved that if we assume additionally that gn ≥ 0 almostsurely for all n, then (1.1) holds for 1 < p < ∞ and the optimal 
onstantequals

α′
p =

{

1/(p− 1) if p ∈ (1, 2],

p1/p[(p− 1)/2](p−1)/p if p ∈ (2,∞).We see that αp = α′
p for 1 < p ≤ 2 and αp > α′

p for p > 2.We 
ontinue this line of resear
h in two dire
tions. The inequality (1.1)still fails to hold if p ∈ (0, 1) and g ≥ 0, but it turns out that if the di�erentialsubordination is repla
ed by a slightly di�erent 
ondition, then we have thefollowing fa
t.Theorem 1.1. Suppose f is a martingale taking values in H and g is anonnegative martingale. Assume that for some deterministi
 β > 0 we have
β|f0| ≥ g0 and |dfn| ≤ |dgn|, n = 1, 2, . . . ,with probability 1. Then for p ∈ (0, 1),(1.2) ‖fn‖p ≥ Cp,β‖gn‖p, n = 0, 1, 2, . . . ,where Cp,β = 0 if β ≥ 1 and

Cp,β =

[(

p(1 − β)

2(1 + β − p)

)1−p 2(1 + β)(1 − p) + p2

p(1 + β − p)

]1/p

if β < 1. The inequality is sharp if 2β > p.By sharpness we mean that for any C > Cp,β , there exists a pair (f, g)satisfying the assumptions of the theorem and an integer n for whi
h wehave ‖fn‖p < C‖gn‖p.The se
ond result we obtain is the following.Theorem 1.2. Suppose g is an H-valued martingale and f is nonnega-tive and di�erentially subordinate to g. Then for 0 < p <∞,(1.3) ‖fn‖p ≤ Cp‖gn‖p, n = 0, 1, 2, . . . ,where
Cp =



















∞ if p ∈ (0, 1),

1 if p = 1,

p−1/p[2/(p− 1)](p−1)/p if p ∈ (1, 2),

p− 1 if p ∈ [2,∞).The inequality is sharp.Therefore, 
ompared to the general 
ase, the 
onstant de
reases for p ∈
[1, 2).
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Let us 
omment upon the method of proof. In [1℄ (see also [2℄) Burkholderproves the inequality (1.1) for general f , g 
onstru
ting a quite 
ompli
atedspe
ial fun
tion Up satisfying some 
onvex-type properties. It turns out thata 
ertain integration tri
k is available, whi
h enables one to build Up frommu
h simpler fun
tions and to redu
e the 
omplexity of the proof signi�-
antly (
f. [5℄). In [4℄, the proof of (1.1) for nonnegative g follows the samepattern and the spe
ial fun
tion U ′

p is even more 
ompli
ated than Up. Inthis paper we dis
over an integral identity whi
h expresses U ′
p in terms ofmu
h simpler obje
ts. Related identities yield spe
ial fun
tions leading tothe inequalities (1.2) and (1.3).The paper is organized as follows. In the next se
tion we introdu
e thesimple spe
ial fun
tions, study their properties and present the 
ru
ial in-tegral identities. Se
tion 3 
ontains the proof of Theorems 1.1 and 1.2. Thelast two se
tions are devoted to appli
ations of these theorems to sto
hasti
integrals and harmoni
 fun
tions on Eu
lidean domains.

2. The spe
ial fun
tions. For a �xed number s > 1, set
D =

{

(x, y) ∈ R
2
+ : y ≤ min

(

x+ 1,
s+ 1

s− 1
− x

)}

.

De�ne u1,s : H× R+ → R, u2,s : R+ ×H → R, u∞,s : H× R+ → R by
u1,s(x, y) =







s− 1

s+ 1
(|x|2 − y2) −

2

s+ 1
|x| +

2s

s+ 1
y if (|x|, y) ∈ D,

1 if (|x|, y) /∈ D,

u2,s(x, y) =











s− 1

s+ 1
(x2 − |y|2) if (x, |y|) ∈ D,

2

s+ 1
x−

2s

s+ 1
|y| + 1 if (x, |y|) /∈ D,

u∞,s(x, y) =







0 if (y, |x|) ∈ D,

s− 1

s+ 1
(|x|2 − y2) +

2

s+ 1
y−

2s

s+ 1
|x| + 1 if (y, |x|) /∈ D.It is easy to 
he
k that these fun
tions are 
ontinuous. Furthermore, let φ1,s,

ψ1,s, φ2,s, ψ2,s, φ∞,s, ψ∞,s be de�ned by
(φ1,s(x, y), ψ1,s(x, y))

=







(

2(s− 1)

s+ 1
x−

2

s+ 1
x′,−

2(s− 1)

s+ 1
y +

2s

s+ 1

) if (|x|, y) ∈ D,

(0, 0) if (|x|, y) ∈ D,
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(φ2,s(x, y), ψ2,s(x, y)) =















(

2(s− 1)

s+ 1
x,−

2(s− 1)

s+ 1
y

) if (x, |y|) ∈ D,

(

2

s+ 1
,−

2s

s+ 1
y′

) if (x, |y|) ∈ D,

(φ∞,s(x, y), ψ∞,s(x, y)) =















(0, 0) if (y, |x|) ∈ D,
(

2(s− 1)

s+ 1
x−

2s

s+ 1
x′,−

2(s− 1)

s+ 1
y +

2

s+ 1

)

if (y, |x|) ∈ D,where x′ = x/|x| for x 6= 0 and x′ = 0 if x = 0.The key properties of the above fun
tions are des
ribed in the followinglemma.Lemma 2.1. Let s > 1 be a �xed number.(i) We have
u1,s(x, y) ≤ 1,(2.1)
u2,s(x, y) ≤

2

s+ 1
x−

2s

s+ 1
|y| + 1,(2.2)

u∞,s(x, y) ≤
s− 1

s+ 1
(|x|2 − y2) +

2

s+ 1
y −

2s

s+ 1
|x| + 1.(2.3)(ii) Suppose x, h ∈ H, y, y + k ≥ 0 and |h| ≤ |k|. Then

u1,s(x+ h, y + k) ≤ u1,s(x, y) + φ1,s(x, y) · h+ ψ1,s(x, y)k,(2.4)
u∞,s(x+ h, y + k) ≤ u∞,s(x, y) + φ∞,s(x, y) · h+ ψ∞,s(x, y)k.(2.5) Suppose x, x+ h ≥ 0, y, k ∈ H and |h| ≤ |k|. Then(2.6) u2,s(x+ h, y + k) ≤ u2,s(x, y) + φ2,s(x, y)h+ ψ2,s(x, y) · k.Proof. (i) It is easy to see that the inequalities (2.1)�(2.3) are equivalentand therefore it su�
es to prove the �rst one. To this end, note that for

(|x|, y) ∈ D the partial derivative of u1,s with respe
t to y equals
2(s− 1)

s+ 1

(

s

s− 1
− y

)

≥ 0and the inequality follows by the 
ontinuity of u1,s.(ii) This is done by a well-known pro
edure (
f. [2℄�[4℄). Consider a fun
-tion
G1,s(t) = u1,s(x+ th, y + tk),de�ned on {t : y + tk ≥ 0}. The inequality (2.4) is equivalent to
G1,s(1) ≤ G1,s(0) +G′

1,s(0)(with (G1,s)
′
−(0), (G1,s)

′
+(0) or 0 instead of G′

1,s(0) if the latter does notexist) and will follow on
e we have established the 
on
avity of G1,s. Consider
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the sets(2.7) E1,s = {t : (|x+th|, y+tk) /∈D}, F1,s = {t : (|x+th|, y+tk)∈D}.On E1,s we have G1,s ≡ 1, whi
h is 
learly 
on
ave, while on F1,s, G1,s(t)equals

s− 1

s+ 1
(|h|2 − k2)t2 +

s− 1

s+ 1
[|x|2 + 2tx · h− y2 − 2tyk]

−
2

s+ 1
|x+ th| +

2s

s+ 1
(y + tk)and the 
on
avity follows from |h|2 ≤ k2 and the 
on
avity of the fun
tion

t 7→ −|x+ th|. It remains to note that E1,s, F1,s are intervals and, by (2.1),
G(t) ≤ 1 on F1,s.For the fun
tions u2,s, u∞,s the argument is essentially the same; weintrodu
e the fun
tions G2,s and G∞,s in a similar manner and redu
e theproof of (2.5), (2.6) to the 
on
avity of these fun
tions. The 
on
avity is
lear on the sets E2,s, F2,s and E∞,s, F∞,s, de�ned as in (2.7), and theinequality for one-sided derivatives follows from (2.2), (2.3). The sets E2,s,
E∞,s may happen to be unions of two intervals, but this does not 
hangethe argument.Now let us introdu
e the spe
ial fun
tions 
orresponding to the momentinequalites. For p ∈ (0, 1), x ∈ H, y ≥ 0, let(2.8) Up,s(x, y) =

p(1 − p)(2 − p)(s+ 1)

2

∞\
0

tp−1u1,s(x/t, y/t) dt,while for p ∈ (1, 2), x ≥ 0, y ∈ H,(2.9) Up,s(x, y) =
p(p− 1)(2 − p)(s+ 1)

2

∞\
0

tp−1u2,s(x/t, y/t) dt.Finally, for p ∈ (2,∞), x ∈ H, y ≥ 0, set(2.10) Up,s(x, y) =
p(p− 1)(p− 2)(s+ 1)

2

∞\
0

tp−1u∞,s(x/t, y/t) dt.The formulas for Up,s are as follows. Suppose p ∈ (0, 1). If y ≤ s|x|, then
Up,s(x, y) =

(

s− 1

s+ 1

)p−1

(|x| + y)p−1[y(s− 1 + p) + |x|(s− sp− 1)],while for y ≥ s|x|,
Up,s(x, y) = (y − |x|)p−1[y(s+ 1 − p) + |x|(sp− s− 1)].
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In 
ase p ∈ (1, 2), if |y| ≤ sx, then

Up,s(x, y) =

(

s− 1

s+ 1

)p−1

(x+ |y|)p−1[|y|(−s− p+ 1) + x(sp− s+ 1)],while for |y| ≥ sx,
Up,s(x, y) = (|y| − x)p−1[|y|(p− s− 1) + x(s− sp+ 1)].Finally, let p ∈ (2,∞). Then, if sy ≤ |x|,
Up,s(x, y) = (|x| − y)p−1[y(sp− s− 1) + |x|(s− p+ 1)]and for sy ≥ |x|,

Up,s(x, y) =

(

s− 1

s+ 1

)p−1

(|x| + y)p−1[y(s− ps− 1) + |x|(s+ p− 1)].The following fun
tions will also play a role. If p ∈ (0, 1) and s > 1, let
Vp,s : H× R+ → R be given by

Vp,s(x, y) = (s+ 1 − p)[yp −Kp,s|x|
p]and for p ∈ (1, 2), s > 1, de�ne Vp,s : R+ ×H → R by

Vp,s(x, y) = (s+ 1 − p)[−|y|p +Kp,sx
p].Here

Kp,s =

(

s− 1

2

)p−1

·
p

s+ 1 − p
.We will need the following fa
t about the fun
tions de�ned above.Lemma 2.2. Suppose p ∈ (0, 2), p 6= 1 and s > 1. Then(2.11) Up,s ≥ Vp,s.Proof. It su�
es to prove the inequality in the spe
ial 
ase H = R.Consider the fun
tions F,G : (0, 1) → R given by

F (t) = Vp,s(t, 1 − t), G(t) = Up,s(t, 1 − t).The fun
tion F is 
onvex on (0, t0) and 
on
ave on (t0, 1) for some t0 ∈ (0, 1),while G is 
on
ave on (0, (s+ 1)−1) and linear on ((s+ 1)−1, 1). Moreover,
F (0) = G(0), F ′(0) < G′(0),

F

(

2

s+ 1

)

= G

(

2

s+ 1

)

, F ′

(

2

s+ 1

)

= G′

(

2

s+ 1

)

.Thus F ≤ G, whi
h yields (2.11) by homogeneity.
Remark 2.1. If x = 0 or 2|y| = (s − 1)|x|, then Up,s(x, y) = Vp,s(x, y).This is a 
onsequen
e of F (0) = G(0) and F (2/(s+ 1)) = G(2/(s+ 1)).
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3. The proofs of the theorems. The inequalities (2.4)�(2.6) yield thefollowing estimates.Lemma 3.1. Let s > 1 and suppose f , g are martingales satisfying

|dfn| ≤ |dgn|, n = 1, 2, . . . ,with probability 1.(i) Suppose f is H-valued and g is nonnegative. Then(3.1) Eu1,s(fn, gn) ≤ Eu1,s(f0, g0), n = 0, 1, 2, . . . .(ii) Suppose f is H-valued and g is nonnegative. Furthermore, assumethat both f and g are square integrable. Then(3.2) Eu∞,s(fn, gn) ≤ Eu∞,s(f0, g0), n = 0, 1, 2, . . . .(iii) Suppose f is nonnegative and g is H-valued. Then(3.3) Eu2,s(fn, gn) ≤ Eu2,s(f0, g0), n = 0, 1, 2, . . . .Proof. We will only prove (i); the remaining statements 
an be estab-lished in the same manner. It su�
es to show that for any 1 ≤ k ≤ n,(3.4) Eu1,s(fk, gk) ≤ Eu1,s(fk−1, gk−1).Sin
e |dfk| ≤ |dgk| almost surely, the inequality (2.4) gives
u1,s(fk, gk) ≤ u1,s(fk−1, gk−1) + φ1,s(fk−1, gk−1) · dfk + ψ1,s(fk−1, gk−1)dgk.Both sides of the inequality above are integrable; taking the 
onditionalexpe
tation with respe
t to Fk−1 gives

E[u1,s(fk, gk) | Fk−1] ≤ u1,s(fk−1, gk−1).This implies (3.4) and 
ompletes the proof.Proof of (1.2). If β ≥ 1, then Cp,β = 0 and the inequality is trivial.Assume that β < 1. The identity (2.8) together with Lemmas 2.2 and 3.1yields
(s+ 1 − p)E[gp

n −Kp,s|fn|
p] = EVp,s(fn, gn) ≤ EUp,s(fn, gn)(3.5)

≤ EUp,s(f0, g0)for any n. Now set
s =

1 + β − βp

1 + β − p
> 1.Then EUp,s(f0, g0) ≤ 0, whi
h follows from the fa
t that for x ∈ H and

y ∈ R+ satisfying β|x| ≥ y we have
Up,s(x, y) ≤ Up,s(x, β|x|) = c[β(s− 1 + p) + s− sp− 1] = 0for some nonnegative c. To 
omplete the proof, note that Kp,s = C−p

p,β .
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Proof of (1.3). It su�
es to prove the inequality for p ∈ (1, 2), as for

p ≤ 1 it is trivial and for p ≥ 2 it holds for general f , g. We pro
eed aspreviously. The identity (2.9) and Lemmas 2.2 and 3.1 give
(s+ 1 − p)E[−|gn|

p +Kp,sf
p
n] = EVp,s(fn, gn) ≤ EUp,s(fn, gn)(3.6)

≤ EUp,s(f0, g0)for any n. Now the 
hoi
e s = p implies EUp,s(f0, g0) ≤ 0, sin
e Up,p(x, y) ≤ 0if x ≤ |y|. All that is left is to observe that C−p
p = Kp,p.

Remark 3.1. For p > 2, the fun
tion Up,p 
an be used to establish theinequality (1.1) for H-valued f di�erentially subordinate to g ≥ 0 (with theoptimal 
onstant α′
p). In [4℄, Burkholder uses a slightly di�erent fun
tion

U ′
p(x, y) =











Up,p(x, y) if (p− 1)y ≤ 2|x|,

p

(

p− 1

2

)p−1

|y|p − |x|p if (p− 1)y ≥ 2|x|,and proves EU ′
p(fn, gn) ≤ EU ′

p(f0, g0) ≤ 0 by showing an inequality anal-ogous to (2.4)�(2.6). Our approa
h (through identity (2.10)) enables us toavoid te
hni
al 
omputations.
Remark 3.2. The inequalities (3.5), (3.6) 
an be used to obtain varia-tions of (1.2), (1.3), involving the initial variables f0, g0. For example, as-sume that f is H-valued and di�erentially subordinate to a nonnegative gwith |f0| = g0. If 0 < p < 1, then (3.5) yields

Egp
n ≤

(s− 1)p−1

s+ 1 − p

[

p

2p−1
E|fn|

p +
2p−1(s− 1)(2 − p)

(s+ 1)p−1
E|f0|

p

]

for any s > 1. Take s→ ∞ to obtain
‖gn‖p ≤ 2

(

1 −
p

2

)1/p

‖f0‖p.Sharpness. This will be shown in a few steps. Assume H = R and p ∈
(0, 2), p 6= 1.
Step 1. Let us 
onsider the following pro
ess, a modi�
ation of the oneused by Burkholder in [4℄. Let s > 1, δ ∈ (0, 1) be �xed and set

xn =

(

1 +
2δ

s− 1

)n

, pn =

[

(1 − δ)(s− 1)

(1 + δ)(s− 1 + 2δ)

]n

for n = 0, 1, 2, . . . . Consider a Markov 
hain H = H(s, δ) with values in R
2
+,starting from (1, s), su
h that for n = 0, 1, . . . ,
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P(H2n+1 = (xn(1 − δ), xn(s+ δ)) |H2n = (xn, sxn)) =

1

1 + δ
,

P(H2n+1 = (2xn, (s− 1)xn) |H2n = (xn, sxn)) =
δ

1 + δ
,

P(H2n+2 = (0, xn(s−1+2δ)) |H2n+1 = (xn(1−δ), xn(s+δ))) =
δ(s+ 1)

s− 1 + 2δ
,

P(H2n+2 = (xn+1, sxn+1) |H2n+1 = (xn(1 − δ), xn(s+ δ))) =
(1 − δ)(s− 1)

s− 1 + 2δwith the further 
ondition that all the states lying on the lines 2y = (s−1)xand x = 0 are absorbing. Then the pro
esses F = F (s, δ), G = G(s, δ),de�ned byHn = (Fn, Gn), are martingales su
h that for n ≥ 1, dFn = ±dGn.
Step 2. Now we will show that the sequen
e (EUp,s(Hn))n≥0 is almost
onstant. For any nonnegative integer n, let An = {Hn+1 6= Hn}. Note that

A2n = {H2n = (xn, sxn)}, A2n+1 = {H2n+1 = (xn(1 − δ), xn(s+ δ))}.Lemma 3.2. Let n be a nonnegative integer.(i) P(A2n) = pn.(ii) The following equalities hold true:
(3.7) EUp,s(H2n+2) = EUp,s(H2n+1),

(3.8) EUp,s(H2n+1) = EUp,s(H2n) − xp
nR(δ)P(A2n),for some fun
tion R = Rp,s : R+ → R+ satisfying Rp,s(δ)/δ → 0 as δ → 0.Proof. (i) We have P (A0) = 1 = p0 and P(A2k |A2k−2) = p1 for any

k ≥ 1.(ii) On A2n+1, the variable H2n+2 takes values (0, xn(s− 1 + 2δ)) and
(xn+1, sxn+1) =

(

xn

(

1 +
2δ

s− 1

)

, xn(s− 1 + 2δ) + xn

(

1 +
2δ

s− 1

))

.But the fun
tion t 7→ Up,s(t, xn(s − 1 + 2δ) + t) is linear on the interval
[0, xn(1+2δ/(s− 1))]; this proves the �rst estimate. For the se
ond one, theargument is similar: on A2n,
H2n+1 ∈ {(2xn, (s− 1)xn), (xn(1 − δ), xn(s+ δ))}, H2n = (xn, sxn)and the fun
tion t 7→ Up,s(xn + t, sxn − t) has a 
ontinuous derivative on

(−δ, xn) and is linear on [0, xn]. It remains to use the fa
t that Up,s is ho-mogeneous of order p to get the spe
ial form of the remainder.
Step 3. Let us study the following estimate:(3.9) EVp,s(H2n) + εEF p

2n ≥ EUp,s(H0).



382 A. Os�kowski
Lemma 3.3. Let ε > 0 be �xed.(i) Suppose p ∈ (0, 1) and s > 1. Then there exists δ > 0 su
h that theinequality (3.9) holds for large n.(ii) Suppose p ∈ (1, 2). Then there exist s < p and δ > 0 su
h that theinequality (3.9) holds for large n.Proof. Outside A2n, the variable H2n takes values on one of the lines

2y = (s − 1)x, x = 0. Sin
e Up,s, Vp,s 
oin
ide on these lines, we have, byLemma 3.2,
EVp,s(H2n) = EUp,s(H2n) + P(A2n)[Vp,s(xn, sxn) − Up,s(xn, sxn)](3.10)

= EUp,s(H0) −R(δ)
n−1
∑

k=0

xp
kpk − cxp

npn,where c = −Vp,s(1, s) + Up,s(1, s) ≥ 0.On the other hand,(3.11) EF p
2n ≥

n−1
∑

k=0

(2xn)p pnδ

1 + δ
≥ 2−1δ

n−1
∑

k=0

xp
npn = 2−1δ

n−1
∑

k=0

rk,where(3.12) r = r(δ) = xp
1p1 =

(

1 +
2δ

s− 1

)p−1 1 − δ

1 + δ
.(i) Fix ε > 0, p ∈ (0, 1) and s > 1. By (3.11), there exists δ su
h that(3.13) R(δ)

n−1
∑

k=0

xp
kpk ≤

2R(δ)

δ
EF p

2n ≤
ε

2
EF p

2nfor any n. Furthermore, sin
e p < 1, we have r(δ) < 1; hen
e cxp
npn = crn ≤

εδ/4 < 2−1εEF p
2n for large n. Combining this estimate with (3.10) and (3.13)yields (3.9).(ii) Fix ε > 0 and p ∈ (1, 2). We have r′(0) = 2(p − s)/(s− 1), so thereexist s ∈ (1, p) and δ(ε) su
h that if δ ∈ (0, δ(ε)), then 1 < r(δ) < 1+ εδ/8c.Then, by (3.11),

cxp
npn = crn ≤ c

[

2(r − 1)

δ
EF p

2n + 1

]

≤
ε

4
EF p

2n + 1 <
ε

2
EF p

2nif n is large enough; the last inequality follows from EF p
2n → ∞ as n → ∞.We 
on
lude the proof by observing that (3.13) holds for su�
iently small

δ, and applying (3.10).
Step 4: sharpness of (1.2). Let β ∈ (p/2, 1), δ > 0, ε > 0 and set

s =
1 + β − βp

1 + β − p
> 1, a =

2β − s+ 1

1 + β
< 1.
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The inequality p < 2β implies a > 0. Consider martingales F = (Fn)n≥−1,
G = (Gn)n≥−1 satisfying(I) F−1 = 2 − a, G−1 = a+ s− 1 almost surely,(II) P((F0, G0) = (1, s)) = a = 1 − P((F0, G0) = (2, s− 1)),(III) on {F0 = 2}, the pro
ess (Fn, Gn) is 
onstant,(IV) on {F0 = 1}, the 
onditional distribution of the pro
ess (Fn, Gn) isthe distribution of H(s, δ) 
onstru
ted in Step 1.By the 
hoi
e of a, we have βF−1 = G−1 and EUp,s(F0, G0) = 0. Clearly,

EVp,s(F2n, G2n) = EVp,s(F2n, G2n)χ{F0=1} + EVp,s(F2n, G2n)χ{F0=2}.On the set {F0 = 1} we 
an use Lemma 3.3: a proper 
hoi
e of δ and nimplies
EVp,s(F2n, G2n)χ{F0=1} + εEF p

2nχ{F0=1} ≥ EUp,s(F0, G0)χ{F0=1}.On the set {F0 = 2} the pair (F2n, G2n) = (F0, G0) lies on the line 2y =
(s− 1)x, whi
h implies Vp,s(F2n, G2n) = Up,s(F0, G0). Combining these twofa
ts we get(3.14) EVp,s(F2n, G2n) + εEF p

2n ≥ EUp,s(F0, G0),so
EGp

2n ≥

(

C−p
p,β −

ε

s+ 1 − p

)

EF p
2n > (C−p

p,β − ε)EF p
2n.This proves that (1.2) is sharp. For the 
ase β ≥ 1, observe that Cp,β isnonin
reasing as a fun
tion of β and Cp,β → 0 as β ↑ 1.

Step 5: sharpness of (1.3). The 
ases p ≤ 1, p = 2 are trivial; for p ≥ 2,we use the example on page 669 of [1℄. The only 
ase left is p ∈ (1, 2).For ε > 0, let s ∈ (1, p) and δ > 0 be the numbers guaranteed by Lemma3.3. Consider martingales F, G satisfying (I)�(IV) with a = (3 − s)/2. Byarguments similar to those above, (3.9) leads to the inequality (3.14), validfor large n. Sin
e EF p
2n → ∞, we have EUp,s(F0, G0) ≥ −εEF p

2n for large n,whi
h 
ombined with (3.14) implies
EGp

2n ≤

(

Kp,s +
2ε

s+ p− 1

)

EF p
2n < (C−p

p + 2ε)EF p
2n.Therefore Cp is the best possible in (1.3).Remark 3.3. It is 
lear from the examples above that the inequalities(1.2) and (1.3) are sharp even in the 
ase of ±1 transforms, i.e. if we assumethat dfn = ±dgn for n = 1, 2, . . . .4. Sharp inequalities for sto
hasti
 integrals. Suppose X= (Xt)t≥0is a 
àdlàg martingale on a 
omplete probability spa
e (Ω,F ,P), whi
h is�ltered by a nonde
reasing right-
ontinuous family (Ft)t≥0 of sub-σ-�elds
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of F . In addition, assume that F0 
ontains all the events of probability 0.Let Y be the It� integral of H with respe
t to X, where H is a predi
tablepro
ess:

Yt = H0X0 +
\

(0,t]

Hs dXs.The 
ontinuous-time versions of Theorems 1.1 and 1.2 are stated below.Theorem 4.1. Suppose p ∈ (0, 1), X is nonnegative and for any t > 0,the variable Ht takes values in a 
losed unit ball of H. If β > 0 satis�es
P(β|H0| ≥ 1) = 1, then for any t > 0,(4.1) ‖Yt‖p ≥ Cp,β‖Xt‖p,and the inequality is sharp if p < 2β.Theorem 4.2. Suppose p ∈ (0,∞), X is nonnegative and H takes valuesoutside the open unit ball of H. Then for any t > 0,(4.2) ‖Xt‖p ≤ Cp‖Yt‖p,and the inequality is sharp.The inequalities (4.1), (4.2) follow from (1.2), (1.3) by dis
retizing theargument; see [3℄, where an analogous submartingale inequality follows fromthe 
orresponding dis
rete-time version. The sharpness follows from the fa
tthat the 
onstants Cp,β, Cp are the best possible in (1.2), (1.3) in the 
asewhen f is a ±1 transform of g (see Remark 3.3).5. Inequalities for harmoni
 fun
tions. In this se
tion we studyharmoni
 extensions of inequalities (1.2), (1.3). Let N be a �xed positiveinteger and D be an open 
onne
ted subset of R

N . Fix ξ ∈ D and 
onsidertwo harmoni
 fun
tions u, v on D, taking values in Hilbert spa
es H, K.Suppose u is di�erentially subordinate to v, that is,
|∇u| ≤ |∇v| on D.Let D0 be a bounded subdomain of D with ξ ∈ D0 ⊂ D0 ∪ ∂D0 ⊂ D.Let µξ

D0
stand for the harmoni
 measure on ∂D0 with respe
t to ξ, and

‖u‖D0,p =
[ \

∂D0

|u(z)|p µξ
D0

(dz)
]1/p

, 0 < p <∞.We now give some norm inequalities for smooth fun
tions.Theorem 5.1. Let u, v, D0 be as above.(i) Assume that p ∈ (0, 1) and v is nonnegative. Then(5.1) ‖u‖D0,p ≥ Cp,β‖v‖D0,p,where β = v(ξ)/|u(ξ)|.



Sharp Norm Inequalities for Martingales 385
(ii) Assume that p ∈ (0,∞), u is nonnegative and u(ξ) ≤ |v(ξ)|. Then(5.2) ‖u‖D0,p ≤ Cp‖v‖D0,p.Proof. We will prove only the �rst part, the se
ond one 
an be establishedsimilarly. As Cp,β = 0 for β ≥ 1, we may assume that β < 1. Let

s =
1 + β − βp

1 + β − p
> 1.It is easy to 
he
k that the fun
tion u1,s(u, v) is superharmoni
. Therefore\

D0

u1,s(u(z), v(z))µ
ξ
D0

(dz) ≤ u1,s(u(ξ), v(ξ)).Applying the identity (2.8) we obtain\
D0

Up,s(u(z), v(z))µ
ξ
D0

(dz) ≤ Up,s(u(ξ), v(ξ)) = 0,sin
e β|u(ξ)| = v(ξ). It su�
es to use the inequality (2.11) to get (5.1).A
knowledgements. The results were obtained while the author wasvisiting Université de Fran
he-Comté in Besançon, Fran
e. The author wouldalso like to thank the referee for the 
omments on the paper.
Referen
es[1℄ D. L. Burkholder, Boundary value problems and sharp inequalities for martingaletransforms, Ann. Probab. 12 (1984), 647�702.[2℄ �, Explorations in martingale theory and its appli
ations, É
ole d'Été de Probabilitésde Saint-Flour XIX�1989, Le
ture Notes in Math. 1464, Springer, Berlin, 1991, 1�66.[3℄ �, Strong di�erential subordination and sto
hasti
 integration, Ann. Probab. 22(1994), 995�1025.[4℄ �, Some extremal problems in martingale theory and harmoni
 analysis, in: Har-moni
 Analysis and Partial Di�erential Equations (Chi
ago, IL, 1996), Chi
ago Le
-tures in Math., Univ. Chi
ago Press, Chi
ago, IL, 1999, 99�115.[5℄ A. Os�kowski, Inequalities for dominated martingales, Bernoulli 13 (2007), 54�79.Adam Os�kowskiDepartment of Mathemati
s, Informati
s and Me
hani
sWarsaw UniversityBana
ha 202-097 Warszawa, PolandE-mail: ados�mimuw.edu.pl Re
eived August 9, 2007;re
eived in �nal form November 22, 2007 (7612)


