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Summary. Suppose f = (fn), g = (gn) are martingales with respect to the same filtra-
tion, satisfying
|fn_fn71‘§‘gn_gn71|7 TL:].,Q,...,

with probability 1. Under some assumptions on fy, go and an additional condition that
one of the processes is nonnegative, some sharp inequalities between the pth norms of
f and g, 0 < p < o0, are established. As an application, related sharp inequalities for
stochastic integrals and harmonic functions are obtained.

1. Introduction. Let (§2,F,P) be a probability space equipped with a
discrete filtration (Fy,)n>0. Let f = (fn), g = (gn) be two adapted martin-
gales taking values in a separable Hilbert space H, with

n n
fo =) dfe,  gn=_ dgi.
k=0 k=0
According to Burkholder, we say that f is differentially subordinate to g if
|dfn| < |dgn|

almost surely for any nonnegative n.
As proved by Burkholder in [1], we have the following sharp estimate:

(11) ||anp S apHgana 71207172,...,

where o, = max{p,p/(p—1)} —1for 1 < p < oo.If 0 < p <1, the inequality
fails to hold for any finite a,.
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The above inequalities were the subject of many papers in which weaker
or stronger assumptions on f, g were imposed and it was investigated how it
affects the constant «,, (e.g. see [5] and the references therein). In particular,
Burkholder [4] proved that if we assume additionally that g, > 0 almost
surely for all n, then (1.1) holds for 1 < p < co and the optimal constant

equals
a/_{lﬂp—l) if p e (1,2],
PPl —1)/2)Pm P i p e (2,00).
We see that oy, = oy, for 1 <p <2 and a;, > oy, for p > 2.

We continue this line of research in two directions. The inequality (1.1)
still fails to hold if p € (0,1) and g > 0, but it turns out that if the differential
subordination is replaced by a slightly different condition, then we have the
following fact.

THEOREM 1.1. Suppose f is a martingale taking values in H and g is a
nonnegative martingale. Assume that for some deterministic 3 > 0 we have

6|f0’290 and |dfn| < |dgn|) n=12...,
with probability 1. Then for p € (0,1),
(12) anHp Z Cp,ﬁ”gnum 77,:0,1,27...,
where Cp, 3 =0 if 3> 1 and
p(1=8) \'"201+8)(1-p)+p*]"?

1+ 3 ~-p) p(1+3—p)
if B < 1. The inequality is sharp if 20 > p.

By sharpness we mean that for any C' > C), g, there exists a pair (f,g)
satisfying the assumptions of the theorem and an integer n for which we
have || £ llp < Cllgal,-

The second result we obtain is the following.

THEOREM 1.2. Suppose g is an H-valued martingale and f is nonnega-
tive and differentially subordinate to g. Then for 0 < p < oo,

(1.3) [fnlly < Collgnllp,  n=0,1,2,...,
where
00 if pe(0,1),
1 if p=1,
DT p - ) i pe (1,2)
p—1 if p€[2,00).

The inequality is sharp.

Therefore, compared to the general case, the constant decreases for p €

[1,2).
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Let us comment upon the method of proof. In [1] (see also [2]) Burkholder
proves the inequality (1.1) for general f, g constructing a quite complicated
special function U, satisfying some convex-type properties. It turns out that
a certain integration trick is available, which enables one to build U, from
much simpler functions and to reduce the complexity of the proof signifi-
cantly (cf. [5]). In [4], the proof of (1.1) for nonnegative g follows the same
pattern and the special function UZ’) is even more complicated than U,. In
this paper we discover an integral identity which expresses UI’, in terms of
much simpler objects. Related identities yield special functions leading to
the inequalities (1.2) and (1.3).

The paper is organized as follows. In the next section we introduce the
simple special functions, study their properties and present the crucial in-
tegral identities. Section 3 contains the proof of Theorems 1.1 and 1.2. The
last two sections are devoted to applications of these theorems to stochastic
integrals and harmonic functions on Euclidean domains.

2. The special functions. For a fixed number s > 1, set

1
D:{(:C,y)E]Ri:ygmin(ﬁ—l-l,i—x)}.

S —

Define ui s : H x Ry = R, ug s : Ry X H = R, usos : H xRy — R by

S 1 9 9 2 2s )
- ] f eD
wa(zy) =  se1 V) Tl ooy izl e D,
! if (|2],y) ¢ D,
s—1 .
(® = lyl?) if (z,|y)) € D,
_ s+ 1
U27s($,y)— 2 28
por e orel Clis if (2, [y]) ¢ D,
0 if (y,2]) € D,
uoos(ﬁyy): s—1 9 9 2 25 '
7 - — Y- 1 if D.
TP =)+ gyl T i () ¢

It is easy to check that these functions are continuous. Furthermore, let ¢ s,

sz)l,sa ¢2,sa 'Qb?,sv ¢oo,sa 1/100,5 be defined by

(¢1,5(x7 y)7 1/)175(‘%, y))

2(s—1) 2, 2(s—1) 2s )
— - f D
( 1 YT Y e Ytey) i(ehyeD,

(0,0) if (2], y) € D,
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2(s—1 2(s—1
(e -2y e
<¢2,S(may)7w2,8(may)) = 9 2

<S—|-—1’_S+1y> if (1’,|y|) GD,

(0,0) if (y,|z|) € D,

_ 2(s—1) 2s  , 2(s—1) 2

(¢oo,s<xay)vwoo,s(may))_ ( s 1 x_s+1m’_ s+ 1 y+8—|—1>

if (y, |z]) € D,

where 2/ = x/|z| for x #0 and 2/ =0 if x = 0.
The key properties of the above functions are described in the following
lemma.

LEMMA 2.1. Let s > 1 be a fized number.

(i) We have
(2'1) ULS(.%',y) <1,
2 2s
2.2 < — 1
s—1 9 9 2 2s
2.3 < — — —y — 1.
(2.3) toos(,y) < ——7 (|27 =97 + =y — — ol +

(i) Suppose x,h € H, y,y +k >0 and |h| < |k|. Then

) urs(z +h,y + k) <ws(z,y) + drs(@,y) - b+ 1 s(z, y)k,

) oo (TP Y+ E) < tloos(4,Y) + Poos(2,Y) - b+ Yoo (2, y) k-
Suppose x,x +h >0, y,k € H and |h| < |k|. Then

(2.6) Ups(z +h,y + k) < uzs(@,y) + dos (@, y)h + Pos(z,y) - k.

Proof. (i) It is easy to see that the inequalities (2.1)—(2.3) are equivalent
and therefore it suffices to prove the first one. To this end, note that for
(|z|,y) € D the partial derivative of u; s with respect to y equals

2s=1)( s
—y] >0
s+1 (s—l y)_

and the inequality follows by the continuity of u s.
(i) This is done by a well-known procedure (cf. [2]-[4]). Consider a func-
tion

G1,s(t) = urs(z +th,y + tk),
defined on {t : y 4+ tk > 0}. The inequality (2.4) is equivalent to
G1,s(1) < G1,5(0) + G 4(0)
(with (G1,5)2(0), (G1,6)1(0) or 0 instead of G ,(0) if the latter does not

exist) and will follow once we have established the concavity of G s. Consider
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the sets
(2.7) Eys = {t: (|x+th|,y+tk) ¢ D}, Fis= {t : (|z+th|,y+tk) € D}.

On E; s we have G s = 1, which is clearly concave, while on Fj 5, G 4(t)
equals

s—1 2 2,2 , s—1 2 2
S+1(\h\ k)t +S+1[|:L‘] + 2tz - h — y° — 2tyk]

|z 4+ th| + —— (y + tk)

2s
s+1

s+1
and the concavity follows from |h|? < k? and the concavity of the function
t — —|z + th|. It remains to note that E s, F} s are intervals and, by (2.1),
G(t) <1on Fi.

For the functions us s, ux s the argument is essentially the same; we
introduce the functions G 3 and G s in a similar manner and reduce the
proof of (2.5), (2.6) to the concavity of these functions. The concavity is
clear on the sets Eo,, Fo s and E s, Fixo s, defined as in (2.7), and the
inequality for one-sided derivatives follows from (2.2), (2.3). The sets Ey g,
E.s may happen to be unions of two intervals, but this does not change
the argument. =

Now let us introduce the special functions corresponding to the moment
inequalites. For p € (0,1), x € H, y > 0, let

p(1=p)(2—p)(s+1) OSO
0

5 tpilul,s(‘r/ta y/t) dt,

(2.8) Ups(z,y) =

while for p € (1,2), 2 > 0, y € H,

plp—1D(2-p)(s+1) OSO
0

(2.9) Ups(z,y) = P~ g (x/t,y/t) dt.

2
Finally, for p € (2,00), z € H, y > 0, set

plp—1)(p—2)(s+1) OSO
0

(2.10) Ups(z,y) = 5

P e (2 /t, /1) dt.

The formulas for U, ; are as follows. Suppose p € (0,1). If y < s|z|, then

s—1
s+1

Ups(z,y) = ( )p_ (Jz] +y)P  y(s — 1+ p) + |z|(s — sp — 1)],

while for y > s|z|,

Ups(z,y) = (y — 2P y(s + 1 = p) + |z|(sp — s — 1)].
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In case p € (1,2), if |y| < sz, then
s—1

Up,s(may) - (S + 1

while for |y| > sz,

Ups(@,y) = (lyl = )" lyl(p — 5 — 1) +a(s — sp + 1)].
Finally, let p € (2,00). Then, if sy < ||,

Upss(a,y) = (2] = )P y(sp — s = 1) + |z|(s = p+1)]
and for sy > |z|,

p—1
) (e + [P Iyl (=5 — p+ 1) + (sp — s + 1),

s—1
Up,s(x7y) = <S+1

The following functions will also play a role. If p € (0,1) and s > 1, let
Vp,s : H x Ry — R be given by

Vos(z,y) = (s +1 = p)[y — Kpslz/’]
and for p € (1,2), s > 1, define V), , : R, x H — R by
Vps(@,y) = (s +1—=p)[—[y[’ + Kpsa"].

s—1\P!
Koo — o
2 s+1—p

We will need the following fact about the functions defined above.

p—1
) (| + )" y(s = ps — 1) + [al(s + p — 1)].

Here

LEMMA 2.2. Suppose p € (0,2), p# 1 and s > 1. Then
(211) Ups > Ve

Proof. It suffices to prove the inequality in the special case ‘H = R.
Consider the functions F,G : (0,1) — R given by

F(t) = Vps(t, 1= 1), G(t) = Upa(t, 1 — t).

The function F'is convex on (0, tp) and concave on (g, 1) for some ¢y € (0, 1),
while G is concave on (0, (s + 1)~!) and linear on ((s + 1)~!,1). Moreover,

F(0) = G(0), F'(0) <G'(0),

F<s-2+1> :G<si1>’ F/<s-2+1> :G/<si1)'

Thus F' < G, which yields (2.11) by homogeneity. m

REMARK 2.1. If z = 0 or 2|y| = (s — 1)|z|, then U, s(z,y) = Vps(x,v).
This is a consequence of F/(0) = G(0) and F(2/(s+ 1)) =G(2/(s+1)).
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3. The proofs of the theorems. The inequalities (2.4)—(2.6) yield the
following estimates.

LEMMA 3.1. Let s > 1 and suppose f, g are martingales satisfying
ldfn] < ldgn|, n=1,2,...,
with probability 1.
(i) Suppose f is H-valued and g is nonnegative. Then
(3.1) Euq s(fn, 9n) < Euis(fo,90), n=0,1,2,....

(ii) Suppose f is H-valued and g is nonnegative. Furthermore, assume
that both f and g are square integrable. Then

(32) Euoo,s(fnagn) < Euoo,s(vagl))a n=0,1,2,....
(i) Suppose f is nonnegative and g is H-valued. Then
(33) Eu?,s(fnagn) S ]E/UJQ,S(fO)gO)a n = 051525" ..

Proof. We will only prove (i); the remaining statements can be estab-
lished in the same manner. It suffices to show that for any 1 < k < n,

(34) Eul,s(fkvgk) < Eul,s(fk—lvgk—l)-
Since |dfx| < |dgx| almost surely, the inequality (2.4) gives

ut,s(fr gk) < ur,s(fr—1, gk—1) + G1,5(fre—1, gx—1) - dfc + V1,5(fr—1, gr—1)dGk.-
Both sides of the inequality above are integrable; taking the conditional
expectation with respect to Fj_1 gives
Eluys(frs gr) | Fr—1] < ur,s(fe—1, gr—1)-
This implies (3.4) and completes the proof. =
Proof of (1.2). If B > 1, then C, 3 = 0 and the inequality is trivial.
Assume that § < 1. The identity (2.8) together with Lemmas 2.2 and 3.1
yields
(3'5) (S +1- p)E[gg - Kp,s|fn|p] = Evp,s(fna gn) < EUp,S(fnvgn)
< EUp,s(fo, 90)
for any n. Now set
_1+p58-0p
s=—"1
1+8—-p
Then EU, s(fo,90) < 0, which follows from the fact that for x € H and
y € Ry satisfying B|z| > y we have
Up,s(x,y) < Ups(x, Blz]) = c[B(s =1+ p) +5—sp—1] =0

for some nonnegative c. To complete the proof, note that K, s = Cp_g. n

1.
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Proof of (1.3). Tt suffices to prove the inequality for p € (1,2), as for
p < 1 it is trivial and for p > 2 it holds for general f, g. We proceed as
previously. The identity (2.9) and Lemmas 2.2 and 3.1 give

(3'6) (8 +1-— p)]E[_an’p + Kp,sfs] = Evp,s(fnvgn) < EUp,s(fnagn)
< EUys(fo, 90)

for any n. Now the choice s = p implies EU), s( fo, go) < 0, since U, ,(x,y) <0
if z < |y|. All that is left is to observe that Cp,” = K, . =

REMARK 3.1. For p > 2, the function U, can be used to establish the
inequality (1.1) for H-valued f differentially subordinate to g > 0 (with the
optimal constant a;,). In [4], Burkholder uses a slightly different function

Upp(z,y) if (p— 1)y < 2[z|,

Uplz,y) =4 (p—1\"" ,

' p(P5) -l it (o= 1y > 2l

and proves EU,(fn,gn) < EU,(fo,90) < 0 by showing an inequality anal-

ogous to (2.4)—(2.6). Our approach (through identity (2.10)) enables us to
avoid technical computations.

REMARK 3.2. The inequalities (3.5), (3.6) can be used to obtain varia-
tions of (1.2), (1.3), involving the initial variables fy, go. For example, as-

sume that f is H-valued and differentially subordinate to a nonnegative g
with |fo| = go. If 0 < p < 1, then (3.5) yields

2 (s = 1)(2— p)
(s+ )]

E|fol?

(s=1 ' p
EgP < E|f,IP

for any s > 1. Take s — oo to obtain

1/p
p
lonllr<2(1-5) ol

Sharpness. This will be shown in a few steps. Assume H = R and p €
(0,2),p # 1.

STEP 1. Let us consider the following process, a modification of the one
used by Burkholder in [4]. Let s > 1, 6 € (0,1) be fixed and set

e () e [t

forn=0,1,2,.... Consider a Markov chain H = H (s, d) with values in Ri,
starting from (1, s), such that for n =0,1,...,
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1
P(Hon+1 = (xn(1 = 0),2n(s+0)) | Hop = (xn, sT0)) = T
)
B(Hanis = (20, (5 = 1)) | o = (n,570)) = 105
d(s+1
B(Haniz = (0,2n(s—1426)) | Honin = (a(1—8),ms0)) = 2C0H 1
= - _ _(1=0)(s—1)
P(Hont2 = (nt1, $Tnt1) | Hont1 = (zn(1 — 6),zn(s +9))) = %

with the further condition that all the states lying on the lines 2y = (s — 1)z
and x = 0 are absorbing. Then the processes F' = F(s,6), G = G(s,0),
defined by H,, = (F),, G,,), are martingales such that for n > 1, dF,, = £dG,,.

STEP 2. Now we will show that the sequence (EU, s(Hy))n>0 is almost
constant. For any nonnegative integer n, let A, = {H, 1 # H,}. Note that

Aoy = {HQn = (SCn,SﬁCn)}, A2n+1 = {HQn—i-l = (ﬁn(l - 5)’xn(3 + 6))}
LEMMA 3.2. Let n be a nonnegative integer.
(i) P(A2n) = pn.
(ii) The following equalities hold true:
(3.7) EUp,s(Han+2) = EUp,s(Han+1),
(3-8) EUP7S<H2n+1) = EUp,S(H2n) - xsz(d)P(AM)?
for some function R = R, s : Ry — Ry satisfying R, (0)/6 — 0 as § — 0.
Proof. (1) We have P(Ag) = 1 = pg and P(Ag | Agk—2) = p1 for any
kE>1.
(ii) On Agp41, the variable Hayp, 4o takes values (0, z,(s — 1+ 26)) and
20 20
(.’L‘n+1, S$n+1) = (:L‘n (1 + 8_—1>,1L'n(8 -1 + 25) —+ x, <1 + 3——1)>

But the function ¢ — U, s(t,zn(s — 1 + 20) + t) is linear on the interval
[0, 2, (14+25/(s —1))]; this proves the first estimate. For the second one, the
argument is similar: on As,,

Hopy1 € {22y, (s — 1)xy), (2n(1 = 9),zn(s+0))}, Hap = (zn, s2s)

and the function ¢t — U, s(x,, + ¢, sz, — t) has a continuous derivative on
(=9, z,) and is linear on [0, x,]. It remains to use the fact that U, s is ho-
mogeneous of order p to get the special form of the remainder.

STEP 3. Let us study the following estimate:

(3.9) EV,.s(Hay) + eEFY > EU, s(Hyp).
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LEMMA 3.3. Let € > 0 be fized.

(i) Suppose p € (0,1) and s > 1. Then there exists § > O such that the
inequality (3.9) holds for large n.

(ii) Suppose p € (1,2). Then there exist s < p and § > 0 such that the
inequality (3.9) holds for large n.

Proof. Outside As,, the variable Hs, takes values on one of the lines
2y = (s — 1)z, = 0. Since U, 4, V) s coincide on these lines, we have, by
Lemma 3.2,

(3.10)  EVps(Han) = EUps(Han) + P(A20) [Vp,s(@n, s2n) — Up,s(@n, sn)]

n—1
= EU, s(Ho) — R(0) Z i py — calpp,
k=0
where ¢ = =V}, 5(1,5) + Up s(1,5) > 0.
On the other hand,
6 n—
) 74 > p Pn > —1 — 1
(3.11) EF;, > Zan 1152 5k2x Ppp =27 527’
where
3.12 =7r(§) =2y =
(3.12) r=r®=atn = (14 2) 2
(i) Fix e > 0, p € (0,1) and s > 1. By (3.11), there exists § such that
n—1
2R(6
(3.13) Ro) Y atm < 20 grp < “Ery,
k=0

for any n. Furthermore, since p < 1, we have r(d) < 1; hence cxhp, = cr™ <
£6/4 < 271eEFY for large n. Combining this estimate with (3.10) and (3.13)
yields (3.9).

(ii) Fix € > 0 and p € (1,2). We have r'(0) = 2(p — s)/(s — 1), so there
exist s € (1,p) and 6(¢) such that if § € (0,6(¢)), then 1 < r(d) < 14+5/8c.
Then, by (3.11),

2(r—1)
0
if n is large enough; the last inequality follows from EF} — oo as n — oc.

We conclude the proof by observing that (3.13) holds for sufficiently small
0, and applying (3.10). =

STEP 4: sharpness of (1.2). Let 8 € (p/2,1), 6 >0, e > 0 and set

- 1+6 P ’ 1+

cxbp, =cr <c EFY +1 §EIEF§H+1<%IE‘,F§n
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The inequality p < 20 implies a > 0. Consider martingales F' = (F},)>—1,
G = (Gp)n>—1 satisfying
(I) F-1=2—a,G_1 = a+ s — 1 almost surely,
I) P((Fo, Go) = (1,8)) = a = 1 = P((Fp, Go) = (2,5 — 1)),
II) on {Fy = 2}, the process (F,, Gy) is constant,
V) on {Fy = 1}, the conditional distribution of the process (Fy, Gp) is
the distribution of H(s,d) constructed in Step 1.

By the choice of a, we have SF_1 = G_1 and EU), s(Fp, Go) = 0. Clearly,
EVp s(Fan, Gan) = EVp s(Fan, Gon) X (ry=1} + EVp.s(Fan, Gon) X {my=2} -
On the set {Fy = 1} we can use Lemma 3.3: a proper choice of § and n
implies
E‘/p,s(FZm GQ’IZ)X{F():I} + 6EF§71X{F0:1} Z EUp,S(F(): GO)X{F():]_}‘
On the set {Fy = 2} the pair (Fa,, Gan) = (Fo,Go) lies on the line 2y =

(s — 1)z, which implies V), (Fap, Gon) = Uy s(Fo, Go). Combining these two
facts we get

(I
(1
(I

(3.14) EV.o(Fan, Gon) + eEFE. > EU, o(Fp, Go),
SO
— 9
56, > (O - i JEFL > (G — SEF,

This proves that (1.2) is sharp. For the case 8 > 1, observe that C, 3 is
nonincreasing as a function of 3 and C, 3 — 0 as 51 1.

STEP 5: sharpness of (1.3). The cases p < 1, p = 2 are trivial; for p > 2,
we use the example on page 669 of [1]. The only case left is p € (1,2).

For e > 0, let s € (1,p) and § > 0 be the numbers guaranteed by Lemma
3.3. Consider martingales F, G satisfying (I)-(IV) with a = (3 — s)/2. By
arguments similar to those above, (3.9) leads to the inequality (3.14), valid
for large n. Since EF} — oo, we have EU, ;(Fy, Go) > —eEF} for large n,
which combined with (3.14) implies

2e _

Therefore C), is the best possible in (1.3).

REMARK 3.3. It is clear from the examples above that the inequalities
(1.2) and (1.3) are sharp even in the case of £1 transforms, i.e. if we assume
that df, = +dg, forn=1,2,....

]EGIQ)TL S (vas +

4. Sharp inequalities for stochastic integrals. Suppose X = (X}):>0
is a cadlag martingale on a complete probability space (£2,F,P), which is
filtered by a nondecreasing right-continuous family (F%)¢>0 of sub-o-fields
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of F. In addition, assume that Fy contains all the events of probability 0.
Let Y be the It6 integral of H with respect to X, where H is a predictable
process:

Y, =HoXo+ | H,dX,.
(0,t]
The continuous-time versions of Theorems 1.1 and 1.2 are stated below.
THEOREM 4.1. Suppose p € (0,1), X is nonnegative and for any t > 0,

the variable Hy takes values in a closed unit ball of H. If 8 > 0 satisfies
P(G|Ho| > 1) = 1, then for any t > 0,

(4.1) 1Yiellp = Cp,pll Xellp,
and the inequality is sharp if p < 20.

THEOREM 4.2. Suppose p € (0,00), X is nonnegative and H takes values
outside the open unit ball of H. Then for any t > 0,

(4.2) 1 Xillp < CpllYillp,
and the inequality is sharp.

The inequalities (4.1), (4.2) follow from (1.2), (1.3) by discretizing the
argument; see [3|, where an analogous submartingale inequality follows from
the corresponding discrete-time version. The sharpness follows from the fact
that the constants C), g, C), are the best possible in (1.2), (1.3) in the case
when f is a 1 transform of g (see Remark 3.3).

5. Inequalities for harmonic functions. In this section we study
harmonic extensions of inequalities (1.2), (1.3). Let N be a fixed positive
integer and D be an open connected subset of RY. Fix £ € D and consider
two harmonic functions u, v on D, taking values in Hilbert spaces H, K.
Suppose u is differentially subordinate to v, that is,

|Vu| < |Vv| on D.

Let Dg be a bounded subdomain of D with £ € Dy C Dy UdDy C D.
Let ,uEDO stand for the harmonic measure on 9Dy with respect to &, and

1/p
lulboy = | § ()P uh,(d2)] . 0<p <.
0Dg

We now give some norm inequalities for smooth functions.
THEOREM 5.1. Let u, v, Dy be as above.
(i) Assume that p € (0,1) and v is nonnegative. Then
(5.1) [l po,p = Cp,l[v[| Do
where § = v(&)/lu()]-
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(ii) Assume that p € (0,00), u is nonnegative and u(§) < |v(€)|. Then

(5.2) [ellDo.p < Cpllv]| Do,p-

Proof. We will prove only the first part, the second one can be established
similarly. As C}, 3 = 0 for 8 > 1, we may assume that 3 < 1. Let

1 —
s= LEB=Pp
1+6-p
It is easy to check that the function wu; s(u,v) is superharmonic. Therefore
| wns(u(z),0(2) 1, (d2) < ur,s(ul), v(E)).
Do
Applying the identity (2.8) we obtain
V Ups(ul2),v(2)) i, (dz) < Ups(u(€), v(&)) = 0,
Dy
since Slu(&)| = v(§). It suffices to use the inequality (2.11) to get (5.1). m
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