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Summary. Let ¢ be a Banach sequence space with a monotone norm || - ||¢, in which the
canonical system (e;) is a normalized symmetric basis. We give a complete isomorphic
classification of Cartesian products E§(a) x E (b) where Ef(a) = K‘(exp(—p~'a;)) and
EL(b) = K'(exp(pa;)) are finite and infinite f-power series spaces, respectively. This
classification is the generalization of the results by Chalov et al. [Studia Math. 137 (1999)]
and Djakov et al. [Michigan Math. J. 43 (1996)] by using the method of compound linear
topological invariants developed by the third author.

1. Introduction. Let ¢ be a Banach sequence space in which {e; =
(0ij)jen : ¢ € N} forms an unconditional basis. The norm || - ||; is called
monotone [4] if [lz] < |lylle whenever = = (&), y = (ns), |&i| < nil, i € N
We denote by A the set of all such spaces ¢ with monotone norm, and by
A®) the class of those of them with symmetric canonical basis {e;}. For
a given ¢ € A and a Kéthe matrix A = (a;)inen we define the (-Kdithe
space X = K'(A) as a Fréchet space of scalar sequences z = (&;) such
that (§ain) € £, for each n, with the topology generated by the system of
seminorms {[(&)|n := [[(&ain)|le : n € N}

We generalize some results from [2], [3] (see Theorems 10 and 8 below) by
considering ¢-Kothe spaces instead of usual Kéthe spaces with ¢ = [P. Here
we use a certain version of compound linear topological invariants developed
in [8]-[10]. For the sake of transparency we simplify, as compared with [2], [3],
the principal part of the proof (Lemma 5 is important to this end), omitting
some elementary but long computations. The more general situation calls for
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some revision of the compound invariant method, such as using S. Krein’s
interpolation method of analytic scales (see Lemmas 6, 7); we also prefer to
use the modified basic characteristic 5(V,U) (see Section 3 below).

2. Preliminaries. Set P := {a = (ai)ien : @; > 1, Vi}. For a € P we
introduce the weighted f-space as {(a) := {z = (&) : [|zlly@) = (& ai)lle
< 0o}. For a € P we consider its counting function ([6], [7]):

po(m,t) ;= {neN:7<a, <t}, 0<7<t<o0,
where |S| is the number of elements in S if it is finite, and oo otherwise.
PROPOSITION 1 (see [10]). Let a = (a;),b = (b;) € P and
(1) ta(7,t) < up(17/A, At), 1<7<t< o0,

for some constant A > 1. Then there is an injection o : N — N such that

a; < AQbU(i) and bg(i) < Azai fori e N.

Let A := (ain)inen, B := (bjn)jnen be Kéthe matrices and £ € A,
Then the Cartesian product of the ¢-Kothe spaces K*(A) and K*(B) is natu-
rally isomorphic to the space K*(C) where C' = (Ck,n)knen is such that ¢y,
equals a;, if £k = 20 — 1, and b;,, if £ = 2i. For a € P and A\, / «,
—00 < a < oo, we call the (-Kéthe space Ef(a) := K*(exp(M,a;)) an
C-power series space of finite (respectively, infinite) type if o < oo (respec-
tively, a = 00).

Let X = K/(A) and X = K*(A) be (-Kothe spaces. An operator T : X —
X is called quasidiagonal if there exists an injection ¢ : N — N and constants
ti, 1 € N, such that Te; := tie,(;), i € N. We write X (’1;(} X (X a“ )A(:) if there
is a quasidiagonal isomorphism (respectively, a quasidiagonal imbedding)
T:X — X.

~ d ~
LEMMA 2 (cf. [10], [7]). Let X and X be (-Kdthe spaces with X L X
~ od d ~
and X <5 X. Then X =~ X .

3. Geometric invariant characteristics. Let X be a class of locally
convex spaces and I" be a set with an equivalence relation ~. We say that
v : X — I'is a linear topological invariant if X ~ X implies v(X) ~ v(X),
X,)Z' € X. For more details about linear topological invariants we refer
to [10].

Suppose FE is a vector space, U and V are absolutely convex sets in F,
and &y is the set of all finite-dimensional subspaces of E that are spanned
by elements of V. Set L(V,U) :={L € &y : 3qg:=¢q(L) < 1, LNU C ¢V}.

Dealing with Banach sequence spaces with monotone norm, it is convenient
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to consider the characteristic
B(V,U) :=sup{dim L : L € L(V,U)},

which is a modification of the characteristic 5(V,U) (see, e.g., [10], [2], [3]).
We shall use the followmg obvious properties of this characteristic: (a) if
Vi CV, U C Uy then 3(V1,Un) < B(V,U); (b) B(CV,U) = B(V,C~1U) for
any constant C' > 0; (c) if T is a linear injection on E then S(T(V), T(U)) =
B(V,U); (d) B(VNF,UNF) < B(V,U) if F is a subspace of E.

Let E be a vector sequence space containing the system {e; };cn. Given
a € P, we define the weighted ball B*(a) = {z € EN{(a) : 20y < 1}
For any a = (a;), b = (b;) € P we set a A b := (min{a;,b;}) and a Vb :=
(max{a;, b;}).

LEMMA 3 (cf. [10], [2], [3]). Let a,b € P. Then

(i) £B*(aAb) C conv(B*(a) UB (b)) C B(a Ab);
(ii) B(aVb) C B'(a) N BY(b) C 2B*(a V b).

Proof. (i) Let I := {i € N:a; < b;j}, J:=N\T and z = (§)ien €

B'(a A b). Define u = (u;) so that u; = & if i € I and 0 otherwise; set
v := x — u. Then, by the monotonicity of the norm, we have

||U||g(a) = ||U||e (anb) = < lzll, (aAb)> ”UHé(b) = ||U||e (anb) = < [l=ll, (anb)*
Hence u,v € Bf(a) U B*(b) and iz = Ju+ v € conv(B*(a) U BY(b)).

For the second inclusion, take z = S°7 , \iu; € conv(B*(a) U BY(b)),
where u; € B(a) U BY(b) and 37, \; = 1. By the monotonicity of the
norm, we have either [|u;l[y,np) < ltillgqy) < 1 or uillgopn < lluilloey < 1.
Hence, in both cases

Iellars) = | 32 A,

that is, x € BY(a A D).
(ii) Let z € B*(aVb). By the monotonicity of the norm, we have 2] () <
Jallyaysy < 1 and 2l < leligaus < 1. Hence « € B*(a) N BY(b). For the

second inclusion, take z € Bf(a)NBY(b), that is, 20y < 1 and ||z < 1.
Then the monotonicity of the norm yields

1(& max{ai, bi})lle < [|(&ai + &bi)lle < lzlleqa) + l@lle)
Thus we get [|z|[;,yp) < 2, hence z € 2B (a VD). =

n n
< Ailltillgansy < DX =1,
i=1 =1

LEMMA 4 (cf. [10], [2], [3]). B(B%(a), B4(b)) = |{i : ai/b; < 1}|.
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Proof. Let I = {i : a; < b;} and M be the linear span of the set {e; :
i € I}. Define a projection P : E — M such that Px := ), ;&e; where
z = (&) € E. Take x = (&) € M N BY(b). If dim M = oo, then sup{dim L :
L € L(V,U)} = co. So, trivially we have 3(B*(a), B{(b)) = dim M. If M is
finite-dimensional, then [|z{[,,) < [|lz[l,; < 1. So there exists ¢ = q(M) < 1
such that [/, < ¢ and M N BY(b) C ¢B'(a), that is, (B*(a), B'(b)) >
dim M = |1|.

To obtain 3(B'(a), B‘(b)) < |I| we assume the contrary. Then there
exists L such that |I| < dim L. Hence we can find z = )7, §e; € L, x # 0,
such that Px = 0. But then & = 0 for ¢ € I and & # 0 for some i ¢ I.
Since a; > b; for i ¢ I, and the norm is monotone, we obtain ||(&a;)|e >
[[(&bi)lle, that is, [[z([,4) = [[z]l4p)- On the other hand, since x € L, we get
2llga) < dllzllopy With ¢ = g(L) < 1, which implies [[z|,4) < [|lz[l4q). This
contradiction completes the proof. m

LEMMA 5 (cf. [1], [2], [10]). Let a¥) = (ay;) € P, = 1,2,3,4. Then

2) B <Bf(a<4>) N B*(a®), conv G (B“(a®)u B (a®) U Bf(a<1>))>)

l

|
® <B€(a(4))ﬂBZ(a(g))ﬂBé(a(Q)),ConV<%(Bé(( )UB(a >>
J

>H'-%<1 s -9 & —<1

a;3 ai2

a a a
> {'-i*<1 =8 <, £<1

;2 ;2

Proof. By Lemmas 3 and 4,
E; (Bf(a<4>) A B! (a®), conv <% (B (a®) U B! () U Bf(a<1>))>>

> B<Be(a(4) va®), % B (a® A a® A a(l))>

_ HZ max{a;4, a;3} _ 2}‘ > HZ max{ai4, a;3} < 1}‘

min{a;3, a2, a1 } min{a;3, a2, ain} ~

a a a a a a
:Hz’:—”’<1 SR R S S ﬁ<1}
a;3 (075 a;2 a;3 a;2 a;1

The first three inequalities in the last braces can be omitted, since the first
one is always true, while the second and third are consequences of the others,
as CLZ‘4/CLZ'1 = (ai4/ai3)(ai3/ai1) and CLZ‘4/CLZ'2 = (ai4/aig)(ai3/ai2). Hence, (2) is
proved.
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Analogously we have

F; (Bf(a<4>) N B'(a®) N BY(a®), cony (% (B (a®) U Bf(a“)))))

2 Z:_Sl)_§17_§1;_§1;_Slv_g]-

;2 a1 ;1 ;2 ;2 a1

{  ap a3 ai4 a3 aig a2 } ‘

Again removing unimportant inequalities in the last braces, we obtain (3). =
Now we construct an analytic scale of Banach spaces (|5, IV.1]) connect-
ing the spaces ¢(a) and £(b).
LEMMA 6. Let £ € A and a,b € P. Then E, = {(a'~%b%) is an analytic
scale such that Ey = ((a) and E1 = ((b).

Proof. Consider the normed linear space M := {x = (&) € (a) : Fkg =
ko(x), & = 0 for k > ko}, which is a dense subspace of ¢(a). We define
an operator T'(z) : M — M by T(z)x = (&(bg/ax)?) where x = (&).
Clearly conditions 1°-5° in the definition of the analytic scale (|5, IV,1.9])
are satisfied. By the monotonicity of the norm,

. b a+iT
”l’”a = sup ||T(a+ZT)$||K(a) = sup H(é’k<_k> ak)
ag

—oo<T<0o0 —00<T<00

(& (2—’;)”@@)1—&(@)@) | = 1ellansey

Hence, E, := ((a'~%b%). =

Applying the interpolation theorem for analytic scales ([5, IV, Theo-
rem 1.10]) to the above scale we obtain the following

LEMMA 7 (cf. [10], [2], [3]). Suppose E and E are (-Kéthe spaces, (e;)
and (&;) are their canonical bases, and T : E — E is a linear operator.
If a,a,b,b € P and T(B'(a)) C B' (@), T(B'(b)) C B(b) then for any
a € (0,1) we have

T((B(a))' (B ())*) € (B‘(a))'~*(B‘(b)",
where (B (am))' (B (a,))* = Bf(a'~b®).

4

= sup
—00o<T<0

4. Imbedding of /-power series spaces

THEOREM 8. Let £ € A®) and a,a € P. Then the following statements
are equivalent:
() El(a) = EL(@), v = 0,00
(ii) there exist A >0 and an injection o : N — N such that a; < Adg(;
and Zia(i) < Aai;

d
(iii) E%(a) S E4®@), v =0, 00.
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Proof. The implications (ii)=-(iii) and (iii)=-(i) are obvious. Due to Pro-
position 1, it remains to prove that (i) implies the estimate (1).

Because of similarity, we only consider the case v = oo. Suppose that
T : E'(a) — E.(a) is an embedding. Set U, := B(ay), V, := B(a,),
ap = (exp(pa;))ien and &, := (exp(pa;))ien- So, (p71U,) and (p~1V,) are
bases of neighborhoods of zero in Ef(a) and E!(a), respectively. Let W), :=
Vp, N R(T'), where R(T') denotes the range of T'. Since T is an isomorphism
onto its range, we can choose indices

(4) p<p<g<qg<r<r

so that
p q r

(5) — Wy, DT(U,) DT(Uy) D — Wy D —W,, DT(U,)
p1 q1 1

and each number in (4) is twice the previous one. The elementary properties
of the characteristic § yield

6)  Ble U, NeU,,Uy) = Ble”"T(U,) Ne'T(U,), T(U,))
< B(K(e_TWpl N etWﬁ)v Wq1) < E(K(B_Tvpl N ech)a Vm)

with K = r2. Taking Lemmas 4 and 3 into account, we estimate the left-hand
side of (6) from below and the right-hand side from above; this yields

- ‘{Z , max{exp(r Zﬁﬁi)q’fip(_t +ra)} _ 1}‘
HZ . max{exp(r + pid), exp(—t +rid)} QK}'

< -
- exp(q1as)

which is equivalent to

(8) Hz’:L<ai<

q—p r—q

)

q1 —Pp1 ™ —q1

H . ‘{Z T-In@2K) t—|—ln(2K)H.

Changing variables we obtain the estimate (1) with A = 2r, which ends the
proof. m

COROLLARY 9 (cf. [6], [7], [2]). Let £ € A®) and a,a € P. Then the
following statements are equivalent:

(i) Ey(a) ~ E}(a), v =0,00;
(ii) there exist A > 0 and a bijection o : N — N such that
1

Z a; < Zia(i) < Aai;

(i) Ela) L EL@), v =0,00.



Cartesian Products of {-Power Series Spaces 109

5. Isomorphisms of Cartesian products of /-power series spaces

THEOREM 10. Let { € A® and a,b,a,b € P. If Ef(a) x EY (b) ~
Ef(@) x EX(b), then there exist A, 19 > 0 such that:

9) Hk:7<ap <t} <|{k:7/A <a, < At}
(10) {k:7 <bp <t} < |{k:7/A < b < At}
where t > T > 1.

Proof. The Cartesian products Ef(a) x E. (b) and E§(a) x E‘ (b) are
naturally isomorphic to the £-Kothe spaces X = K*(c;p) and X = K*(d;)
where

exp(—ay/p) ifi=2k—1, exp(—ay/p) ifi=2k—-1,
Ciny = L= ~
v exp(pby) if i = 2k, P exp(pby,) if i = 2k.
Let T : X — X be an isomorphism. Set U, := Bf(ay), V, := B'(a,),
ap = (cip)ien and @, := (dip)ien. Then (p~1U,) and (p~'V,) are bases of
neighborhoods of zero in X and X, respectively. Since 7' is an isomorphism,
we can choose indices po < P < P1 < P <g< g <ra <r<r;<s<s

< s1 so that each of them is twice the previous one and

b b q q
_‘/;72 DT(UP)D_V;?U _‘/;12 DT(UQ)D_VQU
P2 P1 q2 q1

ay "

T2

Vi, 5 T(U,) D Z Vy, Siv ST, > 2 v,
2

T1 Sl

By properties of B, using (11) and Lemma 7, we obtain the estimates

5 1
(12) ﬁ(etUs N Uq,conv<§ (U, U U;/QUTUQ U eTUr)>>
~ 1
< ﬁ(K(erSQ NVea), conv(§ (Ve UV PV 0 eTvm)),
~ 1
(13) ﬁ(U;/2U,}/2 netU, nU,, conv<5 (U, U eTUS)>)

~ 1
< 6<K(%12/2W12/2 eV, V), conv(5 (Vo U V)))

with K = s2. Now we estimate the left-hand side of (12) from below, using
Lemma 5, and the right-hand side of (12) from above, applying Lemmas 3
and 4; this results in the following inequality:

. . —t ..
(14) Hz‘:ic“f <1 G4 4 C 6“31}‘

V2,12 =7 e Tey = 7 cig
wp ar
d; d: —td.
< Hz Dy < 16K, —2— < 16K, € fisz 16KH.
d / d/ e "dir, iq1

ip1 ATl
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We examine the first inequality on the left-hand side of (14). For odd indices
i we have (—1/q+ 1/2p + 1/2r)a;, < 0, which is impossible because 2p < q.
For even indices i it yields (2¢ — p — r)br < 0, which is trivially true since
2q < r. As a result the left-hand side of (14) equals

{k: T ocp< }
r—gq s—q

In an analogous way, consider the right-hand side of (14). For odd indices i,
the first inequality is equivalent to a; < In(16K)/(—1/q2 + 1/2p1 + 1/2r})
=: C. Thus, for 7 > 7 := C(1/q2 — 1/7m1) + In(16 K), the first inequality on
the right-hand side of (14) does not hold for odd indices. For even indices i,
the first inequality on the right-hand side of (14) is equivalent to (2g2 —
p1— rl)gk < In(16K) =: M, which is always true since 2¢gy < r1. Hence, for
7 > 71 the right-hand side of (14) is equal to

~ t+ M
(16) H <P <t } .
g2 52— q1
Since (15) is less than (16) for 7 > 71, we observe that

{k: << }ng:T_MSEkSHMH.
r—dq s—4q 1 — Q2 S2 — q1

Analogously, from (13) we obtain

(15)

(17)

(18)

{ 1/q—1/ k—ﬁ}‘

H T—M t+ M }‘
<Wp. 7= g < TP
/g2 —1/s1 /g1 —1/ry

(s1 — q2) In(16K)
p2/2+712/2 —q1
Changing variables in (17), (18) and setting A = 2s;, one can easily check
that the relations (9) and (10) are satisfied for 7 > 79 := 2max{r;,2}. =

for

+ M.

T >T9 =

As in [3], we derive the following
COROLLARY 11. Under the conditions of Theorem 10 we have either
Ef(a) ~ E§@) x F,  EL(b) x F ~ EX (b),
or N
EL(b) = B (b) x F,  Eg(a) x F =~ Eg(a),
where F'={ or F' = C" with some integer n > 0. In particular, we can take
F = 0 if each of the sequences a, a, b,~b does not tend to co; on the other
hand, if each of the sequences a, a, b, b tends to oo then there is an integer
n > 0 such that one of the above conditions holds with ' = C".
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