FUNCTIONAL ANALYSIS

Isomorphisms of Cartesian Products of ℓ -Power Series Spaces

by

E. KARAPINAR, M. YURDAKUL and V. ZAHARIUTA

Presented by Czesław BESSAGA

Summary. Let ℓ be a Banach sequence space with a monotone norm $\|\cdot\|_{\ell}$, in which the canonical system (e_i) is a normalized symmetric basis. We give a complete isomorphic classification of Cartesian products $E_0^{\ell}(a) \times E_{\infty}^{\ell}(b)$ where $E_0^{\ell}(a) = K^{\ell}(\exp(-p^{-1}a_i))$ and $E_{\infty}^{\ell}(b) = K^{\ell}(\exp(pa_i))$ are finite and infinite ℓ -power series spaces, respectively. This classification is the generalization of the results by Chalov *et al.* [Studia Math. 137 (1999)] and Djakov *et al.* [Michigan Math. J. 43 (1996)] by using the method of compound linear topological invariants developed by the third author.

1. Introduction. Let ℓ be a Banach sequence space in which $\{e_i = (\delta_{i,j})_{j \in \mathbb{N}} : i \in \mathbb{N}\}$ forms an unconditional basis. The norm $\|\cdot\|_{\ell}$ is called monotone [4] if $\|x\|_{\ell} \leq \|y\|_{\ell}$ whenever $x = (\xi_i)$, $y = (\eta_i)$, $|\xi_i| \leq |\eta_i|$, $i \in \mathbb{N}$. We denote by Λ the set of all such spaces ℓ with monotone norm, and by $\Lambda^{(s)}$ the class of those of them with symmetric canonical basis $\{e_i\}$. For a given $\ell \in \Lambda$ and a Köthe matrix $A = (a_{i,n})_{i,n \in \mathbb{N}}$ we define the ℓ -Köthe space $X = K^{\ell}(\Lambda)$ as a Fréchet space of scalar sequences $x = (\xi_i)$ such that $(\xi_i a_{i,n}) \in \ell$, for each n, with the topology generated by the system of seminorms $\{|(\xi_i)|_n := \|(\xi_i a_{i,n})\|_{\ell} : n \in \mathbb{N}\}$.

We generalize some results from [2], [3] (see Theorems 10 and 8 below) by considering ℓ -Köthe spaces instead of usual Köthe spaces with $\ell = l^p$. Here we use a certain version of compound linear topological invariants developed in [8]–[10]. For the sake of transparency we simplify, as compared with [2], [3], the principal part of the proof (Lemma 5 is important to this end), omitting some elementary but long computations. The more general situation calls for

²⁰⁰⁰ Mathematics Subject Classification: Primary 46A45.

Key words and phrases: Cartesian products, ℓ -power series spaces, compound linear topological invariants.

some revision of the compound invariant method, such as using S. Krein's interpolation method of analytic scales (see Lemmas 6, 7); we also prefer to use the modified basic characteristic $\widetilde{\beta}(V,U)$ (see Section 3 below).

2. Preliminaries. Set $\mathcal{P} := \{a = (a_i)_{i \in \mathbb{N}} : a_i \geq 1, \forall i\}$. For $a \in \mathcal{P}$ we introduce the weighted ℓ -space as $\ell(a) := \{x = (\xi_i) : ||x||_{\ell(a)} := ||(\xi_i a_i)||_{\ell} < \infty\}$. For $a \in \mathcal{P}$ we consider its counting function ([6], [7]):

$$\mu_a(\tau, t) := |\{n \in \mathbb{N} : \tau < a_n < t\}|, \quad 0 < \tau < t < \infty,$$

where |S| is the number of elements in S if it is finite, and ∞ otherwise.

PROPOSITION 1 (see [10]). Let $a = (a_i), b = (b_i) \in \mathcal{P}$ and

(1)
$$\mu_a(\tau, t) \le \mu_b(\tau/\Delta, \Delta t), \quad 1 \le \tau < t < \infty,$$

for some constant $\Delta > 1$. Then there is an injection $\sigma : \mathbb{N} \to \mathbb{N}$ such that $a_i \leq \Delta^2 b_{\sigma(i)}$ and $b_{\sigma(i)} \leq \Delta^2 a_i$ for $i \in \mathbb{N}$.

Let $A := (a_{i,n})_{i,n \in \mathbb{N}}$, $B := (b_{j,n})_{j,n \in \mathbb{N}}$ be Köthe matrices and $\ell \in \Lambda^{(s)}$. Then the Cartesian product of the ℓ -Köthe spaces $K^{\ell}(A)$ and $K^{\ell}(B)$ is naturally isomorphic to the space $K^{\ell}(C)$ where $C = (c_{k,n})_{k,n \in \mathbb{N}}$ is such that $c_{k,n}$ equals $a_{i,n}$ if k = 2i - 1, and $b_{i,n}$ if k = 2i. For $a \in \mathcal{P}$ and $\lambda_n \nearrow \alpha$, $-\infty < \alpha \le \infty$, we call the ℓ -Köthe space $E^{\ell}_{\alpha}(a) := K^{\ell}(\exp(\lambda_n a_i))$ an ℓ -power series space of finite (respectively, infinite) type if $\alpha < \infty$ (respectively, $\alpha = \infty$).

Let $X = K^{\ell}(A)$ and $\widetilde{X} = K^{\ell}(\widetilde{A})$ be ℓ -Köthe spaces. An operator $T: X \to \widetilde{X}$ is called *quasidiagonal* if there exists an injection $\varphi: \mathbb{N} \to \mathbb{N}$ and constants $t_i, i \in \mathbb{N}$, such that $Te_i := t_i e_{\varphi(i)}, i \in \mathbb{N}$. We write $X \stackrel{\mathrm{qd}}{\simeq} \widetilde{X}$ $(X \stackrel{\mathrm{qd}}{\hookrightarrow} \widetilde{X})$ if there is a quasidiagonal isomorphism (respectively, a quasidiagonal imbedding) $T: X \to \widetilde{X}$.

LEMMA 2 (cf. [10], [7]). Let X and \widetilde{X} be ℓ -Köthe spaces with $X \overset{\mathrm{qd}}{\hookrightarrow} \widetilde{X}$ and $\widetilde{X} \overset{\mathrm{qd}}{\hookrightarrow} X$. Then $X \overset{\mathrm{qd}}{\simeq} \widetilde{X}$.

3. Geometric invariant characteristics. Let \mathcal{X} be a class of locally convex spaces and Γ be a set with an equivalence relation \sim . We say that $\gamma: \mathcal{X} \to \Gamma$ is a linear topological invariant if $X \simeq \widetilde{X}$ implies $\gamma(X) \sim \gamma(\widetilde{X})$, $X, \widetilde{X} \in \mathcal{X}$. For more details about linear topological invariants we refer to [10].

Suppose E is a vector space, U and V are absolutely convex sets in E, and \mathcal{E}_V is the set of all finite-dimensional subspaces of E that are spanned by elements of V. Set $\mathcal{L}(V,U) := \{L \in \mathcal{E}_V : \exists q := q(L) < 1, L \cap U \subset qV\}$. Dealing with Banach sequence spaces with monotone norm, it is convenient

to consider the characteristic

$$\widetilde{\beta}(V,U) := \sup \{ \dim L : L \in \mathcal{L}(V,U) \},$$

which is a modification of the characteristic $\beta(V,U)$ (see, e.g., [10], [2], [3]). We shall use the following obvious properties of this characteristic: (a) if $V_1 \subset V$, $U \subset U_1$ then $\widetilde{\beta}(V_1,U_1) \leq \widetilde{\beta}(V,U)$; (b) $\widetilde{\beta}(CV,U) = \widetilde{\beta}(V,C^{-1}U)$ for any constant C > 0; (c) if T is a linear injection on E then $\widetilde{\beta}(T(V),T(U)) = \widetilde{\beta}(V,U)$; (d) $\widetilde{\beta}(V \cap F,U \cap F) \leq \widetilde{\beta}(V,U)$ if F is a subspace of E.

Let E be a vector sequence space containing the system $\{e_i\}_{i\in\mathbb{N}}$. Given $a\in\mathcal{P}$, we define the weighted ball $B^{\ell}(a)=\{x\in E\cap\ell(a):\|x\|_{\ell(a)}\leq 1\}$. For any $a=(a_i),\ b=(b_i)\in\mathcal{P}$ we set $a\wedge b:=(\min\{a_i,b_i\})$ and $a\vee b:=(\max\{a_i,b_i\})$.

LEMMA 3 (cf. [10], [2], [3]). Let $a, b \in \mathcal{P}$. Then

- (i) $\frac{1}{2}B^{\ell}(a \wedge b) \subset \text{conv}(B^{\ell}(a) \cup B^{\ell}(b)) \subset B^{\ell}(a \wedge b);$
- (ii) $B^{\ell}(a \vee b) \subset B^{\ell}(a) \cap B^{\ell}(b) \subset 2B^{\ell}(a \vee b)$.

Proof. (i) Let $I := \{i \in \mathbb{N} : a_i \leq b_i\}$, $J := \mathbb{N} \setminus I$ and $x = (\xi_i)_{i \in \mathbb{N}} \in B^{\ell}(a \wedge b)$. Define $u = (u_i)$ so that $u_i = \xi_i$ if $i \in I$ and 0 otherwise; set v := x - u. Then, by the monotonicity of the norm, we have

$$||u||_{\ell(a)} = ||u||_{\ell(a \wedge b)} \le ||x||_{\ell(a \wedge b)}, \quad ||v||_{\ell(b)} = ||v||_{\ell(a \wedge b)} \le ||x||_{\ell(a \wedge b)}.$$

Hence $u, v \in B^{\ell}(a) \cup B^{\ell}(b)$ and $\frac{1}{2}x = \frac{1}{2}u + \frac{1}{2}v \in \text{conv}(B^{\ell}(a) \cup B^{\ell}(b))$.

For the second inclusion, take $x = \sum_{i=1}^{n} \lambda_i u_i \in \text{conv}(B^{\ell}(a) \cup B^{\ell}(b))$, where $u_i \in B^{\ell}(a) \cup B^{\ell}(b)$ and $\sum_{i=1}^{n} \lambda_i = 1$. By the monotonicity of the norm, we have either $\|u_i\|_{\ell(a \wedge b)} \leq \|u_i\|_{\ell(a)} \leq 1$ or $\|u_i\|_{\ell(a \wedge b)} \leq \|u_i\|_{\ell(b)} \leq 1$. Hence, in both cases

$$||x||_{\ell(a \wedge b)} = \left\| \sum_{i=1}^{n} \lambda_i u_i \right\|_{\ell(a \wedge b)} \le \sum_{i=1}^{n} \lambda_i ||u_i||_{\ell(a \wedge b)} \le \sum_{i=1}^{n} \lambda_i = 1,$$

that is, $x \in B^{\ell}(a \wedge b)$.

(ii) Let $x \in B^{\ell}(a \vee b)$. By the monotonicity of the norm, we have $||x||_{\ell(a)} \leq ||x||_{\ell(a \vee b)} \leq 1$ and $||x||_{\ell(b)} \leq ||x||_{\ell(a \vee b)} \leq 1$. Hence $x \in B^{\ell}(a) \cap B^{\ell}(b)$. For the second inclusion, take $x \in B^{\ell}(a) \cap B^{\ell}(b)$, that is, $||x||_{\ell(a)} \leq 1$ and $||x||_{\ell(b)} \leq 1$. Then the monotonicity of the norm yields

$$\|(\xi_i \max\{a_i, b_i\})\|_{\ell} \le \|(\xi_i a_i + \xi_i b_i)\|_{\ell} \le \|x\|_{\ell(a)} + \|x\|_{\ell(b)}.$$

Thus we get $||x||_{\ell(a\vee b)} \leq 2$, hence $x \in 2B^{\ell}(a\vee b)$.

LEMMA 4 (cf. [10], [2], [3]).
$$\widetilde{\beta}(B^{\ell}(a), B^{\ell}(b)) = |\{i : a_i/b_i < 1\}|.$$

Proof. Let $I=\{i:a_i< b_i\}$ and M be the linear span of the set $\{e_i:i\in I\}$. Define a projection $P:E\to M$ such that $Px:=\sum_{i\in I}\xi_ie_i$ where $x=(\xi_i)\in E$. Take $x=(\xi_i)\in M\cap B^\ell(b)$. If $\dim M=\infty$, then $\sup\{\dim L:L\in\mathcal{L}(V,U)\}=\infty$. So, trivially we have $\widetilde{\beta}(B^\ell(a),B^\ell(b))=\dim M$. If M is finite-dimensional, then $\|x\|_{\ell(a)}<\|x\|_{\ell(b)}\leq 1$. So there exists q=q(M)<1 such that $\|x\|_{\ell(a)}< q$ and $M\cap B^\ell(b)\subset qB^\ell(a)$, that is, $\widetilde{\beta}(B^\ell(a),B^\ell(b))\geq \dim M=|I|$.

To obtain $\widetilde{\beta}(B^{\ell}(a), B^{\ell}(b)) \leq |I|$ we assume the contrary. Then there exists L such that $|I| < \dim L$. Hence we can find $x = \sum_{i=1}^{\infty} \xi_i e_i \in L$, $x \neq 0$, such that Px = 0. But then $\xi_i = 0$ for $i \in I$ and $\xi_i \neq 0$ for some $i \notin I$. Since $a_i \geq b_i$ for $i \notin I$, and the norm is monotone, we obtain $\|(\xi_i a_i)\|_{\ell} \geq \|(\xi_i b_i)\|_{\ell}$, that is, $\|x\|_{\ell(a)} \geq \|x\|_{\ell(b)}$. On the other hand, since $x \in L$, we get $\|x\|_{\ell(a)} \leq q\|x\|_{\ell(b)}$ with q = q(L) < 1, which implies $\|x\|_{\ell(a)} < \|x\|_{\ell(b)}$. This contradiction completes the proof. \blacksquare

LEMMA 5 (cf. [1], [2], [10]). Let $a^{(j)} = (a_{ij}) \in \mathcal{P}, j = 1, 2, 3, 4$. Then

$$(2) \qquad \widetilde{\beta} \left(B^{\ell}(a^{(4)}) \cap B^{\ell}(a^{(3)}), \operatorname{conv} \left(\frac{1}{2} \left(B^{\ell}(a^{(3)}) \cup B^{\ell}(a^{(2)}) \cup B^{\ell}(a^{(1)}) \right) \right) \right) \\ \geq \left| \left\{ i : \frac{a_{i4}}{a_{i3}} \leq 1, \frac{a_{i3}}{a_{i2}} \leq 1, \frac{a_{i3}}{a_{i1}} \leq 1 \right\} \right|, \\ (3) \qquad \widetilde{\beta} \left(B^{\ell}(a^{(4)}) \cap B^{\ell}(a^{(3)}) \cap B^{\ell}(a^{(2)}), \operatorname{conv} \left(\frac{1}{2} \left(B^{\ell}(a^{(2)}) \cup B^{\ell}(a^{(1)}) \right) \right) \right) \\ \geq \left| \left\{ i : \frac{a_{i4}}{a_{i2}} \leq 1, \frac{a_{i3}}{a_{i2}} \leq 1, \frac{a_{i2}}{a_{i1}} \leq 1 \right\} \right|.$$

Proof. By Lemmas 3 and 4,

$$\begin{split} \widetilde{\beta}\bigg(B^{\ell}(a^{(4)}) \cap B^{\ell}(a^{(3)}), \operatorname{conv}\bigg(\frac{1}{2} \left(B^{\ell}(a^{(3)}) \cup B^{\ell}(a^{(2)}) \cup B^{\ell}(a^{(1)})\right)\bigg)\bigg) \\ & \geq \widetilde{\beta}\bigg(B^{\ell}(a^{(4)} \vee a^{(3)}), \frac{1}{2} B^{\ell}(a^{(3)} \wedge a^{(2)} \wedge a^{(1)})\bigg) \\ & = \left|\left\{i: \frac{\max\{a_{i4}, a_{i3}\}}{\min\{a_{i3}, a_{i2}, a_{i1}\}} < 2\right\}\right| \geq \left|\left\{i: \frac{\max\{a_{i4}, a_{i3}\}}{\min\{a_{i3}, a_{i2}, a_{i1}\}} \leq 1\right\}\right| \\ & = \left|\left\{i: \frac{a_{i3}}{a_{i3}} \leq 1, \frac{a_{i4}}{a_{i1}} \leq 1, \frac{a_{i4}}{a_{i2}} \leq 1, \frac{a_{i4}}{a_{i3}} \leq 1, \frac{a_{i3}}{a_{i2}} \leq 1, \frac{a_{i3}}{a_{i1}} \leq 1\right\}\right|. \end{split}$$

The first three inequalities in the last braces can be omitted, since the first one is always true, while the second and third are consequences of the others, as $a_{i4}/a_{i1} = (a_{i4}/a_{i3})(a_{i3}/a_{i1})$ and $a_{i4}/a_{i2} = (a_{i4}/a_{i3})(a_{i3}/a_{i2})$. Hence, (2) is proved.

Analogously we have

$$\begin{split} \widetilde{\beta} \bigg(B^{\ell}(a^{(4)}) \cap B^{\ell}(a^{(3)}) \cap B^{\ell}(a^{(2)}), \operatorname{conv} \bigg(\frac{1}{2} \left(B^{\ell}(a^{(2)}) \cup B^{\ell}(a^{(1)}) \right) \bigg) \bigg) \\ & \geq \bigg| \bigg\{ i : \frac{a_{i2}}{a_{i2}} \leq 1, \, \frac{a_{i3}}{a_{i1}} \leq 1, \, \frac{a_{i4}}{a_{i1}} \leq 1, \, \frac{a_{i3}}{a_{i2}} \leq 1, \, \frac{a_{i4}}{a_{i2}} \leq 1, \, \frac{a_{i2}}{a_{i1}} \leq 1 \bigg\} \bigg|. \end{split}$$

Again removing unimportant inequalities in the last braces, we obtain (3).

Now we construct an analytic scale of Banach spaces ([5, IV.1]) connecting the spaces $\ell(a)$ and $\ell(b)$.

LEMMA 6. Let $\ell \in \Lambda$ and $a, b \in \mathcal{P}$. Then $E_{\alpha} = \ell(a^{1-\alpha}b^{\alpha})$ is an analytic scale such that $E_0 = \ell(a)$ and $E_1 = \ell(b)$.

Proof. Consider the normed linear space $M:=\{x=(\xi_k)\in\ell(a):\exists k_0=k_0(x),\,\xi_k=0\text{ for }k\geq k_0\}$, which is a dense subspace of $\ell(a)$. We define an operator $T(z):M\to M$ by $T(z)x:=(\xi_k(b_k/a_k)^z)$ where $x=(\xi_k)$. Clearly conditions 1°-5° in the definition of the analytic scale ([5, IV,1.9]) are satisfied. By the monotonicity of the norm,

$$||x||_{\alpha} := \sup_{-\infty < \tau < \infty} ||T(\alpha + i\tau)x||_{\ell(a)} = \sup_{-\infty < \tau < \infty} \left\| \left(\xi_k \left(\frac{b_k}{a_k} \right)^{\alpha + i\tau} a_k \right) \right\|_{\ell}$$
$$= \sup_{-\infty < \tau < \infty} \left\| \left(\xi_k \left(\frac{b_k}{a_k} \right)^{i\tau} (a_k)^{1-\alpha} (b_k)^{\alpha} \right) \right\|_{\ell} = ||x||_{\ell(a^{1-\alpha}b^{\alpha})}.$$

Hence, $E_{\alpha} := \ell(a^{1-\alpha}b^{\alpha})$.

Applying the interpolation theorem for analytic scales ([5, IV, Theorem 1.10]) to the above scale we obtain the following

LEMMA 7 (cf. [10], [2], [3]). Suppose E and \widetilde{E} are ℓ -Köthe spaces, (e_i) and $(\widetilde{e_i})$ are their canonical bases, and $T: E \to \widetilde{E}$ is a linear operator. If $a, \widetilde{a}, b, \widetilde{b} \in \mathcal{P}$ and $T(B^{\ell}(a)) \subset B^{\ell}(\widetilde{a})$, $T(B^{\ell}(b)) \subset B^{\ell}(\widetilde{b})$ then for any $\alpha \in (0,1)$ we have

$$T((B^{\ell}(a))^{1-\alpha}(B^{\ell}(b))^{\alpha}) \subset (B^{\ell}(\widetilde{a}))^{1-\alpha}(B^{\ell}(\widetilde{b}))^{\alpha},$$
where $(B^{\ell}(a_m))^{1-\alpha}(B^{\ell}(a_n))^{\alpha} = B^{\ell}(a^{1-\alpha}b^{\alpha}).$

4. Imbedding of ℓ -power series spaces

THEOREM 8. Let $\ell \in \Lambda^{(s)}$ and $a, \widetilde{a} \in \mathcal{P}$. Then the following statements are equivalent:

- (i) $E_{\nu}^{\ell}(a) \hookrightarrow E_{\nu}^{\ell}(\widetilde{a}), \ \nu = 0, \infty;$
- (ii) there exist $\Delta > 0$ and an injection $\sigma : \mathbb{N} \to \mathbb{N}$ such that $a_i \leq \Delta \widetilde{a}_{\sigma(i)}$ and $\widetilde{a}_{\sigma(i)} \leq \Delta a_i$;
- (iii) $E_{\nu}^{\ell}(a) \stackrel{\text{qd}}{\hookrightarrow} E_{\nu}^{\ell}(\widetilde{a}), \ \nu = 0, \infty.$

Proof. The implications (ii) \Rightarrow (iii) and (iii) \Rightarrow (i) are obvious. Due to Proposition 1, it remains to prove that (i) implies the estimate (1).

Because of similarity, we only consider the case $\nu = \infty$. Suppose that $T: E_{\nu}^{\ell}(a) \to E_{\nu}^{\ell}(\widetilde{a})$ is an embedding. Set $U_p := B^{\ell}(\alpha_p)$, $V_p := B^{\ell}(\widetilde{\alpha}_p)$, $\alpha_p := (\exp(pa_i))_{i \in \mathbb{N}}$ and $\widetilde{\alpha}_p := (\exp(p\widetilde{a}_i))_{i \in \mathbb{N}}$. So, $(p^{-1}U_p)$ and $(p^{-1}V_p)$ are bases of neighborhoods of zero in $E_{\nu}^{\ell}(a)$ and $E_{\nu}^{\ell}(\widetilde{a})$, respectively. Let $W_p := V_p \cap R(T)$, where R(T) denotes the range of T. Since T is an isomorphism onto its range, we can choose indices

$$(4) p_1$$

so that

(5)
$$\frac{p}{p_1}W_{p_1} \supset T(U_p) \supset T(U_q) \supset \frac{q}{q_1}W_{q_1} \supset \frac{r}{r_1}W_{r_1} \supset T(U_r)$$

and each number in (4) is twice the previous one. The elementary properties of the characteristic $\widetilde{\beta}$ yield

(6)
$$\widetilde{\beta}(e^{-\tau}U_p \cap e^tU_r, U_q) = \widetilde{\beta}(e^{-\tau}T(U_p) \cap e^tT(U_r), T(U_q))$$

 $\leq \widetilde{\beta}(K(e^{-\tau}W_{p_1} \cap e^tW_{r_1}), W_{q_1}) \leq \widetilde{\beta}(K(e^{-\tau}V_{p_1} \cap e^tV_{r_1}), V_{q_1})$

with $K = r^2$. Taking Lemmas 4 and 3 into account, we estimate the left-hand side of (6) from below and the right-hand side from above; this yields

(7)
$$\left| \left\{ i : \frac{\max\{\exp(\tau + pa_i), \exp(-t + ra_i)\}}{\exp(qa_i)} < 1 \right\} \right|$$

$$\leq \left| \left\{ i : \frac{\max\{\exp(\tau + p_1\widetilde{a}_i), \exp(-t + r_1\widetilde{a}_i)\}}{\exp(q_1\widetilde{a}_i)} < 2K \right\} \right|,$$

which is equivalent to

(8)
$$\left| \left\{ i : \frac{\tau}{q-p} < a_i < \frac{t}{r-q} \right\} \right| \le \left| \left\{ i : \frac{\tau - \ln(2K)}{q_1 - p_1} < \widetilde{a}_i < \frac{t + \ln(2K)}{r_1 - q_1} \right\} \right|.$$

Changing variables we obtain the estimate (1) with $\Delta = 2r$, which ends the proof. \blacksquare

COROLLARY 9 (cf. [6], [7], [2]). Let $\ell \in \Lambda^{(s)}$ and $a, \widetilde{a} \in \mathcal{P}$. Then the following statements are equivalent:

- (i) $E_{\nu}^{\ell}(a) \simeq E_{\nu}^{\ell}(\widetilde{a}), \ \nu = 0, \infty;$
- (ii) there exist $\Delta > 0$ and a bijection $\sigma : \mathbb{N} \to \mathbb{N}$ such that

$$\frac{1}{\Lambda}a_i < \widetilde{a}_{\sigma(i)} < \Delta a_i;$$

(iii)
$$E_{\nu}^{\ell}(a) \stackrel{\text{qd}}{\simeq} E_{\nu}^{\ell}(\widetilde{a}), \ \nu = 0, \infty.$$

5. Isomorphisms of Cartesian products of ℓ -power series spaces

THEOREM 10. Let $\ell \in \Lambda^{(s)}$ and $a,b,\widetilde{a},\widetilde{b} \in \mathcal{P}$. If $E_0^{\ell}(a) \times E_{\infty}^{\ell}(b) \simeq E_0^{\ell}(\widetilde{a}) \times E_{\infty}^{\ell}(\widetilde{b})$, then there exist $\Delta, \tau_0 > 0$ such that:

(9)
$$|\{k : \tau \le a_k \le t\}| \le |\{k : \tau/\Delta \le \widetilde{a}_k \le \Delta t\}|,$$

$$(10) |\{k : \tau \le b_k \le t\}| \le |\{k : \tau/\Delta \le \widetilde{b}_k \le \Delta t\}|,$$

where $t > \tau \geq \tau_0$.

Proof. The Cartesian products $E_0^{\ell}(a) \times E_{\infty}^{\ell}(b)$ and $E_0^{\ell}(\widetilde{a}) \times E_{\infty}^{\ell}(\widetilde{b})$ are naturally isomorphic to the ℓ -Köthe spaces $X = K^{\ell}(c_{ip})$ and $\widetilde{X} = K^{\ell}(d_{ip})$ where

$$c_{ip} = \begin{cases} \exp(-a_k/p) & \text{if } i = 2k - 1, \\ \exp(pb_k) & \text{if } i = 2k, \end{cases} \qquad d_{ip} = \begin{cases} \exp(-\widetilde{a}_k/p) & \text{if } i = 2k - 1, \\ \exp(p\widetilde{b}_k) & \text{if } i = 2k. \end{cases}$$

Let $T: X \to \widetilde{X}$ be an isomorphism. Set $U_p := B^{\ell}(\alpha_p)$, $V_p := B^{\ell}(\widetilde{\alpha}_p)$, $\alpha_p := (c_{ip})_{i \in \mathbb{N}}$ and $\widetilde{\alpha}_p := (d_{ip})_{i \in \mathbb{N}}$. Then $(p^{-1}U_p)$ and $(p^{-1}V_p)$ are bases of neighborhoods of zero in X and \widetilde{X} , respectively. Since T is an isomorphism, we can choose indices $p_2 so that each of them is twice the previous one and$

(11)
$$\frac{p}{p_2} V_{p_2} \supset T(U_p) \supset \frac{p}{p_1} V_{p_1}, \qquad \frac{q}{q_2} V_{q_2} \supset T(U_q) \supset \frac{q}{q_1} V_{q_1}, \\ \frac{r}{r_2} V_{r_2} \supset T(U_r) \supset \frac{r}{r_1} V_{r_1}, \qquad \frac{s}{s_2} V_{s_2} \supset T(U_s) \supset \frac{s}{s_1} V_{s_1}.$$

By properties of $\widetilde{\beta}$, using (11) and Lemma 7, we obtain the estimates

$$(12) \qquad \widetilde{\beta} \left(e^{t} U_{s} \cap U_{q}, \operatorname{conv} \left(\frac{1}{2} \left(U_{q} \cup U_{p}^{1/2} U_{r}^{1/2} \cup e^{\tau} U_{r} \right) \right) \right)$$

$$\leq \widetilde{\beta} \left(K(e^{t} V_{s_{2}} \cap V_{q_{2}}), \operatorname{conv} \left(\frac{1}{2} \left(V_{q_{1}} \cup V_{p_{1}}^{1/2} V_{r_{1}}^{1/2} \cup e^{\tau} V_{r_{1}} \right) \right) \right),$$

$$(13) \qquad \widetilde{\beta} \left(U_{p}^{1/2} U_{r}^{1/2} \cap e^{t} U_{r} \cap U_{q}, \operatorname{conv} \left(\frac{1}{2} \left(U_{q} \cup e^{\tau} U_{s} \right) \right) \right)$$

$$\leq \widetilde{\beta} \left(K(V_{p_{2}}^{1/2} V_{r_{2}}^{1/2} \cap e^{t} V_{r_{2}} \cap V_{q_{2}}), \operatorname{conv} \left(\frac{1}{2} \left(V_{q_{1}} \cup e^{\tau} V_{s_{1}} \right) \right) \right)$$

with $K = s_1^2$. Now we estimate the left-hand side of (12) from below, using Lemma 5, and the right-hand side of (12) from above, applying Lemmas 3 and 4; this results in the following inequality:

(14)
$$\left| \left\{ i : \frac{c_{iq}}{c_{ip}^{1/2} c_{ir}^{1/2}} \le 1, \frac{c_{iq}}{e^{-\tau} c_{ir}} \le 1, \frac{e^{-t} c_{is}}{c_{iq}} \le 1 \right\} \right|$$

$$\le \left| \left\{ i : \frac{d_{iq_2}}{d_{in}^{1/2} d_{ir_1}^{1/2}} \le 16K, \frac{d_{iq_2}}{e^{-\tau} d_{ir_1}} \le 16K, \frac{e^{-t} d_{is_2}}{d_{iq_1}} \le 16K \right\} \right|.$$

We examine the first inequality on the left-hand side of (14). For odd indices i we have $(-1/q + 1/2p + 1/2r)a_k \leq 0$, which is impossible because 2p < q. For even indices i it yields $(2q - p - r)b_k \leq 0$, which is trivially true since 2q < r. As a result the left-hand side of (14) equals

(15)
$$\left| \left\{ k : \frac{\tau}{r - q} \le b_k \le \frac{t}{s - q} \right\} \right|.$$

In an analogous way, consider the right-hand side of (14). For odd indices i, the first inequality is equivalent to $\tilde{a}_k \leq \ln(16K)/(-1/q_2+1/2p_1+1/2r_1)$ =: C. Thus, for $\tau > \tau_1 := C(1/q_2-1/r_1) + \ln(16K)$, the first inequality on the right-hand side of (14) does not hold for odd indices. For even indices i, the first inequality on the right-hand side of (14) is equivalent to $(2q_2 - p_1 - r_1)\tilde{b}_k \leq \ln(16K) =: M$, which is always true since $2q_2 < r_1$. Hence, for $\tau > \tau_1$ the right-hand side of (14) is equal to

(16)
$$\left| \left\{ k : \frac{\tau - M}{r_1 - q_2} \le \widetilde{b}_k \le \frac{t + M}{s_2 - q_1} \right\} \right|.$$

Since (15) is less than (16) for $\tau > \tau_1$, we observe that

$$(17) \qquad \left| \left\{ k : \frac{\tau}{r - q} \le b_k \le \frac{t}{s - q} \right\} \right| \le \left| \left\{ k : \frac{\tau - M}{r_1 - q_2} \le \widetilde{b}_k \le \frac{t + M}{s_2 - q_1} \right\} \right|.$$

Analogously, from (13) we obtain

(18)
$$\left| \left\{ k : \frac{\tau}{1/q - 1/s} \le a_k \le \frac{t}{1/q - 1/r} \right\} \right| \\ \le \left| \left\{ k : \frac{\tau - M}{1/q_2 - 1/s_1} \le \widetilde{a}_k \le \frac{t + M}{1/q_1 - 1/r_2} \right\} \right|$$

for

$$\tau > \tau_2 := \frac{(s_1 - q_2) \ln(16K)}{p_2/2 + r_2/2 - q_1} + M.$$

Changing variables in (17), (18) and setting $\Delta = 2s_1$, one can easily check that the relations (9) and (10) are satisfied for $\tau \geq \tau_0 := 2 \max\{\tau_1, \tau_2\}$.

As in [3], we derive the following

Corollary 11. Under the conditions of Theorem 10 we have either

$$E_0^{\ell}(a) \simeq E_0^{\ell}(\widetilde{a}) \times F, \quad E_{\infty}^{\ell}(b) \times F \simeq E_{\infty}^{\ell}(\widetilde{b}),$$

or

$$E_{\infty}^{\ell}(b) \simeq E_{\infty}^{\ell}(\widetilde{b}) \times F, \quad E_{0}^{\ell}(a) \times F \simeq E_{0}^{\ell}(\widetilde{a}),$$

where $F = \ell$ or $F = \mathbb{C}^n$ with some integer $n \geq 0$. In particular, we can take F = 0 if each of the sequences a, \widetilde{a} , b, \widetilde{b} does not tend to ∞ ; on the other hand, if each of the sequences a, \widetilde{a} , b, \widetilde{b} tends to ∞ then there is an integer $n \geq 0$ such that one of the above conditions holds with $F = \mathbb{C}^n$.

References

- [1] V. I. Baran, On quasiequivalence of absolute bases in Cartesian proucts of Köthe spaces, in: Current Problems of Mathematical Analysis, Rostov State Univ., Rostovna-Donu, 1978, 18-21 (in Russian).
- [2] P. A. Chalov, P. B. Djakov and V. P. Zahariuta, Compound invaiants and embeddings of Cartesian products, Studia Math 137 (1999), 33-47.
- [3] P. B. Djakov, M. Yurdakul and V. P. Zahariuta, Isomorphic classification of Cartesian products, Michigan Math. J. 43 (1996), 221–229.
- [4] M. M. Dragilev, Bases in Köthe spaces, Rostov State Univ., Rostov-na-Donu, 1983 (in Russian).
- [5] S. G. Krein, Yu. I. Petunin and E. M. Semenov, Interpolation of Linear Operators, Amer. Math. Soc., Providence, RI, 1978.
- [6] B. S. Mityagin, Sur l'équivalence des bases inconditionnelles dans les échelles de Hilbert, C. R. Acad. Sci. Paris 269 (1969), 426-428.
- [7] —, The equivalence of bases in Hilbert scales, Studia Math. 37 (1970), 111–137 (in Russian).
- [8] V. P. Zahariuta, Linear topological invariants and isomorphisms of spaces of analytic functions, in: Mathematical Anal. Appl., Rostov State Univ., Rostov-na-Donu, 2 (1970), 3-13; 3 (1971), 176-180 (in Russian).
- [9] —, Generalized Mityagin invariants and a continuum of mutually nonisomorphic spaces of analytic functions, Funktsional. Anal. i Prilozhen. 11 (1977), 24–30 (in Russian).
- [10] —, Linear topologic invariants and their applications to isomorphic classification of generalized power spaces, Turkish J. Math. 20 (1996), 237–289.

E. Karapınar Izmir University of Economics Izmir, Turkey E-mail: ekarapinar@ieu.edu.tr M. Yurdakul
Department of Mathematics
Middle East Technical University
06531, Ankara, Turkey
E-mail: myur@metu.edu.tr

V. Zahariuta
FENS
Sabancı University
Istanbul, Turkey
E-mail: zaha@sabanciuniv.edu

Received May 29, 2006; received in final form September 26, 2006 (7529)