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Summary. Let X and Y be two Banach spaces, each isomorphic to a complemented
subspace of the other. In 1996, W. T. Gowers solved the Schroeder–Bernstein Problem for
Banach spaces by showing that X is not necessarily isomorphic to Y . In this paper, we
obtain necessary and sufficient conditions on the quintuples (p, q, r, s, t) in N for X to be
isomorphic to Y whenever

{

X ∼ Xp ⊕ Y q,

Y t ∼ Xr ⊕ Y s.

Such quintuples are called Schroeder–Bernstein quintuples for Banach spaces and they
yield a unification of the known decomposition methods in Banach spaces involving finite
sums of X and Y , similar to Pełczyński’s decomposition method. Inspired by this result,
we also introduce the notion of Schroeder–Bernstein sextuples for Banach spaces and pose
a conjecture which would complete their characterization.

1. Introduction. Let X and Y be Banach spaces. We write X
c
→֒ Y

if X is isomorphic to a complemented subspace of Y , and X ∼ Y if X is
isomorphic to Y . If n ∈ N∗ = {1, 2, . . .}, then Xn denotes the sum of n
copies of X. It is useful to define X0 = {0}.

Suppose that X and Y are Banach spaces satisfying

(1.1) X
c
→֒ Y and Y

c
→֒ X.

In 1996, W. T. Gowers [4] solved the so-called Schroeder–Bernstein Problem
for Banach spaces by showing that X is not necessarily isomorphic to Y .
On the other hand, in [2] a quadruple (p, q, r, s) in N, with p + q ≥ 2 and
r+s ≥ 2, was said to be a Schroeder–Bernstein quadruple for Banach spaces
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(for short, SBQ) if X ∼ Y whenever these spaces satisfy (1.1) and

(1.2)

{

X ∼ Xp ⊕ Y q,

Y ∼ Xr ⊕ Y s.

In Remark 2.4 we recall the characterization of the SBQ obtained in [2].
Notice that the SBQ (2, 0, 0, 2) corresponds to the classical decomposition
method in Banach spaces called Pełczyński’s decomposition method (see [1,
p. 64]).

The starting point of this work is the fact that there are some decom-
position methods in Banach spaces involving only finite sums of X and Y
which are not of the form (1.2). For instance, it is not difficult to check (see
Theorem 1.2) that X ∼ Y whenever these Banach spaces satisfy (1.1) and

(1.3) X ∼ X2 and Y 2 ∼ Y 3.

Let us point out that it is an open problem whether for every Banach space Y
satisfying Y 2 ∼ Y 3 we have Y ∼ Y 2 (the Square-cube Problem for Banach
spaces, see [6, p. 367]).

It is then natural, in the spirit of [2], to ask whether it is possible to
determine all conditions similar to (1.3) which added to (1.1) also yield
X ∼ Y . To be more precise, we define:

Definition 1.1. A quintuple (p, q, r, s, t) in N with p+ q ≥ 2, r + s+ t
≥ 3, (r, s) 6= (0, 0) and t ≥ 1 is a Schroeder–Bernstein quintuple for Banach
spaces (for short, SBq) if X ∼ Y whenever the Banach spaces X and Y
satisfy (1.1) and

(1.4)

{

X ∼ Xp ⊕ Y q,

Y t ∼ Xr ⊕ Y s.

We also say that the number ∇ = (p− 1)(s− t)− rq is the discriminant of
the quintuple (p, q, r, s, t).

The conditions p + q ≥ 2, r + s + t ≥ 3 and (r, s) 6= (0, 0) are posed
to avoid trivial cases. The main aim of Section 3 is to present the following
characterization of SBq’s in terms of their discriminants ∇:

Theorem 1.2. Let (p, q, r, s, t) be a quintuple in N with p + q ≥ 2,
r + s + t ≥ 3, (r, s) 6= (0, 0) and t ≥ 1. Then (p, q, r, s, t) is a SBq if and
only if

(a) ∇ 6= 0;
(b) ∇ divides p+ q − 1 and r + s− t.

This is an extension of the main result of [2], where t = 1 (see Remark
2.4). To prove our result, the Banach spaces constructed by W. T. Gowers
and B. Maurey [5] will be fundamental (see Remark 2.1 and the proofs
of Lemmas 3.1 and 3.2). However, we do not know enough Banach spaces
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satisfying (1.1) to complete the characterization of the Schroeder–Bernstein
sextuples for Banach spaces (see Definition 4.1, Corollary 4.2 and Conjecture
4.3). Finally, as a particular case of the conjecture, we stand the Square-cube
Schroeder–Bernstein Problem for Banach spaces (see Problem 4.4).

2. Preliminaries. To determine the quintuples (p, q, r, s, t) in N which
are SBq, we need to recall some recent results on Banach spaces which are
isomorphic to complemented subspaces of each other. If m,n are integer
numbers, then m |n means that m divides n.

Remark 2.1. In [5, p. 563] Gowers and Maurey constructed Banach
spaces Xu, for every u ∈ N, u ≥ 2, having the following property: Xmu ∼ X

n
u

with m,n ∈ N∗ if and only if m ≡ n mod u.

Remark 2.2. In [3, Lemma 2.1] it was proved that if X and Y are
Banach spaces satisfying (1.1) and

X i ⊕ Y j ∼ Xk ⊕ Y l

for some i, j, k, l ∈ N, then:

(a) If d ∈ N, d ≤ j and d ≤ l, then X i+d ⊕ Y j−d ∼ Xk+d ⊕ Y l−d.

(b) If d ∈ N, d ≤ i and d ≤ k, then X i−d ⊕ Y j+d ∼ Xk−d ⊕ Y l+d.

Remark 2.3 ([3, Remark 3.5]). Suppose that X and Y are Banach
spaces satisfying (1.1) and Xp ∼ Xp−1 ⊕ Y for some p ∈ N, p ≥ 2. If
X ∼ Xr ⊕ Y s for some r, s ∈ N, r + s ≥ 2, then X ∼ Y .

The discriminant of a quadruple (p, q, r, s) in N was defined in [2] to be
the number ∆ = (p − 1)(s − 1) − rq and in this same paper the following
characterization of SBQ was proved:

Remark 2.4 ([2, Theorem 2.1]). A quadruple (p, q, r, s) in N with p+q ≥
2 and r+s ≥ 2 is a SBQ if and only if ∆ 6= 0,∆ | (p+q−1) and ∆ | (r+s−1).

3. Characterization of the Schroeder–Bernstein quintuples for

Banach spaces. The main goal of this section is to prove Theorem 1.2. It
is an immediate consequence of Propositions 3.4 and 3.5 below. In order to
prove Proposition 3.4 we state three lemmas.

Lemma 3.1. Let q, r, s, t ∈ N with q ≥ 2, r ≥ 1 and s ≥ t ≥ 1. Then
there exist non-isomorphic Banach spaces X and Y satisfying (1.1) with

(3.1)

{

X ∼ Y q,

Y t ∼ Xr ⊕ Y s.

Proof. Take u = s−t+rq, i = s−t, j = 2(s−t)+r(q+1) and n ∈ N such
that (n− 2)(s− t) + (n− 1)rq > r. So u ≥ 2 and i, j, j− i, u− i, nu− j ∈ N.
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Since (j − i) + (nu− j)− (u− i) = (n− 1)u and (u− i) + j − (j − i) = u,
by the property of Xu mentioned in Remark 2.1 we have

(3.2)

{

Xu−iu ∼ Xj−iu ⊕X
nu−j
u ,

X
j−i
u ∼ Xu−iu ⊕Xju.

Furthermore, observe that

q(j − i)− (u− i) = q(s− t+ r(q + 1))− rq = q(s− t+ rq) = qu,

r(u− i) + s(j − i)− t(j − i) = r(rq) + (s− t)(s− t+ r(q + 1))

= r(rq) + (s− t)(s− t+ rq) + (s− t)r

= r(rq + s− t) + (s− t)(s− t+ rq)

= (r + s− t)(s− t+ rq) = (r + s− t)u.

Thus again by Remark 2.1, we obtain

(3.3)

{

Xu−iu ∼ X
q(j−i)
u ,

X
t(j−i)
u ∼ X

r(u−i)
u ⊕X

s(j−i)
u .

Put X = Xu−iu and Y = Xj−iu . So by (3.2), X and Y satisfy (1.1) and
according to (3.3), they also satisfy (3.1). Moreover, since q ≥ 2 and r ≥ 1,
X is not isomorphic to Y , because u = s− t+ rq does not divide

(u− i)− (j − i) = u− j = (s− t+ rq)− 2(s− t)− r(q + 1)

= −(s− t+ r).

Lemma 3.2. Let q, s, t ∈ N with q ≥ 2, s > t ≥ 1 and suppose that s− t
does not divide q − 1. Then there exist non-isomorphic Banach spaces X
and Y satisfying (1.1) with

(3.4)

{

X ∼ Y q,

Y t ∼ Y s.

Proof. Since (s− t) ∤ (q− 1), it follows that there exist m ∈ N∗ such that
also (s− t) ∤ (m(q − 1)) and

1

m
<
q

s− t
.

Now fix n ∈ N∗ satisfying

(3.5)
n− 1

m
<
q

s− t
≤
n

m
.

Take u = s− t, i = n(s− t)−mq and j = m(1− q) +n(s− t). So u ≥ 2 and
by (3.5), i, j, j − i, u− i ∈ N. Moreover nu− j = m(q − 1) ∈ N. Hence as in
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the proof of Lemma 3.1, we see that (3.2) holds. Furthermore, note that

q(j − i)− (u− i) = qm− ((1− n)(s− t) + qm) = (n+ 1)u,

s(j − i)− t(j − i) = (s− t)(j − i) = u(j − i).

Hence once more Remark 2.1 implies that

(3.6)

{

Xu−iu ∼ X
q(j−i)
u ,

X
t(j−i)
u ∼ X

s(j−i)
u .

PutX = Xu−iu and Y = Xj−iu . By (3.2),X and Y satisfy (1.1) and according
to (3.6), they also satisfy (3.4). Now notice that u = s − t does not divide
(u− i)− (j− i) = u− j, because by the choice of m, s− t does not divide j.
Consequently, X is not isomorphic to Y .

Lemma 3.3. If a quintuple (p, q, r, s, t) in N with p + q ≥ 2, t ≥ 1,
r + s ≥ t + 1 and s ≥ t − 1 is a SBq , then ∇ 6= 0, ∇ | (p + q − 1) and
∇ | (r + s− t).

Proof. Let X and Y be Banach spaces satisfying (1.1) and

(3.7)

{

X ∼ Xp ⊕ Y q,

Y ∼ Xr ⊕ Y s−(t−1).

Adding Y t−1 to both sides of the second condition of (3.7) we see that (1.4)
holds. Since (p, q, r, s, t) is a SBq, it follows from (1.4) thatX ∼ Y . Moreover,
by hypothesis r+ (s− (t− 1)) ≥ 2. So the quadruple (p, q, r, s− (t− 1)) is a
SBQ. Note also that its discriminant is equal to (p−1)(s−t)−rq = ∇. Hence
according to Remark 2.4, ∇ 6= 0, ∇ | (p+q−1) and ∇ | (r+(s−(t−1))−1) =
r + s− t.

Proposition 3.4. If a quintuple (p, q, r, s, t) in N with p + q ≥ 2, r +
s+ t ≥ 3, (r, s) 6= (0, 0) and t ≥ 1 is a SBq , then ∇ 6= 0, ∇ | (p+ q − 1) and
∇ | (r + s− t).

Proof. It will be convenient to distinguish three cases: p ≥ 1 and q ≥ 1;
p ≥ 2 and q = 0; p = 0 and q ≥ 2.

Case 1: p ≥ 1 and q ≥ 1. There are two subcases: r ≥ 1 and r = 0.

Subcase 1.1: r ≥ 1. Let n ∈ N∗ be such that nqr + s ≥ t + 1 and
suppose that (p, q, r, s, t) is a SBq. Let X and Y be Banach spaces satisfying
(1.1) and

(3.8)

{

X ∼ Xp ⊕ Y q,

Y t ∼ Xr(p+(n−1)(p−1)) ⊕ Y nqr+s.

Adding Xp−1 ⊕ Y q to both sides of the first condition of (1.4) we obtain



118 E. M. Galego

X ∼ Xp ⊕ Y q ∼ Xp+(p−1) ⊕ Y 2q. Therefore, by induction, we have

(3.9) X ∼ Xp+(m−1)(p−1) ⊕ Y mq, ∀m ∈ N∗.

By using (3.9) with m = n in the second condition of (3.8) we deduce that
(1.4) holds. Since (p, q, r, s, t) is a SBq, it follows from (1.4) that X ∼ Y . By
the choice of n, we infer that r(p+(n−1)(p−1))+(nqr+s)+t ≥ 2t+1 ≥ 3.
Therefore (p, q, r(p + (n − 1)(p − 1)), nqr + s, t) is also a SBq. Moreover,
r(p+(n−1)(p−1))+(nqr+s) ≥ t+1, nqr+s ≥ t−1 and the discriminant
of the last quintuple is equal to

(p− 1)(nqr + s− t)− (r(p+ (n− 1)(p− 1))q = (p− 1)(s− t)− rq = ∇.

Hence by Lemma 3.3, ∇ 6= 0, ∇ | (p+ q + 1) and

∇ | (r(p+ (n− 1)(p− 1)) + (nqr + s)− t) = nr(p+ q + 1) + (r + s− t).

So we also have ∇ | (r + s− t).

Subcase 1.2: r = 0. Then by hypothesis s 6= 0. Let n ∈ N∗ be such
that s(q + 1 + (n− 1)q) ≥ t+ 1. Assume that (p, q, 0, s, t) is a SBq and let
X and Y be Banach spaces satisfying (1.1) and

(3.10)

{

X ∼ Xp ⊕ Y q,

Y t ∼ Xsn(p−1) ⊕ Y s(q+1+(n−1)q).

Applying Remark 2.2(b) with d = 1 in the first condition of (3.10) we deduce
that Y ∼ Xp−1 ⊕ Y q+1. Next adding Xp−1 ⊕ Y q to both sides of the last
isomorphism we obtain Y ∼ Xp−1 ⊕ Y q ∼ X2(p−1) ⊕ Y q+1+q. Therefore, by
induction, we have

(3.11) Y ∼ Xn(p−1) ⊕ Y q+1+(n−1)q.

By using (3.11) in the second condition of (3.10) we have

(3.12)

{

X ∼ Xp ⊕ Y q,

Y t ∼ Y s.

Since (p, q, 0, s, t) is a SBq, it follows from (3.12) that X ∼ Y . By the choice
of n, we infer that sn(p − 1) + s(q + 1 + (n− 1))q + t ≥ 2t+ 1 ≥ 3. Hence
(p, q, sn(p− 1), s(q+ 1 + (n− 1)q) is also a SBq. Moreover, sn(p− 1) + s(q+
1 + (n− 1)q) ≥ t+ 1, s(q+ 1 + (n− 1)q) ≥ t− 1 and the discriminant of the
last quintuple is equal to

(p− 1)(s(q + 1 + (n− 1)q)− t)− qsn(p− 1) = (p− 1)(s− t)− rq = ∇.

Therefore according to Lemma 3.3, ∇ 6= 0, ∇ | (p+ q + 1) and

∇ | (sn(p− 1) + s(q + 1 + (n− 1)q)− t) = sn(p+ q − 1) + s− t.

So we also conclude that ∇ | (s− t).

Case 2: p ≥ 2 and q = 0. There are two subcases: s ≥ t and s < t.
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Subcase 2.1: s ≥ t. Suppose that (p, 0, r, s, t) is a SBq and let X and
Y be Banach spaces satisfying (1.1) and

(3.13)

{

Y ∼ Y ⊕Xp−1,

Xt ∼ Y s−t ⊕Xr+t.

By applying Remark 2.2(a) with d = 1 in the first condition of (3.13) and
Remark 2.2(b) with d = t in the second, we obtain

(3.14)

{

X ∼ Xp,

Y t ∼ Xr ⊕ Y s.

Hence X ∼ Y . Notice that (s − t) + (r + t) + t ≥ 3. Consequently,
(1, p−1, s− t, r+ t, t) is also a SBq. Since the discriminant of this quintuple
is equal to −(p− 1)(s− t) = −∇, by Case 1, we see that ∇ 6= 0, ∇ | (p− 1)
and ∇ | ((s− t) + (r + t)− t) = r + s− t.

Subcase 2.2: s < t. Assume that (p, 0, r, s, t) is a SBq and let X and
Y be Banach spaces satisfying (1.1) and

(3.15)

{

Y ∼ Y ⊕Xp−1,

Xr+s ∼ Y t−s ⊕Xs.

By applying Remark 2.2(a) with d = 1 in the first condition of (3.15) and
Remark 2.2(b) with d = s in the second, we conclude that (3.14) holds.
Thus X ∼ Y . Observe that (t − s) + s + (r + s) = r + s + t ≥ 3. So
(1, p−1, t−s, s, r+s) is also a SBq. Since the discriminant of this quintuple
is equal to (p − 1)(t − s) = −∇, by Case 1, we see that ∇ 6= 0, ∇ | (p − 1)
and ∇ | ((t− s) + s− (r + s)) = −(r + s− t).

Case 3: p = 0 and q ≥ 2. So ∇ = −(s− t)−rq. There are two subcases:
s ≥ t and s < t.

Subcase 3.1: s ≥ t. First of all note that it is enough to show:

(a) If ∇ = 0 then (0, q, r, s, t) is not a SBq;
(b) If ∇ 6= 0 and ∇ ∤ (q − 1), then (0, q, r, s, t) is not a SBq;
(c) If ∇ 6= 0 and ∇ ∤ (r + s− t), then (0, q, r, s, t) is not a SBq.

Next we turn to proving (a), (b) and (c).
(a) Since ∇ = 0, it follows that s = t and r = 0. Hence (0, q, 0, t, t) is not

a SBq, because taking X = Xq+1 and Y = Xqq+1, we see by Remark 2.1 that
X and Y are non-isomorphic Banach spaces satisfying (1.1) and X ∼ Y q.

(b) Suppose that ∇ 6= 0 and note that ∇ | (q−1) if and only if r = 0 and
(s − t) | (q − 1). Thus it suffices to consider the subcases: r ≥ 1 and r = 0
with s− t not dividing q − 1.

Subcase 3.1.1: r ≥ 1. Then, by Lemma 3.1, (0, q, r, s, t) is not a SBq.
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Subcase 3.1.2: r = 0 and (s − t) ∤ (q − 1). Then according to Lemma
3.2, (0, q, 0, s, t) is not a SBq.

(c) Assume that ∇ 6= 0 and notice that ∇ | (r+s− t) if and only if r = 0.
Therefore we must consider the case where r ≥ 1. But in this case, Lemma
3.1 implies that (0, q, 0, s, t) is not a SBq.

Subcase 3.2: s < t. There are two subcases: t ≤ rq + s and t > rq + s.

Subcase 3.2.1: t ≤ rq + s. Suppose that (0, q, r, s, t) is a SBq and let
X and Y be Banach spaces satisfying (1.1) and

(3.16)

{

X ∼ Y q,

Y t ∼ Y rq+s.

By using the first condition of (3.16) in the second, we obtain

(3.17)

{

X ∼ Y q,

Y t ∼ Xr ⊕ Y s.

Therefore X ∼ Y . So (0, q, 0, rq + s, t) is also a SBq. Thus by Subcase 3.1,
it follows that −(rq + s− t) = ∇ 6= 0, ∇ | (q − 1) and ∇ | ((rq + s)− t).

Subcase 3.2.2: t > rq+ s. Assume that (0, q, r, s, t) is a SBq and let X
and Y be Banach spaces satisfying (1.1) and

(3.18)

{

X ∼ Y q,

Y rq+s ∼ Y t.

By using the first condition of (3.18) in the second, we again deduce (3.17).
Hence X ∼ Y . In particular, (0, q, 0, t, rq + s) is also a SBq. Consequently,
according to Subcase 3.1, −(t − (rq + s)) = −∇ 6= 0, ∇ | (q − 1) and
∇ | (t− (rq + s)).

Proposition 3.5. Suppose that (p, q, r, s, t) is a quintuple in N with
p+ q ≥ 2, r + s ≥ 2, t ≥ 1, ∇ 6= 0, ∇ | (p+ q − 1) and ∇ | (r + s− t). Then
(p, q, r, s, t) is a SBq.

Proof. Let X and Y be Banach spaces satisfying (1.1) and (1.4). We will
prove that X ∼ Y . If t = 1 then the result follows from Remark 2.4. Thus
we can suppose that t ≥ 2. We will distinguish five cases: s ≥ t, p ≥ 1 and
q ≥ 1; s ≥ t, p ≥ 2 and q = 0; s ≥ t, p = 0 and q ≥ 2; s < t, p ≥ 1; s < t,
p = 0 and q ≥ 2.

Case 1: s ≥ t, p ≥ 1 and q ≥ 1. Let B be a Banach space such that
Y ∼ X ⊕ B. Thus, according to (3.9) with m = t and the second condition
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of (1.4), we get

Y ∼ Xp+(t−1)(p−1) ⊕ Y tq ⊕B ∼ Xp+(t−1)(p−1) ⊕ Y t ⊕ Y t(q−1) ⊕B

∼ Xp+(t−1)(p−1) ⊕ (Xr ⊕ Y s)⊕ Y t(q−1) ⊕B

∼ (Xp+(t−1)(p−1) ⊕ Y tq ⊕B)⊕Xr ⊕ Y s−t

∼ Y ⊕Xr ⊕ Y s−t ∼ Xr ⊕ Y s−(t−1).

Therefore (3.7) holds. Since the discriminant of the quadruple (p, q, r,
s − t + 1) is equal to (p − 1)(s − t) − rq = ∇ 6= 0, it follows that s 6= t
or r 6= 0. So r + (s − (t − 1)) ≥ 2. Therefore our hypothesis on ∇ and
Remark 2.4 imply that this quadruple is a SBQ. Consequently, by (3.7),
X ∼ Y .

Case 2: s ≥ t, p ≥ 2 and q = 0. Then∇ = (p−1)(s−t) and∇ | (p−1). So
s− t = 1. Applying Remark 2.2(b) with d = 1 in the first condition of (1.4),
we deduce that Y ∼ Xp−1⊕Y . Now, if we apply Remark 2.2(a) with d = t in
the second condition of (1.4) we conclude thatXt ∼ Xr+t⊕Y s−t ∼ Xr+t⊕Y .
Hence

(3.19)

{

Y ∼ Y ⊕Xp−1,

Xt ∼ Y ⊕Xr+t.

Next note that the discriminant of the quintuple (1, p− 1, 1, r+ t, t) is equal
to 1−p = −∇. By our hypothesis on ∇, ∇ | (1+(r+t)−t) = r+1. Therefore
by (3.19) and Case 1, we conclude that Y ∼ X.

Case 3: s ≥ t, p = 0 and q ≥ 2. Then ∇ = −(s− t)− rq. By hypothesis
(rq + s − t) | (r + s− t). Since q ≥ 2, we see that r = 0. According to (1.4)
we know that

(3.20)

{

X ∼ Y q,

Y t ∼ Y s.

Again by hypothesis (s−t) | (q−1). Let n ∈ N∗ be such that q−1 = n(s−t).
Adding Y s−t to both sides of the second condition of (3.20) we have Y s ∼
Y t+(s−t) ∼ Y s+(s−t). Hence, by induction, we obtain

Y s ∼ Y s+n(s−t).

Therefore by the first condition of (3.20) we get

(3.21) Y s ∼ Y s ⊕ Y n(s−t) ∼ Y s ⊕ Y q−1 ∼ Y s−1 ⊕ Y q ∼ Y s−1 ⊕X.

Next applying Remark 2.2(a) with d = s− 1 in (3.21) we see that

(3.22) Xs ∼ Xs−1 ⊕ Y.

Thus by (3.22), the first condition of (3.20) and Remark 2.3, we deduce
X ∼ Y .
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Case 4: s < t, p ≥ 1. There are two subcases: r = 0 and r ≥ 1.

Subcase 4.1: r = 0. We rewrite (1.4) as follows:

(3.23)

{

X ∼ Xp ⊕ Y q,

Y s ∼ Y t.

Notice that the discriminant of (p, q, 0, t, s) is equal to (p− 1)(t− s) = −∇.
So by (3.23), our hypothesis, and Case 1 when q ≥ 1, and Case 2 when
q = 0, X ∼ Y .

Subcase 4.2: r ≥ 1. There are two subcases: q ≥ 1 and q = 0.

Subcase 4.2.1: q ≥ 1. Let n ∈ N∗ be such that nqr+ s > t. From (3.9)
with m = n we infer that

Xr ∼ Xr(p+(n−1)(p−1)) ⊕ Y nqr.

Then, by (1.4), we know that

(3.24)

{

X ∼ Xp ⊕ Y q,

Y t ∼ Xr(p+(n−1)(p−1)) ⊕ Y nqr+s.

Now observe that the discriminant of the quintuple (p, q, r(p+(n−1)(p−1)),
nqr + s, t) is equal to

(p− 1)(nqr + s− t)− rq(p+ (n− 1)(p− 1)) = (p− 1)(s− t)− rq = ∇.

Moreover, it follows from our hypothesis on ∇ that

∇ | (r(p+ (n− 1)(p− 1)) + nqr + s− t) = nr(p+ q − 1) + (s+ r − t).

Therefore according to (3.24) and Case 3, X ∼ Y .

Subcase 4.2.2: q = 0. Then p ≥ 2 and (3.24) holds. By applying Re-
mark 2.2(b) with d = 1 in the first condition of (3.14), and Remark 2.2(a)
with d = s in the second, we see that (3.15) holds. Next note that the
discriminant of (1, p − 1, t − s, s, r + s) is equal to (p − 1)(t − s) = −∇.
Furthermore, our hypothesis on ∇ implies that

∇ | ((t− s) + s− (r + s)) = −(r + s− t).

Hence by (3.15) and Subcase 4.2.1, X ∼ Y .

Case 5: s < t, p = 0 and q ≥ 2. In this case, ∇ = t− s − rq and (1.4)
implies that X ∼ Y q and Y t ∼ Xr ⊕ Y s. Hence Y t ∼ Y rq ⊕ Y s ∼ Y rq+s.
There are two subcases: t ≤ rq + s and t > rq + s.

Subcase 5.1: t ≤ rq + s. Then (3.16) holds. Since the discriminant of
(0, q, 0, rq+s, t) is equal to −(rq+s− t) = ∇, by (3.16), our hypothesis and
Case 3, X ∼ Y .
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Subcase 5.2: t > rq + s. Then (3.18) holds. Now notice that the dis-
criminant of the quintuple (0, q, 0, t, rq+s) is equal to −(t−(rq+s)) = −∇.
According to (3.18), our hypothesis and Case 3, X ∼ Y .

4. Schroeder–Bernstein sextuples for Banach spaces. In this short
section, inspired by Theorem 1.2, we introduce the notion of Schroeder–
Bernstein sextuples for Banach spaces and pose an intriguing problem on
decomposition methods in Banach spaces which will be called the Square-
cube Schroeder–Bernstein Problem for Banach spaces (see Problem 4.4).

Definition 4.1. A sextuple (p, q, r, s, u, v) in N with p + q + u ≥ 3,
(p, q) 6= (0, 0), r + s+ t ≥ 3, (r, s) 6= (0, 0), u ≥ 1 and v ≥ 1 is a Schroeder–
Bernstein sextuple for Banach spaces (for short, SBs) if X ∼ Y whenever
the Banach spaces X and Y satisfy (1.1) and

{

Xu ∼ Xp ⊕ Y q,

Y v ∼ Xr ⊕ Y s.

We also say that the number ♦ = (p− u)(s− v)− rq is the discriminant of
the sextuple (p, q, r, s, u, v).

As a direct consequence of Theorem 1.2 we deduce:

Corollary 4.2. Let (p, q, r, s, u, v) be a sextuple in N with p+q+u ≥ 3,
(p, q) 6= (0, 0) r + s+ v ≥ 3, (r, s) 6= (0, 0), u = 1 or v = 1 or (p, q) = (1, 0)
or (r, s) = (0, 1). Then (p, q, r, s, u, v) is a SBs if and only if

(a) ♦ 6= 0;

(b) ♦ | (p+ q − u) and ♦ | (r + s− v).

The following conjecture seems to be natural:

Conjecture 4.3. Let (p, q, r, s, u, v) be a sextuple in N with p+ q + u
≥ 3, (p, q) 6= (0, 0), r + s + v ≥ 3, (r, s) 6= (0, 0), u ≥ 1 and v ≥ 1. If
(p, q, r, s, u, v) is a SBs then u = 1 or v = 1 or (p, q) = (1, 0) or (r, s) = (0, 1).

Note that, in view of Corollary 4.2, a positive answer to this conjecture
would characterize the SBs. But we do not even know how to prove the
following simple case of it:

Problem 4.4. Give non-isomorphic Banach spaces X and Y satisfying
(1.1) with

X2 ∼ X3 and Y 2 ∼ Y 3.

Finally, observe that, by Pe lczyński’s decomposition method, a positive
solution to this Square-cube Schroeder–Bernstein Problem would imply a
negative solution to the Square-cube Problem mentioned in the introduction.
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