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A Useful Chara
terization of Some Real Hypersurfa
esin a Non�at Complex Spa
e FormbyTakehiro ITOH and Sadahiro MAEDAPresented by Czesªaw BESSAGA
Summary. We 
hara
terize totally η-umbili
 real hypersurfa
es in a non�at 
omplexspa
e form M̃n(c) (= CP n(c) or CHn(c)) and a real hypersurfa
e of type (A2) of radius
π/(2

√

c) in CP n(c) by observing the shape of some geodesi
s on those real hypersurfa
esas 
urves in the ambient manifolds (Theorems 1 and 2).1. Introdu
tion. A 
urve γ = γ(s) (parametrized by its ar
length s)on a Riemannian manifold M is 
alled a plane 
urve if it is lo
ally 
ontainedin some real 2-dimensional totally geodesi
 submanifold of M .In some 
ases, it is possible to dedu
e the geometri
 properties of a sub-manifold by observing the shape of geodesi
s on it (for example, see [FS,M, MO, S℄). It is known that a hypersurfa
e Mn isometri
ally immersedinto Eu
lidean spa
e R
n+1 is lo
ally a standard sphere if and only if everygeodesi
 of M is mapped to a plane 
urve of positive 
urvature in R

n+1.Su
h a 
hara
terization is quite natural, but it requires a very large amountof information be
ause of the 
ondition on every geodesi
 of M (
f. [OT℄).In this 
ontext, we are interested in a useful 
riterion for a hypersurfa
e
Mn of R

n+1 to be a standard sphere. For example, we 
an see that a hy-persurfa
e Mn in R
n+1 is a standard sphere if and only if at ea
h point xof Mn there exists an orthonormal basis v1, . . . , vn of Tx(Mn) su
h that allgeodesi
s of M through x in dire
tion vi + vj (1 ≤ i ≤ j ≤ n) are mapped to2000 Mathemati
s Subje
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plane 
urves of positive 
urvature in the ambient spa
e R

n+1 (see Proposi-tion 1).On the other hand, in a non�at 
omplex spa
e form M̃n(c), c 6= 0, whi
his either a 
omplex proje
tive spa
e CPn(c) of 
onstant holomorphi
 se
-tional 
urvature c > 0 or a 
omplex hyperboli
 spa
e CHn(c) of 
onstantholomorphi
 se
tional 
urvature c < 0, there does not exist a real hypersur-fa
e all of whose geodesi
s are mapped to plane 
urves in the ambient spa
e.This 
omes from the fa
t that a non�at 
omplex spa
e form does not admittotally umbili
 real hypersurfa
es. However, there exist real hypersurfa
es
M2n−1's all of whose geodesi
s orthogonal to the 
hara
teristi
 ve
tor �eld ξof M are mapped to plane 
urves in M̃n(c). In fa
t, every totally η-umbili
real hypersurfa
e has this property (see Se
tion 2 for the de�nition of totally
η-umbili
 real hypersurfa
es).The main purpose of this paper is to provide a useful 
hara
terizationof totally η-umbili
 real hypersurfa
es of M̃n(c), c 6= 0, in the above sense(Theorem 1).The authors would like to express their hearty thanks to the referee forhis advi
e.2. Preliminaries. Let M2n−1 be a real hypersurfa
e (with unit nor-mal ve
tor �eld N ) of a non�at n-dimensional 
omplex spa
e form M̃n(c)
(= CPn(c) or CHn(c)) of 
onstant holomorphi
 se
tional 
urvature c. TheRiemannian 
onne
tions ∇̃ of M̃n(c) and ∇ of M are related by
(2.1) ∇̃XY = ∇XY + 〈AX, Y 〉N and ∇̃XN = −AX,for ve
tor �elds X and Y tangent to M , where 〈 , 〉 denotes the standardRiemannian metri
 of M̃n(c) and A is the shape operator of M in M̃n(c). Itis known that M admits an almost 
onta
t metri
 stru
ture (φ, ξ, η, 〈 , 〉)indu
ed from the Kähler stru
ture J of M̃n(c). The 
hara
teristi
 ve
tor �eld
ξ of M is de�ned as ξ = −JN and this stru
ture satis�es

φ2 = −I + η ⊗ ξ, η(ξ) = 1 and 〈φX, φY 〉 = 〈X, Y 〉 − η(X)η(Y ),where I denotes the identity map of the tangent bundle TM of M . It followsfrom (2.1) that
(2.2) ∇Xξ = φAX.The eigenvalues and eigenve
tors of the shape operator A are 
alled prin
ipal
urvatures and prin
ipal 
urvature ve
tors, respe
tively. In the following, wedenote by Vλ the eigenspa
e asso
iated to the prin
ipal 
urvature λ, that is,
Vλ = {v ∈ TM | Av = λv}.We usually 
all M a Hopf hypersurfa
e if the 
hara
teristi
 ve
tor ξ is aprin
ipal 
urvature ve
tor. The following is useful ([NR℄):
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Lemma 1. For a Hopf hypersurfa
e M with Aξ = δξ in a non�at 
omplexspa
e form M̃n(c) the following hold.(1) δ is lo
ally 
onstant.(2) If Av = λv for v ⊥ ξ, then (2λ−δ)Aφv = (δλ+c/2)φv. In parti
ular ,

Aφv =
δλ + c/2

2λ − δ
φv when c > 0.It is known that every tube (of su�
iently small 
onstant radius) aroundea
h Kähler submanifold of M̃n(c), c 6= 0, is a Hopf hypersurfa
e. This fa
ttells us that the notion of Hopf hypersurfa
e is natural in the theory of realhypersurfa
es in a non�at 
omplex spa
e form (see [NR℄).In the following, we 
onsider Hopf hypersurfa
es with 
onstant prin
ipal
urvatures. These hypersurfa
es are 
ompletely 
lassi�ed ([NR℄). A Hopfhypersurfa
e in CPn(c) (n ≥ 2) with 
onstant prin
ipal 
urvatures is lo
ally
ongruent to one of the following:

(A1) a geodesi
 sphere of radius r, where 0 < r < π/
√

c;
(A2) a tube of radius r around a totally geodesi
 CP k(c) (1 ≤ k ≤ n−2),where 0 < r < π/

√
c;

(B) a tube of radius r around a 
omplex hyperquadri
 CQn−1, where
0 < r < π/(2

√
c),

(C) a tube of radius r around CP 1(c) × CP (n−1)/2(c), where 0 < r <
π/(2

√
c) and n ≥ 5 is odd;

(D) a tube of radius r around a 
omplex Grassmannian CG2,5, where
0 < r < π/(2

√
c) and n = 9;

(E) a tube of radius r around the Hermitian symmetri
 spa
e
SO(10)/U(5), where 0 < r < π/(2

√
c) and n = 15.These real hypersurfa
es are said to be of type (A1), (A2), (B), (C), (D) and(E). Real hypersurfa
es of type (A1) or (A2) are jointly 
alled real hyper-surfa
es of type (A). The numbers of distin
t prin
ipal 
urvatures of thesereal hypersurfa
es are 2, 3, 3, 5, 5, 5, respe
tively. One should noti
e that ageodesi
 sphere of radius r (0 < r < π/

√
c) in CPn(c) is 
ongruent to a tubeof radius π/

√
c − r over a totally geodesi
 hyperplane CPn−1(c).A Hopf hypersurfa
e M in CHn(c) (n ≥ 2) with 
onstant prin
ipal 
ur-vatures is lo
ally 
ongruent to one of the following ([NR℄):

(A0) a horosphere in CHn(c);
(A1,0) a geodesi
 sphere of radius r (0 < r < ∞);
(A1,1) a tube of radius r around a totally geodesi
 CHn−1(c), where

0 < r < ∞;
(A2) a tube of radius r around a totally geodesi
 CHk (1 ≤ k ≤ n−2),where 0 < r < ∞;



128 T. Itoh and S. Maeda
(B) a tube of radius r around a totally real totally geodesi
 RHn(c/4),where 0 < r < ∞.These real hypersurfa
es are said to be of type (A0), (A1), (A2) and (B).Here, type (A1) means either (A1,0) or (A1,1), and real hypersurfa
es of type(A0), (A1) or (A2) are jointly 
alled real hypersurfa
es of type (A). A realhypersurfa
e of type (B) with radius r = (1/

√
|c|) ln(2+

√
3) has two distin
t
onstant prin
ipal 
urvatures. Ex
ept this real hypersurfa
e of type (B) withradius r = (1/

√
|c|) ln(2 +

√
3), the numbers of distin
t prin
ipal 
urvaturesof these real hypersurfa
es are 2, 2, 2, 3, 3, respe
tively.A real hypersurfa
e M of M̃n(c) (n ≥ 2) is 
alled totally η-umbili
 if itsshape operator A is of the form A = αI + βη ⊗ ξ for some smooth fun
tions

α and β on M . This de�nition 
an be easily rewritten as AX = kX forea
h ve
tor X on M whi
h is orthogonal to the 
hara
teristi
 ve
tor ξ of M ,where k is a smooth fun
tion on M . It is known that every totally η-umbili
hypersurfa
e is a Hopf hypersurfa
e with 
onstant prin
ipal 
urvatures. Thefollowing 
lassi�
ation theorem of totally η-umbili
 real hypersurfa
es Mshows that these two fun
tions α and β are automati
ally 
onstant on M(see [NR℄):
Theorem A. Let M2n−1 be a totally η-umbili
 real hypersurfa
e of anon�at 
omplex spa
e form M̃n(c) (n ≥ 2) (with shape operator A = αI +

βη ⊗ ξ). Then M is lo
ally 
ongruent to one of the following:(P) a geodesi
 sphere of radius r (0 < r < π/
√

c) in CPn(c), where
α = (

√
c/2) cot(

√
cr/2) and β = −1/α;(H) (i) a horosphere in CHn(c), where α = β =

√
|c|/2;(ii) a geodesi
 sphere of radius r (0 < r < ∞) in CHn(c), where

α = (
√

|c|/2) coth(
√
|c|r/2) and β = 1/α;(iii) a tube of radius r (0 < r < ∞) around a totally geodesi

omplex hyperplane CHn−1(c) in CHn(c), where α = (

√
|c|/2)·

tanh(
√
|c|r/2) and β = 1/α.It is known that every totally η-umbili
 real hypersurfa
e M has twodistin
t 
onstant prin
ipal 
urvatures. For later use we prepare the followinglemma (see [NR℄).Lemma 2. Let M be a real hypersurfa
e in a non�at 
omplex spa
e form

M̃n(c) (n ≥ 2). Then the following are equivalent.(1) M is of type (A).(2) φA = Aφ.(3) 〈(∇XA)Y, Z〉 = (c/4)(−η(Y )〈φX, Z〉 − η(Z)〈φX, Y 〉) for arbitraryve
tors X, Y and Z on M .
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Next we re
all ruled real hypersurfa
es in a non�at 
omplex spa
e form,whi
h are typi
al examples of non-Hopf hypersurfa
es. A real hypersurfa
e

M is 
alled a ruled real hypersurfa
e in a non�at 
omplex spa
e form M̃n(c)
(n ≥ 2) if the holomorphi
 distribution T 0 de�ned by T 0(x) = {X ∈ TxM |
X ⊥ ξ} for x ∈ M is integrable and ea
h of its integral manifolds is a totallygeodesi
 
omplex hypersurfa
e Mn−1(c) of M̃n(c). A ruled real hypersurfa
eis 
onstru
ted in the following manner. Given an arbitrary regular 
urve
γ de�ned on an interval I in M̃n(c) we have at ea
h point γ(t) (t ∈ I)a totally geodesi
 
omplex hypersurfa
e M

(t)
n−1(c) that is orthogonal to theplane spanned by {γ̇(t), Jγ̇(t)}. Then we see that M =

⋃
t∈I M

(t)
n−1(c) is aruled real hypersurfa
e in M̃n(c). The following gives a 
hara
terization ofruled real hypersurfa
es in terms of the shape operator A (see [NR℄).Lemma 3. For a real hypersurfa
e M in a non�at 
omplex spa
e form

M̃n(c) (n ≥ 2), the following 
onditions are equivalent.(1) M is a ruled real hypersurfa
e.(2) The shape operator A of M satis�es the following equalities on theopen dense subset M1 = {x ∈ M | ν(x) 6= 0} with a unit ve
tor �eld
U orthogonal to ξ:

Aξ = µξ + νU, AU = νξ, AX = 0for an arbitrary tangent ve
tor X orthogonal to ξ and U . Here µ, νare di�erentiable fun
tions on M de�ned by µ = 〈Aξ, ξ〉 and ν =
‖Aξ − µξ‖.(3) The shape operator A of M satis�es 〈Av, w〉 = 0 for arbitrary tangentve
tors v, w ∈ TxM orthogonal to ξx at ea
h point x ∈ M .We treat ruled real hypersurfa
es lo
ally, be
ause generally su
h hyper-surfa
es have self-interse
tions and singularities. When we study ruled realhypersurfa
es, we usually omit points where ξ is prin
ipal and suppose that

ν does not vanish everywhere, that is, a ruled hypersurfa
e M is usuallysupposed to have M1 = M .We review the notion of Frenet 
urves of order 2. A smooth 
urve γ = γ(s)in a Riemannian manifold M parametrized by its ar
length s is 
alled aFrenet 
urve of proper order 2 if there exist a �eld of orthonormal frames
{γ̇(s), Ys} along γ and a positive smooth fun
tion κ(s) satisfying the follow-ing system of ordinary di�erential equations:
(2.3) ∇γ̇ γ̇ = κ(s)Ys and ∇γ̇Ys = −κ(s)γ̇.The fun
tion κ is 
alled the 
urvature of the Frenet 
urve γ of proper order 2.Here we note that we do not allow the 
urvature κ(s) to vanish at any point.Therefore 
urves with in�e
tion points, su
h as y = x3 on a Eu
lidean xy-plane, are not Frenet 
urves of proper order 2. A 
urve is 
alled a Frenet 
urve
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of order 2 if it is either a Frenet 
urve of proper order 2 or a geodesi
. Whenthe 
urvature κ is a 
onstant fun
tion along γ, say k, the 
urve satisfying(2.3) is 
alled a 
ir
le of 
urvature k on M . Needless to say, a geodesi
 isregarded as a 
ir
le of null 
urvature.For a Frenet 
urve γ of proper order 2 in a Kähler manifold Mn (withRiemannian 
onne
tion ∇ and 
omplex stru
ture J), we de�ne a 
omplextorsion τγ by τγ = 〈γ̇(s), JYs〉. Of 
ourse we have −1 ≤ τγ ≤ 1. Note thatthe 
omplex torsion τγ is automati
ally 
onstant. In fa
t, we 
an see that

∇γ̇〈γ̇(s), JYs〉 = 〈∇γ̇ γ̇(s), JYs〉 + 〈γ̇(s), J∇γ̇Ys〉
= κ〈Ys, JYs〉 − κ〈γ̇(s), Jγ̇(s)〉 = 0.We know that a Frenet 
urve γ of proper order 2 in a non�at 
omplex spa
eform M̃n(c) (n ≥ 2) is a plane 
urve (with positive 
urvature fun
tion) ifand only if τγ = ±1, 0. When τγ = ±1, this 
urve γ lies on CP 1(c) or

CH1(c), whi
h are 
omplex lines of M̃n(c). Also, when τ = 0, this 
urve γlies on RP 2(c/4) or RH2(c/4), whi
h are real parts of totally geodesi
 Kählersurfa
es M2(c) in the ambient spa
es M̃n(c).3. Results. The main purpose of this paper is to prove the following:Theorem 1. Let M be a 
onne
ted real hypersurfa
e of a non�at 
omplexspa
e form M̃n(c) (n ≥ 2). Then the following are equivalent.(1) M is totally η-umbili
 in M̃n(c).(2) At ea
h x ∈ M there exist orthonormal ve
tors v1, . . . , v2n−2 orthog-onal to ξ su
h that all geodesi
s of M through x in dire
tion vi + vj

(1 ≤ i ≤ j ≤ 2n − 2) are mapped to Frenet 
urves of proper order 2in M̃n(c).(3) At ea
h x ∈ M there exist orthonormal ve
tors v1, . . . , v2n−2 or-thogonal to ξ su
h that all geodesi
s of M through x in dire
tion
vi + vj (1 ≤ i ≤ j ≤ 2n − 2) are mapped to plane 
urves of positive
urvature in M̃n(c).(4) At ea
h x ∈ M there exist orthonormal ve
tors v1, . . . , v2n−2 or-thogonal to ξ su
h that all geodesi
s of M through x in dire
tion
vi + vj (1 ≤ i ≤ j ≤ 2n − 2) are mapped to 
ir
les of positive 
urva-ture in M̃n(c).Proof. (1)⇒ (2), (3), (4). Let M be a totally η-umbili
 real hypersurfa
ein M̃n(c). We take an arbitrary point x of M and any unit ve
tor v ∈ Tx(M)whi
h is orthogonal to the 
hara
teristi
 ve
tor ξx. Let γ = γ(s) be a geodesi
on M with γ(0) = x and γ̇(0) = v. Note that Av = αv (see Theorem A).Then, from (2.2) and Lemma 2(2) we have
∇γ̇〈γ̇, ξ〉 = 〈γ̇,∇γ̇ξ〉 = 〈γ̇, φAγ̇〉 = 〈γ̇, Aφγ̇〉 = −〈φAγ̇, γ̇〉 = 0.
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This, together with 〈γ̇(0), ξ〉 = 〈v, ξ〉 = 0, shows that γ̇(s) is perpendi
ularto ξγ(s), so that
(3.1) Aγ̇(s) = αγ̇(s) for ea
h s.Therefore, we see from (2.1) and (3.1) that

∇̃γ̇ γ̇ = 〈Aγ̇, γ̇〉N = αN and ∇̃γ̇N = −Aγ̇ = −αγ̇.Moreover, τγ = 〈γ̇, JN〉 = −〈γ̇, ξ〉 = 0. Therefore when c > 0 (resp.
c < 0) the geodesi
 γ is a 
ir
le of positive 
urvature |α| on RP 2(c/4) (resp.
RH2(c/4)).By the de�nitions we have the following in
lusions: {the plane 
urves ofpositive 
urvature} ⊂ {the Frenet 
urves of proper order 2} and {the 
ir
lesof positive 
urvature} ⊂ {the Frenet 
urves of proper order 2}. Hen
e in therest of the proof, it su�
es to verify that (2) implies (1).Let γi = γi(s) (1 ≤ i ≤ 2n − 2) be geodesi
s of M with γi(0) = x and
γ̇i(0) = vi. Then by assumption we have

∇̃γ̇i
γ̇i = κi(s)Yi(s) and ∇̃γ̇i

Yi(s) = −κi(s)γ̇ifor some positive smooth fun
tions κi. Hen
e
(3.2) ∇̃γ̇i

(∇̃γ̇i
γ̇i) = (κi(s))

′Yi(s) − (κi(s))
2γ̇i.From the �rst equality in (2.1) we note that

(3.3) κi(s)Yi(s) = 〈Aγ̇i(s), γ̇i(s)〉Nγi(s).On the other hand, from (2.1) we get
(3.4) ∇̃γ̇i

(∇̃γ̇i
γ̇i) = (∇γ̇i

〈Aγ̇i, γ̇i〉)N − 〈Aγ̇i, γ̇i〉Aγ̇i.Comparing the tangential 
omponents of (3.2) and (3.4), from (3.3) we obtain
〈Aγ̇i, γ̇i〉Aγ̇i = κ2

i γ̇i, so that at s = 0 we have
(3.5) 〈Avi, vi〉Avi = (κi(0))2vi for all i ∈ {1, . . . , 2n − 2}.Sin
e κi(0) 6= 0, this tells us that
(3.6) Avi = κi(0)vi or Avi = −κi(0)vi for all i ∈ {1, . . . , 2n − 2}.Let γij = γij(s) (1 ≤ i < j ≤ 2n− 2) be geodesi
s of M with γij(0) = x and
γ̇ij(0) = (vi + vj)/

√
2. Then by a similar 
omputation we see that

(3.7) 〈A(vi + vj), vi + vj〉A(vi + vj) = 2(κij(0))2(vi + vj)for some positive κij(0). Taking the inner produ
t of (3.7) and the ve
tor
vi − vj , we have
(3.8) 〈Avi, vi〉 = 〈Avj , vj〉 for any distin
t i, j ∈ {1, . . . , 2n − 2}.It follows from (3.6) and (3.8) that AX = kX at x for all X orthogonal to ξxand for some k. Hen
e M is totally η-umbili
 in M̃n(c), sin
e x is arbitrary.
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The proof of Theorem 1 yields the following proposition.Proposition 1. Let Mn be a hypersurfa
e of a Riemannian manifold

M̃n+1. Then Mn is totally umbili
 but not totally geodesi
 in M̃n+1 if andonly if at ea
h x ∈ M there exist orthonormal ve
tors v1, . . . , vn ∈ TxM su
hthat all geodesi
s of M through x in dire
tion vi + vj (1 ≤ i ≤ j ≤ n) aremapped to Frenet 
urves of proper order 2 in the ambient spa
e M̃n+1.Motivated by Theorem 1, we establish the following:Theorem 2. Let M be a real hypersurfa
e of a non�at 
omplex spa
eform M̃n(c) (n ≥ 2). Then the following are equivalent.(1) M is lo
ally either a totally η-umbili
 real hypersurfa
e in M̃n(c) ora real hypersurfa
e of type (A2) with radius π/(2
√

c) in CPn(c), thatis, a tube over a totally geodesi
 CP k(c) (1 ≤ k ≤ n − 2) of radius
π/(2

√
c) in CPn(c).(2) At ea
h x ∈ M there exist orthonormal ve
tors v1, . . . , v2n−2 ortho-gonal to ξ su
h that all geodesi
s of M through x in dire
tion vi

(1 ≤ i ≤ 2n − 2) are mapped to Frenet 
urves of proper order 2 withthe same 
urvature in M̃n(c).(3) At ea
h x ∈ M there exist orthonormal ve
tors v1, . . . , v2n−2 ortho-gonal to ξ su
h that all geodesi
s of M through x in dire
tion vi (1 ≤
i ≤ 2n−2) are mapped to plane 
urves of the same positive 
urvaturein M̃n(c).(4) At ea
h x ∈ M there exist orthonormal ve
tors v1, . . . , v2n−2 ortho-gonal to ξ su
h that all geodesi
s of M through x in dire
tion vi

(1 ≤ i ≤ 2n− 2) are mapped to 
ir
les of the same positive 
urvaturein M̃n(c).Proof. (1) ⇒ (2), (3), (4). We only have to 
onsider a real hypersurfa
e
M of type (A2) with radius π/(2

√
c) in CPn(c). Then the tangent bundle

TM of M is de
omposed as (see [NR℄)
TM = V√

c/2 ⊕ V−
√

c/2 ⊕ {ξ}R.Here, Aξ = 0, V√
c/2 = {X ∈ TM |AX = (

√
c/2)X}, V−

√
c/2 = {X ∈

TM |AX = −(
√

c/2)X}, dimV√
c/2 = 2k and dimV−

√
c/2 = 2n − 2 − 2k.We take an orthonormal basis v1, . . . , v2n−2 orthogonal to ξx in su
h a waythat {v1, . . . , v2k} (resp. {v2k+1, . . . , v2n−2}) is an orthonormal basis of V√

c/2(resp. V−
√

c/2).Let γi = γi(s) (1 ≤ i ≤ 2k) be geodesi
s of M with γi(0) = x and
γ̇i(0) = vi. Then, as in the proof of Theorem 1, we �nd that the ve
tor γ̇i(s)is perpendi
ular to the 
hara
teristi
 ve
tor ξγi(s) for every s. This, 
ombined
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with Lemma 2(3), yields

∇γ̇i

∥∥∥∥Aγ̇i −
√

c

2
γ̇i

∥∥∥∥
2

= 2

〈
(∇γ̇i

A)γ̇i, Aγ̇i −
√

c

2
γ̇i

〉

= 2〈(∇γ̇i
A)γ̇i, Aγ̇i〉 −

√
c〈(∇γ̇i

A)γ̇i, γ̇i〉 = 0.Sin
e Aγ̇i(0) − (
√

c/2)γ̇i(0) = Avi − (
√

c/2)vi = 0 (1 ≤ i ≤ 2k), we see that
(3.9) Aγ̇i(s) =

√
c

2
γ̇i(s) (1 ≤ i ≤ 2k) for every s.It follows from (2.1) and (3.9) that

∇̃γ̇i
γ̇i = 〈Aγ̇i, γ̇i〉 =

√
c

2
N and ∇̃γ̇i

N = −Aγ̇i = −
√

c

2
γ̇i.This, together with τγ = 〈γ̇i, JN〉 = −〈γ̇i, ξ〉 = 0, implies that the 
urve γiis a 
ir
le of positive 
urvature √

c/2 on RP 2(c/4).Similarly we 
an verify that the geodesi
s γi (2k + 1 ≤ i ≤ 2n− 2) of Mwith γi(0) = x and γ̇i(0) = vi satisfy
∇̃γ̇i

γ̇i = 〈Aγ̇i, γ̇i〉 =

√
c

2
(−N ) and ∇̃γ̇i

(−N ) = Aγ̇i = −
√

c

2
γ̇i.So we �nd that these 
urves are 
ir
les of the same 
urvature √
c/2 on

RP 2(c/4).(2), (3), (4) ⇒ (1). We only have to prove that (2) implies (1). By thesame argument as in the proof of Theorem 1, (3.6) gives
(3.10) Avi = kvi or Avi = −kvi for 1 ≤ i ≤ 2n − 2,where k is a positive number. Note that our real hypersurfa
e M is Hopf.Indeed, 〈Aξ, vi〉 = 〈ξ, Avi〉 = 0 for 1 ≤ i ≤ 2n − 2. Moreover, M has atmost three distin
t prin
ipal 
urvatures k,−k and δ = 〈Aξ, ξ〉 at ea
h ofits points. Note that Lemma 1(1) shows that δ is lo
ally 
onstant on M .Moreover, when c > 0, it follows from Lemma 1(2) that
(3.11) k =

δk + c/2

2k − δ
or −k =

δk + c/2

2k − δ
.But the latter 
ase does not hold, be
ause c > 0. Hen
e the real hypersurfa
e

M is either of type (A1), that is, M is totally η-umbili
, or of type (A2) (see[NR℄). But the shape operator of a real hypersurfa
e of type (A2) with radius
r ( 6= π/(2

√
c)) does not satisfy (3.10). In fa
t, a real hypersurfa
e of type

(A2) of radius r (0 < r < π/
√

c) has prin
ipal 
urvatures
λ1 =

√
c

2
cot

√
cr

2
, λ2 = −

√
c

2
tan

√
cr

2
, δ =

√
c cot(

√
cr).Note that |λ1| 6= |λ2| for ea
h r 6= π/(2

√
c). Thus we obtain the desiredstatement (1) in Theorem 2 when c > 0.
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Next, we 
onsider the 
ase of c < 0. Suppose that 2k−δ 6= 0 on some openneighborhood Ux of x. Then (3.11) asserts that k is 
onstant on Ux. This,together with the 
ontinuity of the prin
ipal 
urvature fun
tion k on M ,implies that if 2k − δ = 0 at some y ∈ M , then there exists an open neigh-borhood Uy of y su
h that 2k − δ is identi
ally zero on Uy. Thus M is aHopf hypersurfa
e with at most three 
onstant prin
ipal 
urvatures k,−kand δ = 〈Aξ, ξ〉. Hen
e M is either of type (A0), type (A1), that is, M istotally η-umbili
, of type (A2) or of type (B). But the shape operator of noreal hypersurfa
e of type (A2) or of type (B) satis�es (3.10). Indeed, a realhypersurfa
e of type (A2) of radius r (0 < r < ∞) has prin
ipal 
urvatures

λ1 =

√
|c|
2

coth

√
|c|r
2

, λ2 =

√
|c|
2

tanh

√
|c|r
2

, δ =
√

|c| coth(
√

|c|r),and a real hypersurfa
e of type B of radius r (0 < r < ∞) has prin
ipal
urvatures
λ1 =

√
|c|
2

coth

√
|c|r
2

, λ2 =

√
|c|
2

tanh

√
|c|r
2

, δ =
√

|c| tanh(
√
|c|r).

Remarks.(1) In the statements of Theorems 1 and 2, on the real hypersurfa
e M wedo not need to take the orthonormal ve
tors v1, . . . , v2n−2 orthogonalto ξx 
ontinuously for all x ∈ M .(2) The following theorem is 
losely related to Theorems 1 and 2.
Theorem B ([AKM2℄). Let M2n−1 be a real hypersurfa
e of a non-�at 
omplex spa
e form M̃n(c) (n ≥ 2). Then M is lo
ally 
ongruent toeither a totally η-umbili
 real hypersurfa
e or a ruled real hypersurfa
e ifand only if every geodesi
 γ of M whose initial ve
tor γ̇(0) is orthogonal tothe 
hara
teristi
 ve
tor ξγ(0) of M is mapped to a plane 
urve in the ambientspa
e M̃n(c).Note that in the statement of Theorem B we do not suppose that the
urvature of the plane 
urve γ in the ambient spa
e M̃n(c) (n ≥ 2), c 6= 0,is positive.We now 
hara
terize ruled real hypersurfa
es M by using the fa
t thatevery geodesi
 γ of M whose initial ve
tor γ̇(0) is orthogonal to the 
hara
-teristi
 ve
tor ξγ(0) of M is also a geodesi
 in the ambient spa
e M̃n(c).Proposition 2. A real hypersurfa
e M of a non�at 
omplex spa
e form

M̃n(c), n ≥ 2, is a ruled real hypersurfa
e if and only if at ea
h x ∈ Mthere exist orthonormal ve
tors v1, . . . , v2n−2 orthogonal to ξ su
h that allgeodesi
s of M through x in dire
tion vi + vj (1 ≤ i ≤ j ≤ 2n − 2) aremapped to geodesi
s in M̃n(c).
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Proof. Suppose that M is ruled. Let γ be a geodesi
 on M with initialve
tor γ̇(0) perpendi
ular to ξγ(0) and M

(t)
n−1 (for some t) the integral mani-fold through the point x = γ(0) for the holomorphi
 distribution T 0M . Sin
e

M
(t)
n−1 is totally geodesi
 in the ambient manifold M̃n(c), we �nd easily that

M
(t)
n−1 is also totally geodesi
 in the real hypersurfa
e M . As γ̇(0) ∈ TxM

(t)
n−1,by the uniqueness theorem for geodesi
s we see that γ lies on M

(t)
n−1, hen
eis a geodesi
 as a 
urve on M̃n(c).Conversely, it follows from the assumption and the �rst equality in (2.1)that at ea
h x ∈ M there exist orthonormal ve
tors v1, . . . , v2n−2 orthogonalto ξ su
h that

〈A(vi + vj), vi + vj〉 = 0 for 1 ≤ i ≤ j ≤ 2n − 2.This implies Lemma 3(3), so that M is ruled.4. Problem. In the previous papers [AKM1, CM℄, the following 
har-a
terization of all Hopf hypersurfa
es with 
onstant prin
ipal 
urvatures ina non�at 
omplex spa
e form was given:
Theorem C. A real hypersurfa
e M of a non�at 
omplex spa
e form

M̃n(c) (n ≥ 2) is lo
ally 
ongruent to a Hopf hypersurfa
e with 
onstantprin
ipal 
urvatures if and only if at ea
h x ∈ M there exist orthonormalve
tors v1, . . . , v2n−2 orthogonal to ξ su
h that all geodesi
s of M through xin dire
tion vi (1 ≤ i ≤ 2n − 2) are mapped to 
ir
les of positive 
urvaturein M̃n(c).To end this paper, motivated by Theorem C we pose the following prob-lem:
Problem. Let M be a real hypersurfa
e of a non�at 
omplex spa
e form

M̃n(c) (n ≥ 2). Suppose that at ea
h x ∈ M, there exist orthonormal ve
tors
v1, . . . , v2n−2 orthogonal to ξ su
h that all geodesi
s of M through x in di-re
tion vi (1 ≤ i ≤ 2n − 2) are mapped to Frenet 
urves of proper order 2in the ambient spa
e M̃n(c). Is M lo
ally 
ongruent to a Hopf hypersurfa
ewith 
onstant prin
ipal 
urvatures?
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