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Summary. We characterize totally n-umbilic real hypersurfaces in a nonflat complex
space form M, (c) (= CP"(c) or CH"(c)) and a real hypersurface of type (A2) of radius
7w/(2+4/c) in CP™(c) by observing the shape of some geodesics on those real hypersurfaces
as curves in the ambient manifolds (Theorems 1 and 2).

1. Introduction. A curve v = v(s) (parametrized by its arclength s)
on a Riemannian manifold M is called a plane curve if it is locally contained
in some real 2-dimensional totally geodesic submanifold of M.

In some cases, it is possible to deduce the geometric properties of a sub-
manifold by observing the shape of geodesics on it (for example, see [FS,
M, MO, S]). It is known that a hypersurface M"™ isometrically immersed
into Euclidean space R™*! is locally a standard sphere if and only if every
geodesic of M is mapped to a plane curve of positive curvature in R"*1,
Such a characterization is quite natural, but it requires a very large amount
of information because of the condition on every geodesic of M (cf. [OT]).
In this context, we are interested in a useful criterion for a hypersurface
M™ of R™*! to be a standard sphere. For example, we can see that a hy-
persurface M™ in R"*! is a standard sphere if and only if at each point x
of M™ there exists an orthonormal basis vy, ..., v, of T,(M™) such that all
geodesics of M through z in direction v; +v; (1 < i < j < n) are mapped to
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plane curves of positive curvature in the ambient space R"*! (see Proposi-
tion 1).

On the other hand, in a nonflat complex space form ]\7”(0), ¢ # 0, which
is either a complex projective space CP"(c) of constant holomorphic sec-
tional curvature ¢ > 0 or a complex hyperbolic space CH"(c) of constant
holomorphic sectional curvature ¢ < 0, there does not exist a real hypersur-
face all of whose geodesics are mapped to plane curves in the ambient space.
This comes from the fact that a nonflat complex space form does not admit
totally umbilic real hypersurfaces. However, there exist real hypersurfaces
M?" Vs all of whose geodesics orthogonal to the characteristic vector field §
of M are mapped to plane curves in M,(c). In fact, every totally n-umbilic
real hypersurface has this property (see Section 2 for the definition of totally
n-umbilic real hypersurfaces).

The main purpose of this paper is to provide a useful characterization
of totally n-umbilic real hypersurfaces of Mn(c), ¢ # 0, in the above sense
(Theorem 1).

The authors would like to express their hearty thanks to the referee for
his advice.

2. Preliminaries. Let M?"~! be a real hypersurface (with unit nor-

mal vector field \V') of a nonflat n-dimensional complex space form M, (c)
(= CP"(c) or CH"(c)) of constant holomorphic sectional curvature c¢. The

Riemannian connections V of Mn(c) and V of M are related by

(2.1) VxY = VxY + (AX,Y)N and VxN = —AX,

for vector fields X and Y tangent to M, where ( , ) denotes the standard
Riemannian metric of M, (c) and A is the shape operator of M in M,(c). It
is known that M admits an almost contact metric structure (¢,&,n,(, ))

induced from the Kéhler structure J of Mn(c) The characteristic vector field
¢ of M is defined as £ = —JN and this structure satisfies

¢’ =—I+n@& nE) =1 and (¢X,9Y) = (X,Y) —n(X)n(Y),
where I denotes the identity map of the tangent bundle T'M of M. It follows
from (2.1) that

(2.2) Vxé = pAX.

The eigenvalues and eigenvectors of the shape operator A are called principal
curvatures and principal curvature vectors, respectively. In the following, we
denote by V) the eigenspace associated to the principal curvature A, that is,
Vw={veTM| Av = \v}.

We usually call M a Hopf hypersurface if the characteristic vector £ is a
principal curvature vector. The following is useful (|[NR]):
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LEMMA 1. For a Hopf hypersurface M with A = 0§ in a nonflat complex
space form M, (c) the following hold.

(1) ¢ is locally constant.

(2) If Av = Xv forv L &, then (2A—6)Apv = (6A+c¢/2)¢pv. In particular,
N +c¢/2
220 =46
It is known that every tube (of sufficiently small constant radius) around

each Kéahler submanifold of Mn (c), ¢ # 0, is a Hopf hypersurface. This fact
tells us that the notion of Hopf hypersurface is natural in the theory of real
hypersurfaces in a nonflat complex space form (see [NR]).

Apv = ¢ov  when ¢ > 0.

In the following, we consider Hopf hypersurfaces with constant principal
curvatures. These hypersurfaces are completely classified ([NR]). A Hopf
hypersurface in CP"(¢) (n > 2) with constant principal curvatures is locally
congruent to one of the following:

(A1) a geodesic sphere of radius 7, where 0 < r < 7/4/c;
(As) a tube of radius r around a totally geodesic CP*(c) (1 < k < n—2),
where 0 < r < 7/+/c;
(B) a tube of radius r around a complex hyperquadric CQ" !, where
0<r<7m/(2y/c),
(C) a tube of radius 7 around CP'(c) x CP™1/2(¢), where 0 < r <
7/(2y/¢) and n > 5 is odd;
(D) a tube of radius r around a complex Grassmannian CGsy 5, where
0<r<m/(2y/c)and n=09;
(E) a tube of radius r around the Hermitian symmetric space
SO(10)/U(5), where 0 < r < 7/(2y/c) and n = 15.

These real hypersurfaces are said to be of type (A1), (A2), (B), (C), (D) and
(E). Real hypersurfaces of type (A1) or (Ag) are jointly called real hyper-
surfaces of type (A). The numbers of distinct principal curvatures of these
real hypersurfaces are 2,3,3,5,5,5, respectively. One should notice that a
geodesic sphere of radius r (0 < r < w/4/c) in CP"(c) is congruent to a tube
of radius 7/+/c — r over a totally geodesic hyperplane CP"~!(c).

A Hopf hypersurface M in CH"(c) (n > 2) with constant principal cur-
vatures is locally congruent to one of the following (|[NR]):

(Ap) a horosphere in CH"(c);
(A1) a geodesic sphere of radius r (0 < r < c0);
(A11) a tube of radius r around a totally geodesic CH"!(c), where
0<r<oo;
(As) a tube of radius r around a totally geodesic CH* (1 < k < n—2),
where 0 < 7 < o0;
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(B) a tube of radius r around a totally real totally geodesic RH"(c/4),
where 0 < r < oo.

These real hypersurfaces are said to be of type (Ag), (A1), (A2) and (B).
Here, type (A1) means either (A ) or (A; 1), and real hypersurfaces of type
(Ag), (A1) or (Ag) are jointly called real hypersurfaces of type (A). A real
hypersurface of type (B) with radius » = (1/+/]c]) In(2++/3) has two distinct
constant principal curvatures. Except this real hypersurface of type (B) with
radius r = (1/4/]¢]) In(2 + /3), the numbers of distinct principal curvatures
of these real hypersurfaces are 2,2, 2, 3, 3, respectively.

A real hypersurface M of Mn(c) (n > 2) is called totally n-umbilic if its
shape operator A is of the form A = al + 6y ® & for some smooth functions
« and B on M. This definition can be easily rewritten as AX = kX for
each vector X on M which is orthogonal to the characteristic vector & of M,
where k is a smooth function on M. It is known that every totally n-umbilic
hypersurface is a Hopf hypersurface with constant principal curvatures. The
following classification theorem of totally n-umbilic real hypersurfaces M
shows that these two functions a and § are automatically constant on M
(see [NR]):

THEOREM A. Let M2”_}vbe a totally n-umbilic real hypersurface of a
nonflat complex space form My(c) (n > 2) (with shape operator A = ol +
Bn & &). Then M is locally congruent to one of the following:

(P) a geodesic sphere of radius r (0 < r < w/y/c) in CP™(c), where
a = (y/¢/2)cot(y/er/2) and B = —1/a;
(H) (i) a horosphere in CH™(c), where o = 3 = /|c|/2;
(ii) a geodesic sphere of radius r (0 < r < o00) in CH™(c), where
a = (\/]el/2) coth(y/[c[r/2) and 5 =1/«
(i) a tube of radius r (0 < r < o0) around a totally geodesic
complex hyperplane CH"~1(c) in CH"(c), where a = (\/]c]/2)-

tanh(v/|c[r/2) and B = 1/a.

It is known that every totally n-umbilic real hypersurface M has two
distinct constant principal curvatures. For later use we prepare the following
lemma (see [NR]).

__ LEMMA 2. Let M be a real hypersurface in a nonflat complex space form
M, (c) (n > 2). Then the following are equivalent.

(1) M is of type (A).

(2) ¢A = Ag.

(3) (VxA)Y,Z) = (c/4)(—n(Y)(6X, Z) — n(Z)(6X,Y)) for arbitrary
vectors X,Y and Z on M.
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Next we recall ruled real hypersurfaces in a nonflat complex space form,
which are typical examples of non-Hopf hypersurfaces. A real hypersurface
M is called a ruled real hypersurface in a nonflat complex space form M, (c)
(n > 2) if the holomorphic distribution 7° defined by T%(x) = {X € T, M |
X L &} for x € M is integrable and each of its integral manifolds is a totally
geodesic complex hypersurface M,,_1(c) of ]\7”(0). A ruled real hypersurface
is constructed in the following manner. Given an arbitrary regular curve
v defined on an interval I in M, (c) we have at each point y(t) (¢t € I)

a totally geodesic complex hypersurface Mr(f_)l(c) that is orthogonal to the
plane spanned by {¥(t), J4(t)}. Then we see that M = J,¢; M

0 () is a

ruled real hypersurface in M, (c). The following gives a characterization of
ruled real hypersurfaces in terms of the shape operator A (see [NR]).

~_ LEmMA 3. For a real hypersurface M in a nonflat complex space form
M, (c) (n > 2), the following conditions are equivalent.

(1) M is a ruled real hypersurface.

(2) The shape operator A of M satisfies the following equalities on the
open dense subset My = {x € M |v(z) # 0} with a unit vector field
U orthogonal to &:

A =pE+vU, AU =vE, AX =0

for an arbitrary tangent vector X orthogonal to & and U. Here p,v
are differentiable functions on M defined by p = (AL, &) and v =
JAE - ]

(3) The shape operator A of M satisfies (Av, w) = 0 for arbitrary tangent
vectors v,w € T, M orthogonal to &, at each point x € M.

We treat ruled real hypersurfaces locally, because generally such hyper-
surfaces have self-intersections and singularities. When we study ruled real
hypersurfaces, we usually omit points where £ is principal and suppose that
v does not vanish everywhere, that is, a ruled hypersurface M is usually
supposed to have M; = M.

We review the notion of Frenet curves of order 2. A smooth curve v = ~(s)
in a Riemannian manifold M parametrized by its arclength s is called a
Frenet curve of proper order 2 if there exist a field of orthonormal frames
{#¥(s),Ys} along 7 and a positive smooth function «(s) satisfying the follow-
ing system of ordinary differential equations:

(2.3) Viy = k(s)Ys and VY, = —k(s)?y.
The function « is called the curvature of the Frenet curve « of proper order 2.
Here we note that we do not allow the curvature x(s) to vanish at any point.

Therefore curves with inflection points, such as y = 2® on a Euclidean zy-
plane, are not Frenet curves of proper order 2. A curve is called a Frenet curve
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of order 2 if it is either a Frenet curve of proper order 2 or a geodesic. When
the curvature k is a constant function along ~, say k, the curve satisfying
(2.3) is called a circle of curvature k on M. Needless to say, a geodesic is
regarded as a circle of null curvature.

For a Frenet curve v of proper order 2 in a Kahler manifold M,, (with
Riemannian connection V and complex structure J), we define a complex
torsion T, by 7, = (¥(s), JYs). Of course we have —1 < 7, < 1. Note that
the complex torsion 7, is automatically constant. In fact, we can see that

Vi (¥(s), JYs) = (V4¥(s), JYs) + (1(s), JV4Y5)

= 5(Ya, V) — (), JA(8)) = 0.
We know that a Frenet curve 7 of proper order 2 in a nonflat complex space
form M,(c) (n > 2) is a plane curve (with positive curvature function) if
and only if 7, = £1,0. When 7, = =1, this curve v lies on CP!(c) or
CH?*(c), which are complex lines of Mn(c) Also, when 7 = 0, this curve ~
lies on RP?(c/4) or RH?(c/4), which are real parts of totally geodesic Kihler
surfaces Ma(c) in the ambient spaces Mn(c)

3. Results. The main purpose of this paper is to prove the following:

THEOREM 1. Let M be a connected real hypersurface of a nonflat complex
space form M,y /(c) (n > 2). Then the following are equivalent.

(1) M is totally n-umbilic in Mn(c)

(2) At each x € M there exist orthonormal vectors v1, ..., va,—o orthog-
onal to & such that all geodesics of M through x in direction v; + v,
(1 <i<j<2n—2) are mapped to Frenet curves of proper order 2

(3) At each x € M there exist orthonormal vectors vy,...,von_2 or-
thogonal to £ such that all geodesics of M through x in direction
v +vj (1 <i<j<2n—2) are mapped to plane curves of positive
curvature in My(c).

(4) At each x € M there exist orthonormal vectors vi,...,vo,—2 OT-
thogonal to & such that all geodesics of M through x in direction
v +v; (1 <i<j<2n—2) are mapped to circles of positive curva-

ture in My(c).

Proof. (1) = (2), (3), (4). Let M be a totally n-umbilic real hypersurface
in Mn(c) We take an arbitrary point = of M and any unit vector v € T, (M)
which is orthogonal to the characteristic vector &;. Let v = 7(s) be a geodesic
on M with v(0) = z and 4(0) = v. Note that Av = awv (see Theorem A).
Then, from (2.2) and Lemma 2(2) we have

V4(1,8) = (1, V4€) = (1, 0AY) = (1, Apy) = —(pAY,7) = 0.
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This, together with (§(0),&) = (v,&) = 0, shows that 4(s) is perpendicular
to &,(s), so that
(3.1) A¥(s) = af(s) for each s.
Therefore, we see from (2.1) and (3.1) that
Vi = (A%, AN = aN and VN = -4 = —a7.

Moreover, 7, = (§,JN) = —(%,£) = 0. Therefore when ¢ > 0 (resp.
¢ < 0) the geodesic 7 is a circle of positive curvature |a| on RP?(c/4) (resp.
RH?(c/4)).

By the definitions we have the following inclusions: {the plane curves of
positive curvature} C {the Frenet curves of proper order 2} and {the circles
of positive curvature} C {the Frenet curves of proper order 2}. Hence in the
rest of the proof, it suffices to verify that (2) implies (1).

Let v; = vi(s) (1 <4 < 2n — 2) be geodesics of M with ~;(0) = z and
4i(0) = v;. Then by assumption we have

Vidi = ri(s)Yi(s) and  Vs,Yi(s) = —ri(s)3s

for some positive smooth functions x;. Hence

(3-2) Vi (Vaidi) = (i(s))'Yi(s) = (ki(s) s
From the first equality in (2.1) we note that

(3-3) ki(s)Yi(s) = (A%i(s), 3 (s)) Ny (s)-

On the other hand, from (2.1) we get

(3.4) Vi (Vai¥i) = (VA% i) )N — (A%, 4) A

Comparing the tangential components of (3.2) and (3.4), from (3.3) we obtain
(A%, Ai) A% = K24, so that at s = 0 we have

(3.5) (Avg,v;) Av; = (k;(0))?v;  for alli e {1,...,2n — 2}.

Since k;(0) # 0, this tells us that

(3.6) Av; =£;(0)v; or Av; = —k;(0)v; forallie {1,...,2n—2}.
Let 755 = 7i;(s) (1 <i < j <2n—2) be geodesics of M with ~;;(0) = 2 and
%4:(0) = (v; + vj)/v/2. Then by a similar computation we see that

(3.7) (A(vi +v7), vi + v7) Avi + v7) = 2(ki5(0))* (v; + ;)

for some positive x;;(0). Taking the inner product of (3.7) and the vector
v; — vj, we have

(3.8) (Avj,v;) = (Avj,v;) for any distinct i,7 € {1,...,2n — 2},

It follows from (3.6) and (3.8) that AX = kX at x for all X orthogonal to &,
and for some k. Hence M is totally n-umbilic in M, (c), since x is arbitrary. =
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The proof of Theorem 1 yields the following proposition.

__ ProrosiTioN 1. Let M"™ be a hypersurface of a Riemannian manifold
M"HL Then M™ is totally umbilic but not totally geodesic in M™ ' if and
only if at each x € M there exist orthonormal vectors vy, ..., v, € T, M such
that all geodesics of M through x in direction v; +v; (1 <1 < j < n) are
mapped to Frenet curves of proper order 2 in the ambient space ML

Motivated by Theorem 1, we establish the following:

THEOREM 2. Let M be a real hypersurface of a nonflat complex space
form My, (c) (n > 2). Then the following are equivalent.

(1) M is locally either a totally n-umbilic real hypersurface in Mn(c) or
a real hypersurface of type (As) with radius w/(2+/c) in CP™(c), that
is, a tube over a totally geodesic CP*(c) (1 < k < n —2) of radius
7/(2+/c) in CP"(c).

(2) At each x € M there exist orthonormal vectors vy, ..., va,—2 ortho-
gonal to & such that all geodesics of M through x in direction v;
(1 < i< 2n—2) are mapped to Frenet curves of proper order 2 with
the same curvature in Mn(c)

(3) At each x € M there exist orthonormal vectors vy, ..., va,—o ortho-
gonal to & such that all geodesics of M through x in direction v; (1 <
i < 2n—2) are mapped to plane curves of the same positive curvature

(4) At each x € M there exist orthonormal vectors vy, ..., vo,—o ortho-
gonal to & such that all geodesics of M through x in direction v;
(1 <i < 2n—2) are mapped to circles of the same positive curvature

Proof. (1) = (2), (3), (4). We only have to consider a real hypersurface
M of type (Ag) with radius 7/(2y/c) in CP™(c). Then the tangent bundle
TM of M is decomposed as (see [NR])

TM =V @ V_ /0@ {&Ir.

Here, A = 0, V5 = {X € TM|AX = (Ve/2)X}, V_ 50 = {X €
TM[AX = —(\/¢/2)X}, dimV ;)5 = 2k and dimV_ z/» = 2n — 2 — 2k.
We take an orthonormal basis v1, ..., v9,_2 orthogonal to £, in such a way
that {v1,..., v} (resp. {vok11,...,v2,—2}) is an orthonormal basis of Ve
(resp. V_ /z/2)-

Let v = 7i(s) (1 < i < 2k) be geodesics of M with ;(0) = = and
4i(0) = v;. Then, as in the proof of Theorem 1, we find that the vector 4;(s)
is perpendicular to the characteristic vector &, ) for every s. This, combined
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with Lemma 2(3), yields

Ay Ve,

2
. . C.
Vs, -5 | = 2<(V%A)%A% - §v>

2((Vs4, A)di, Avi) — Ve((Vs, A) i, 4i) = 0.
Since A%;(0) — (v/¢/2)%i(0) = Av; — (yV/e/2)v; =0 (1 < i < 2k), we see that

(3.9) A¥i(s) = g%(s) (1 <i < 2k) for every s.
It follows from (2.1) and (3.9) that

= . .. c = . C .
V:W% = (A%,’yﬁ = g./\/’ and V%N = —A%‘ = —g Yi-
This, together with 7, = (§;, JN') = —(44,&) = 0, implies that the curve ;
is a circle of positive curvature y/c/2 on RP?(c/4).

Similarly we can verify that the geodesics v; (2k+1 < i < 2n —2) of M
with ;(0) = z and 4;(0) = v; satisfy

Vit = (31,3 = L5 (-N) and T3, (-N) = 3 = L5

So we find that these curves are circles of the same curvature \/c/2 on
RP%(c/4).

(2), (3), (4) = (1). We only have to prove that (2) implies (1). By the
same argument as in the proof of Theorem 1, (3.6) gives
(3.10) Av; = kv; or Av; = —kv; for1<i<2n-—2,
where k is a positive number. Note that our real hypersurface M is Hopf.
Indeed, (A&, v;) = (€, Av;) = 0 for 1 < ¢ < 2n — 2. Moreover, M has at
most three distinct principal curvatures k, —k and 6 = (A&, ) at each of
its points. Note that Lemma 1(1) shows that § is locally constant on M.
Moreover, when ¢ > 0, it follows from Lemma 1(2) that

_ SkH4c/2 Ok +c/2
(3-11) == o e

But the latter case does not hold, because ¢ > 0. Hence the real hypersurface
M is either of type (Aq), that is, M is totally n-umbilic, or of type (Ag) (see
[NR]). But the shape operator of a real hypersurface of type (Az) with radius
r (# m/(24/c)) does not satisfy (3.10). In fact, a real hypersurface of type
(Ag) of radius r (0 < r < m/4/c) has principal curvatures

A\ = ﬁcot @7 Ay = —g tan g, 0= \/ECOt<\/E7“).

Note that |[A;| # |A2| for each r # 7/(2y/c). Thus we obtain the desired
statement (1) in Theorem 2 when ¢ > 0.
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Next, we consider the case of ¢ < 0. Suppose that 2k—4 # 0 on some open
neighborhood U, of x. Then (3.11) asserts that k is constant on U,. This,
together with the continuity of the principal curvature function k on M,
implies that if 2k — 6 = 0 at some y € M, then there exists an open neigh-
borhood U, of y such that 2k — ¢ is identically zero on U,. Thus M is a
Hopf hypersurface with at most three constant principal curvatures k, —k
and § = (A&, €). Hence M is either of type (Ag), type (A7), that is, M is
totally n-umbilic, of type (Az) or of type (B). But the shape operator of no
real hypersurface of type (Ag) or of type (B) satisfies (3.10). Indeed, a real
hypersurface of type (Az) of radius r (0 < r < co) has principal curvatures

Alz\/ZHcoth\/E’r, Agz\émtanh\/gr 6 = /le| coth(+/Jelr),

)

and a real hypersurface of type B of radius r (0 < r < oo) has principal
curvatures

Alzgcoth@, Agz\/QHtanh\/HT § = /|c|tanh(y/|c|r). =

2 )

REMARKS.

(1) In the statements of Theorems 1 and 2, on the real hypersurface M we
do not need to take the orthonormal vectors v1, ..., v2,_2 orthogonal
to &, continuously for all x € M.

(2) The following theorem is closely related to Theorems 1 and 2.

THEOREM B (JAKM2]). Let M?"~1 be a real hypersurface of a non-
flat complex space form Mn(c) (n > 2). Then M is locally congruent to
either a totally n-umbilic real hypersurface or a ruled real hypersurface if
and only if every geodesic v of M whose initial vector 4(0) is orthogonal to
the characteristic vector £ oy of M is mapped to a plane curve in the ambient

space M, (c).

Note that in the statement of Theorem B we do not suppose that the
curvature of the plane curve 7 in the ambient space M, (c) (n > 2), ¢ # 0,
is positive.

We now characterize ruled real hypersurfaces M by using the fact that
every geodesic v of M whose initial vector 4(0) is orthogonal to the charac-
teristic vector £,y of M is also a geodesic in the ambient space Mn(c)

__ ProrosiTION 2. A real hypersurface M of a nonflat complex space form
M, (c), n > 2, is a ruled real hypersurface if and only if at each x € M
there exist orthonormal vectors vi,...,va,—o orthogonal to & such that all
geodesics of M through x in direction v; +v; (1 < i < j < 2n —2) are
mapped to geodesics in Mn(c)
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Proof. Suppose that M is ruled. Let v be a geodesic on M with initial
vector ¥(0) perpendicular to &,y and ngt_)l (for some t) the integral mani-
fold through the point o = (0) for the holomorphic distribution 7°M. Since

Mr(f_)l is totally geodesic in the ambient manifold Mn(c), we find easily that
M,Ef_)l is also totally geodesic in the real hypersurface M. As 4(0) € TxMT(Lt_)l,

by the uniqueness theorem for geodesics we see that v lies on ngt_)l, hence

is a geodesic as a curve on M,(c).

Conversely, it follows from the assumption and the first equality in (2.1)
that at each x € M there exist orthonormal vectors vy, ..., vo,—2 orthogonal
to & such that

(A(vi+vj),vi+vj>:0 for1 <i<j<2n-—2.
This implies Lemma 3(3), so that M is ruled. =

4. Problem. In the previous papers [AKM1, CM], the following char-
acterization of all Hopf hypersurfaces with constant principal curvatures in
a nonflat complex space form was given:

__ TueoreM C. A real hypersurface M of a nonflat complex space form
M, (c) (n > 2) is locally congruent to a Hopf hypersurface with constant
principal curvatures if and only if at each x € M there exist orthonormal
vectors v, . . ., Van_o orthogonal to & such that all geodesics of M through x
in direction v; (1 <1 < 2n — 2) are mapped to circles of positive curvature
in My(c).

To end this paper, motivated by Theorem C we pose the following prob-
lem:

__ PrROBLEM. Let M be a real hypersurface of a nonflat complex space form
My (c) (n > 2). Suppose that at each x € M, there exist orthonormal vectors
V1,...,Van—_9 orthogonal to & such that all geodesics of M through x in di-
rection v; (1 < i < 2n — 2) are mapped to Frenet curves of proper order 2
in the ambient space Mn(c) Is M locally congruent to a Hopf hypersurface
with constant principal curvatures?
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