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Summary. We prove that the set of all Krasinkiewicz maps from a compact metric space
to a polyhedron (or a 1-dimensional locally connected continuum, or an n-dimensional
Menger manifold, n > 1) is a dense Gs-subset of the space of all maps. We also investigate
the existence of surjective Krasinkiewicz maps from continua to polyhedra.

1. Introduction. In this paper all spaces are separable and metrizable,
and all maps are continuous. We denote the interval [0, 1] by I. A compact
metric space is called a compactum, and a continuum means a connected
compactum. Let X and Y be compacta. Then C(X,Y) denotes the set of
all continuous maps from X to Y endowed with the sup metric.

If X, Y are compacta, a map f : X — Y is called a Krasinkiewicz
map if any continuum in X either contains a component of a fiber of f or
is contained in a fiber of f (cf. [5] and [8]). In [5] J. Krasinkiewicz showed
that the set of all Krasinkiewicz maps from a compactum to a 1-dimensional
manifold is a dense subset of the space of all maps. In fact, he proved this
result as follows. First, he defined a map f : X — Y to be singular if there
exists a Bing map (see [3], [4], [6] and [10]) F': X x I — Y such that Fj = f.
Next he proved that the set of all singular maps from a compactum to an
n-dimensional manifold (n > 1) is a dense subset of the space of all maps,
and also that a singular map from a compactum to a 1-dimensional manifold
is a Krasinkiewicz map. On the other hand, in [8] M. Levin and W. Lewis
proved that the set of Krasinkiewicz maps from a compactum to I is a dense
subset of the space of all maps by their own method.

2000 Mathematics Subject Classification: Primary 54C05, 54C35; Secondary 54F15,
54F45.

Key words and phrases: Krasinkiewicz map, component, dense GGs-subset, polyhedron,
compactum, continuum, Menger manifold, locally connected continuum.

[137]



138 E. Matsuhashi

In this paper, we prove the following theorem.

THEOREM 1.1. Let X be a compactum and P a polyhedron. Then the set
of all Krasinkiewicz maps from X to P is a dense Gs-subset of C(X, P).

In Section 3, as an application of Theorem 1.1, we prove that the set of all
Krasinkiewicz maps from a compact metric space to a 1-dimensional locally
connected continuum (or an n-dimensional Menger manifold, n > 1) is a
dense Gg-subset of the space of all maps. Also, we investigate the existence
of surjective Krasinkiewicz maps from continua to polyhedra.

2. Main theorem. In this section we prove Theorem 1.1. First we in-
droduce our notation and terminology. By I we denote the manifold interior

of I, I = (0,1), and by OI its manifold boundary, I = {0,1}. Analogous
symbols are used for the unit cube I"™. Let f : X — Y be a mapping. For
a point z € X we denote by C(z, f) the component of the fiber f=1(f(x))
containing x, and call it the component of f at z. Any component of f at a
point is said to be a component of f. A mapping g : X — Y is said to be an
alteration of f on U over V, where U C X and V C Y are arbitrary sets, if
g(z) = f(z) foreach x ¢ U N f~1(V), and g(UN f~Y(V)) C V.
The easy proof of the next lemma is left to the reader.

LEMMA 2.1. Let g : X — X' be a mapping between compacta, and let
u:X —1I and v : X' — I be mappings such that u = u'oq.

(i) If v': X! — I is an alteration of v’ on G' over (a,b), then v =1"oq
is an alteration of u on G = ¢~ 1(G’) over (a,b). Moreover, d(u,v) <
d(u,v").

(ii) If q is a monotone surjection and C' is a component of v’ then C =
q 1 (C") is a component of u.

The next lemma is a strengthening of a result proved by M. Levin [7].

LEMMA 2.2. Let u : X — I be a mapping of a compactum X and let
(a,b) C I. Suppose Z is a nonvoid closed subset of X whose components lie
in fibers of u, and u(Z) C (a,b). Then, for any open neighborhood G of Z in
X, u can be approrimated by mappings v : X — I such that:

(i) v is an alteration of u on G\ Z over (a,b),
(ii) each component of Z is a component of v.

Proof. Let X' denote the quotient space obtained from X by shrinking
the components of Z to points, and let ¢ : X — X’ denote the quotient
mapping. Then Z' = ¢(Z) is a closed 0-dimensional subset of X’ and G’ =
¢(G) is an open neighborhood of Z’ in X’. Since components of Z lie in
fibers of u, there is a map «' : X’ — I such that u = v’ o ¢q. Fix ¢ > 0. In
view of Lemma 2.1, if v’ : X’ — I is an alteration of v/ on G'\ Z’ over (a, b)
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with d(v',u") < €, then v = v’ o ¢ satisfies the conclusion of our lemma, and
d(v,u) < e. Therefore, without loss of generality, we may assume that

(1) dim Z = 0.

Let U = GNu~!((a,b)). Since U C X is open and Z C U, by (1) there
exist open sets Uy, ..., Uy ) such that for each i, = 1,...,n(0) we have:

(21) ZCUlU"'UUn(@),ZﬂUi#@, clU; Cc U,
(31) clU; NclUy = 0 for i # 4/,
(41) diam U; < 1/2!, diamu(clU;) < /2.

Hence Z; = Z N U; is a nonvoid closed subset of the open set U;. Therefore,
we can repeat the procedure for U;, Z; in place of U, Z; and so on. Thus,
for each k > 1, we construct open sets U,, where a = (i1, ..., i), satisfying
conditions (2j)—(4%). Then we pick open sets V,, W, and intervals [aq, ba] C
[a, b] such that

(5g) clUy C V, CclVy, C Wy C clW, C Ug, where 8 = (i1,...,15-1),
(6r) Wy Ncl Wy =0, where o = (i1, ..., 05—1,1}), ik 7# i,

(71) diam W, < 1/2F,

(81) u(clW,) C [aa,bs] and diam [aq, ba] < /2F.

Moreover, we can choose the intervals so that
(9) all the initial points a, are different.

Then take any mappings v, : cl Wy, \ Uy — [aq, ba] which map 9V, to aq,
and which coincide with u on 0W, U QU,. Finally, define v : X — I to be
the union of the maps v, on clW,, \ U,, and u on the complement of these
sets.

It follows from (8) that d(v,u) < e. Suppose there is a nondegenerate
component D of v which meets Z. It follows from (5) and (7) that D meets
two different boundaries 0V,. Hence v(D) contains at least two different
points a,, a contradiction. m

LEMMA 2.3. Let f: X — I be a mapping of a compactum X and let G
be an open subset of X. Then f can be approximated by mappings g : X — I
such that

(i) g is an alteration of f on G over I,
(ii) if L C G is a continuum lying in no fiber of g, then L contains a
component of g.

Proof. Fix ¢ > 0. We need a map ¢ : X — [ which is e-close to f and
satisfies the conclusion of our lemma. It will be defined as the limit of a
sequence of maps ug, u1,... from X to I. To define the latter, first choose a
sequence of closed intervals [a1, b1], [ag, b2], ... in I, and a sequence of Cantor
sets C1,Cy, ... satisfying the following conditions (for i,7 = 1,2,...):
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(1) diam [a;, b;] < €/2¢,
(2) Ci C (as,b), .
(3) ([% bi] N [aj, bj] # 0 and i < j) = (laj, b] C (ai,b:) \ C4),
(4) each nonvoid open subset of I contains some [a;, b;].
Next, take an increasing sequence Gy, G1,... of open subsets of X such
that G = GoUG1U- -+ and cl G;_1 C G; for each 7. Then define the mappings

u;—1 by induction. Put

(5) uo = f.
If w;_1 has been defined, define u; as follows. Take a continuous surjection
@; : C; — 2%, where 2% denotes the hyperspace of closed subsets of X, and

set
Z; = U{% (e)NclGizy | c € G}

Then Z; is a closed subset of X7 its components lie in fibers of u;_1, and
u;i—1(Z;) C C;. Therefore, by Lemma 2.2, there is a mapping u; : X — [
such that

(6) u; is an alteration of u;—; on G; \ Z; over (a;,b;),
(7) each component of Z; is a component of u; ! (c) for some ¢ € C;.

Let us observe that

(8) if L € G;—1 is a continuum and C; C wu;—1(L), then L contains a
component of u; ' (¢) for some ¢ € C;.

In fact, there is ¢y € C; such that ¢;(co) = L. Since ¢y € u;—1(L), we have
LNu; ! (cp) # 0. On the other hand,

Ln “1_711(00) = pi(co) N ul-_,ll(co) NeclGiq

is a subset of Z;. Let D be a component of L N ui__ll(co). Then D is a
component of Z;. Since u;(D) = u;—1(D) = {cp}, by (7) we infer that D is
a component of u; '(cp). Thus, L contains a component of u; *(co), which
proves (8).

From (3) and (6) we infer that

(9) if ui(x) € [aj,b;] for some j > i, and jo = min{j > i | u;(z) €

[aj, b;]}, then ug(x) € [aj,, bj,] for each k > i.

Now we are ready to complete the proof. We are going to show that
g = lim u; satisfies the conclusion of our lemma. The limit is well defined in
view of (6) and (1). Then, by (1), (5) and (6), g is e-close to f. Condition (i)
follows from (6). It remains to prove (ii). To this end, consider a continuum
L C G such that g(L) is not a singleton. Then there is ¢ > 1 such that
L C G- and [ai, b;] C w;—1(L). By (2) and (8), L contains a component of
u;l(c) for some ¢ € C;. Therefore, it is enough to show that

(10) g™*(c) = u; ().
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By (3) and (6) one easily sees that u; '(c) C g~'(c). To prove the con-
verse, suppose on the contrary that there is a point € g~'(c) \ u; '(c).
Then g(z) = ¢ # ui(z). It follows that u;(z) € [a;, b;] for some j > i (other-
wise g(z) = ui(z)). By (9), ug(z) € [aj,,bj,] for each k > i, where jo > i.
It follows that g(x) € [aj,,bj,]. On the other hand, [a;y,bj,] C (as,b;) \ Ci,
by (3). Hence ¢ = g(z) ¢ C;, a contradiction. This proves (10), and ends the
entire proof. m

LEMMA 2.4. Let X be a compactum and let f = (f1,..., fn): X — I" be
a mapping such that f|f~1(0I") : f~Y(0I") — OI" is a Krasinkiewicz map.
Then f can be approximated by Krasinkiewicz maps g : X — I™ which are al-
terations of f on f_l(I”) over I™. In other words, each g extends flftorm
and transforms f~1(I") into I".

Proof. Fix ¢ > 0 and let G = f‘l(f”). By Lemma 2.3, for each i =
1,...,n, there is a mapping g; : X — I which is (¢/4/n)-close to f; and such
that

(1) g; is an alteration of f; on G over I,
(2) if L C G is a continuum lying in no fiber of g;, then L contains a
component of g;.

We shall show that g = (g1,...,9n) : X — I™ satisfies the conclusion.
First note that g is e-close to f, and g is an alteration of f on f’l(I”)
over I™. It remains to show that g is a Krasinkiewicz map. To this end,
consider a continuum L C X such that g(L) is not a singleton. We must
show that L contains a component of g. If LN G = (), then L C f~1(0I")
hence, by our hypothesis L contains a component of f|f~1(0I"), which is
also a component of f. Next, assume L NG # (). Then there is a continuum
L’ € LNG such that g(L') is not a singleton. Hence g;(L’) is not a singleton
for some i. By Lemma 2.3, L’ contains a component C(z, g;). Since C(x,g) C
C(z,g;) C L' C L, this ends the proof. =

Before the proof of Theorem 2.5 we give some notations. If X and Y are
compacta, then K (X,Y’) denotes the set of all Krasinkiewicz maps from X
to Y. If K is a simplicial complex, we write K" = {¢ € K | dimo < n} and
denote the polyhedron of K by |K|. Let X be a compactum, K a simplicial
complex and f : X — |K| a mapping. A mapping g : X — |K| is said to be a
K-maodification of f if f(z) € ¢ implies g(z) € ¢ for every x € X and o € K.
One easily sees that

(%) if g is a K-modification of f and L is a subcomplex of K then g~'(|L|)
= f~Y|L|) and the mapping g~ ' (|L|) — L determined by g is an
L-modification of the mapping f~*(|L]) — L determined by f.
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THEOREM 2.5. Let X be a compactum and P a polyhedron. Then K (X, P)
is a dense subset of C(X, P).

Proof. For any £ > 0 there is a simplicial complex K such that P = |K|
and mesh IC < e. Therefore our theorem readily follows from the following
assertion:

(xx) for any mapping f : X — |K|, where X is a compactum and K is a
simplicial complex, there is a Krasinkiewicz map g : X — |K| which
is a KC-modification of f.

We prove (*x) by induction on dim K. For dim K = 0 it is obvious be-
cause every map from a compactum into a discrete space is a Krasinkiewicz
map. Then consider any mapping f : X — |K|, where n = dimK > 0,
and assume (*x) holds for any (n — 1)-dimensional complex. It suffices to
find a Krasinkiewicz map ¢ : X — |K| which is a K-modification of f. To
this end consider the mapping fo : f~1(|JK"7!|) — |K"~!| determined by
f (G.e. fo(xr) = f(z) for every z). By the inductive assumption there is a
Krasinkiewicz map go : f~(|K""1|) — |K"~!| which is a K"~ !-modification
of fo. For any n-simplex o € K\ K" 1, by (x), g5 '(do) = f~1(do) and
the mapping gs, : 9o L(90) — 9o determined by gy is a do-modification
of the mapping f~!'(do) — Oo determined by f. Since o is homeomorphic
to I™ and the mapping gs, is a Krasinkiewicz map, by Lemma 2.4, there
is a Krasinkiewicz map g, : f~!'(¢) — o such that g,(z) = go(z) for all
r € f71(d0), and g,(z) € & if f(x) € 6. Now we define the mapping
g: X — |K]| to be go on the inverse f~1(]K"71|), and g, on f~!(o) for each
o € K\ K" 1. One easily verifies that g is well defined and has the desired
properties, which ends the proof. =

A set A C X is said to be residual in X if A contains a dense Gs-subset
in X. In [8] M. Levin and W. Lewis claimed that if X is a compactum, then
K(X,I) is a residual set of C(X,I). In fact, they claimed that the set of
maps f in C(X, I) satisfying the following condition is a dense Gs-subset of
C(X,I):

(#) for every continuum F' C X such that f(F') is not a singleton there
exists a subset D C f(F') dense in f(F) such that for every d € D,
f~1(d) N F is the union of some components of f~1(d).

Contrary to this assertion, one can show that there exist continua X such
that the set of maps in C'(X,I) satisfying (#) is not dense in C(X,I). For
instance, take any mapping f : I x I — I close enough to the first projection
pr; : I x I — I. Then f does not satisfy (#). In fact, let F = I x {1/2}.
Then f(F') is not a singleton, but if d € f(F) and 1/2 € f(F) are suffciently
near, then there exists a component C of f~!(d) such that C'N (I x {0}) #
0 # CN(Ix{1}). So there does not exist a subset D C f(F) as in (#).
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So K(X,I) need not be a residual subset of C(X,I). However, we prove
that if X and Y are compacta, then K(X,Y) is a Gs-subset of C'(X,Y).
If § >0and A C X, we denote the set {x € X | d(x,A) < 6} by B(A,J).

THEOREM 2.6. Let X and Y be compacta. Then K(X,Y) is a Gs-subset
of C(X,Y).

Proof. For each m,n € N, let Hy, ,, be the set of all maps f € C(X,Y)
satisfying the condition:

(%) if L C X is a subcontinuum with diam f(L) > 1/n, then there exists
x € L such that C(z, f) C B(L,1/m).

We claim that
(A) Hy,p, is an open subset of C(X,Y),
(B) K(X7 Y) = ﬂm,nEN Hman'

To prove (A), we show that C'(X,Y)\ Hp, , is a closed subset of C(X,Y).
Note that C'(X,Y) \ Hy,p is the set of all maps f € C(X,Y) satisfying:

(%) there exists a subcontinuum K C X such that diam f(K) > 1/n
and C(z, f) ¢ B(K,1/m) for each = € K.

Let f € cl(C(X,Y) \ Hpp). Then there exists a sequence of maps
{fi}32, € C(X,Y) \ Hp,pn such that lim f; = f. For each i = 1,2,...,
there exists a subcontinuum K; C X such that diam f;(K;) > 1/n and
C(z, fi) ¢ B(K;,1/m) for each x € K;. We may assume that K, converges
to a subcontinuum K C X. Then it is easy to see that diam f(K) > 1/n.
Let € K. Then there exists a sequence {z;}?2, C X such that z; € K;
for each i = 1,2,..., and limz; = z. Hence C(z;, f;) ¢ B(K;,1/m) for each
i = 1,2,.... We may assume that C(z;, f;) converges to a subcontinuum
C C X. Then it is easy to see that z € C C C(z, f) and C ¢ B(K,1/m).
So f € C(X,Y)\ Hp, . This completes the proof of (A).

Next we prove (B). It is easy to see that K(X,Y) C (), ,en Hmmn- So
we only prove the reverse inclusion. Let f € mm,neN Hy,, and let L C X
be a subcontinuum such that diam f(L) > 0. Let L1 = L. Now we prove
that there exists a subcontinuum Ly C L; such that diam f(Lz) > 0 and
C(z, f) € B(L1,1/2) for each x € Lg. Since diam f(L;) > 0, there exists
n1 € N such that diam f(L1) > 1/n;. Since f € Hs,,, there exists zg € Ly
such that C(xo, f) C B(L1,1/2). Since B(L1,1/2) is open and C(zo, f) is a
component of the compact set f~1(f(z¢)), there exist two disjoint open sets
U, U’ such that

(1) f7H(f(x0)) cU LT,
(2) C(zo, f) C U C B(L1,1/2).
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Since f is a closed mapping, by (1) there is an open neighborhood V of f(xg)
in Y such that

(3) f (V) cUuvU.
Since diam f(L1) > 0, we can also assume that

(4) fF(L)\V #0.
Consider the open set W = f~1(V) N U. Note that
(5) C(xo, f) C W.

Let Cy denote the component of W N L1 which contains xg. We are going to
show that Lo = clCj is a continuum with the desired properties. First we
show that

(6) diam f(L2) > 0.

Since L; is a continuum and L; ¢ W by (4), we infer that clCpy N
dr(W N Ly) # 0. Note that 9, (W N Ly) C OW. The set f~1(clV)NU is
closed, because it is a closed subset of the closed set f~!(clV), by (3). It
follows that clW C f~1(clV) N U, hence OW = cIW \ W C (f~ (V)N
M\ (f~1(V)NU) c f~1(dV). Consequently, d,(WNLy) C f~1(0V), hence
clConf=1(0V) # 0. Therefore, f(clCp) contains f(zo) and meets OV, which
proves (6).

Now consider any x € clCy. In order to end the proof it is enough to
show that

(7) C(z, f) C B(L1,1/2).

Since f~1(clV)NUisclosed, c1Cy C f~1(clV)NU,sox € f~H(clV)NU.
Therefore, x € f~(f(z)) NU. The set f~(f(z)) N U is closed and open in
1 (f(x)), as f~1(clV) N U is closed and open in f~!(clV), by (3), and
F~YHf(x)) € f~1(clV). It follows that C(z, f) C f~(f(z))NU C U. Thus,
by (2), we get (7).

By induction, we can find a decreasing sequence {L;}7°, of subcontinua

of L such that if k € N, then

e diam f(Ly) > 0,
e C(z,f) C B(Lg,1/(k+ 1)) for each x € Lj41.

Then it is easy to see that C(z, f) C L for each x € (2, Ly (C L). This
implies f € K(X,Y), and completes the proof. =

By Theorems 2.5 and 2.6, we get Theorem 1.1.

3. Applications. In this section we give some applications of Theo-
rem 1.1. First we prove the following result.
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ProposITION 3.1. Let X, Y and Z be compacta. If f : X — Y is a
Krasinkiewicz map and g 1 Y — Z is a 0-dimensional map, then go f : X —
Z is a Krasinkiewicz map.

Proof. Let h = go f and L C X a continuum such that h(L) is not a
singleton. Since f(L) is not a singleton and f is a Krasinkiewicz map, there
exists y € Y such that L contains a component C' of f~!(y). Since g is a
0-dimensional map, {y} is a component of g~ *(g(y)). Then C is a component
of h=1(g(y)). This completes the proof. m

By Theorem 1.1, Proposition 3.1 and the proofs of Corollaries 4.3 and
4.4 in [10] we obtain the following results.

THEOREM 3.2. Let X be a compactum and Y a 1-dimensional locally
connected continuum. Then K(X,Y) is a dense Gs-subset of C(X,Y).

THEOREM 3.3. Let X be a compactum and M an n-dimensional Menger
manifold (n > 1). Then K(X, M) is a dense Gs-subset of C(X,M).

(See [1] for properties of Menger manifolds.)

We denote the space of all surjective maps from X to Y by Cy(X,Y).
Also, we denote the set of all surjective Krasinkiewicz maps from X to Y by
K (X,Y). By Theorem 1.1, Proposition 3.1 and the argument in [3] we get
the following result.

THEOREM 3.4. Let X be a continuum and P a connected polyhedron.
Then K4(X, P) is a dense Gs-subset of Cs(X, P).

By Proposition 3.1, Theorem 3.4 and the proofs of Theorem 6 and Corol-
lary 7 in [3| we get the following results.

THEOREM 3.5. Let X be a continuum and Y a 1-dimensional locally
connected continuum. Then K(X,Y') is a dense Gs-subset of Cs(X,Y).

THEOREM 3.6. Let X be a continuum and M an n-dimensional Menger
manifold (n > 1). Then Ks(X, M) is a dense Gs-subset of Cs(X, M).

Also we give an application of Theorem 3.4. We need the following well
known theorem.

THEOREM 3.7 (M. Brown [2]). Let {X;, fi} be an inverse sequence such
that X; is compact for each i = 1,2,.... Then there exist 1 > &9 > -+ > 0
such that if {g:}32, (9i + Xiy1 — X for each i = 1,2,...) satisfies d(fi, gi)
<¢g; foreachi=1,2,..., then liLn{Xi,gi} is homeomorphic to im{ X, f;}.

By Theorems 3.4 and 3.7, we obtain the following result.

COROLLARY 3.8. For each continuum X, there exists an inverse sequence
{P;,gi} such that P; is a compact connected polyhedron, g; : Piy1 — P; is a
surjective Krasinkiewicz map for each i =1,2,..., and X = lim{F;, g;}.
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