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Krasinkiewi
z Maps from Compa
ta to PolyhedrabyEii
hi MATSUHASHIPresented by Czesªaw BESSAGA
Summary. We prove that the set of all Krasinkiewi
z maps from a 
ompa
t metri
 spa
eto a polyhedron (or a 1-dimensional lo
ally 
onne
ted 
ontinuum, or an n-dimensionalMenger manifold, n ≥ 1) is a dense Gδ-subset of the spa
e of all maps. We also investigatethe existen
e of surje
tive Krasinkiewi
z maps from 
ontinua to polyhedra.1. Introdu
tion. In this paper all spa
es are separable and metrizable,and all maps are 
ontinuous. We denote the interval [0, 1℄ by I. A 
ompa
tmetri
 spa
e is 
alled a 
ompa
tum, and a 
ontinuum means a 
onne
ted
ompa
tum. Let X and Y be 
ompa
ta. Then C(X, Y ) denotes the set ofall 
ontinuous maps from X to Y endowed with the sup metri
.If X, Y are 
ompa
ta, a map f : X → Y is 
alled a Krasinkiewicz
map if any 
ontinuum in X either 
ontains a 
omponent of a �ber of f oris 
ontained in a �ber of f (
f. [5℄ and [8℄). In [5℄ J. Krasinkiewi
z showedthat the set of all Krasinkiewi
z maps from a 
ompa
tum to a 1-dimensionalmanifold is a dense subset of the spa
e of all maps. In fa
t, he proved thisresult as follows. First, he de�ned a map f : X → Y to be singular if thereexists a Bing map (see [3℄, [4℄, [6℄ and [10℄) F : X×I → Y su
h that F0 = f .Next he proved that the set of all singular maps from a 
ompa
tum to an
n-dimensional manifold (n ≥ 1) is a dense subset of the spa
e of all maps,and also that a singular map from a 
ompa
tum to a 1-dimensional manifoldis a Krasinkiewi
z map. On the other hand, in [8℄ M. Levin and W. Lewisproved that the set of Krasinkiewi
z maps from a 
ompa
tum to I is a densesubset of the spa
e of all maps by their own method.2000 Mathemati
s Subje
t Classi�
ation: Primary 54C05, 54C35; Se
ondary 54F15,54F45.Key words and phrases: Krasinkiewi
z map, 
omponent, dense Gδ-subset, polyhedron,
ompa
tum, 
ontinuum, Menger manifold, lo
ally 
onne
ted 
ontinuum.[137℄
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In this paper, we prove the following theorem.Theorem 1.1. Let X be a 
ompa
tum and P a polyhedron. Then the setof all Krasinkiewi
z maps from X to P is a dense Gδ-subset of C(X, P ).In Se
tion 3, as an appli
ation of Theorem 1.1, we prove that the set of allKrasinkiewi
z maps from a 
ompa
t metri
 spa
e to a 1-dimensional lo
ally
onne
ted 
ontinuum (or an n-dimensional Menger manifold, n ≥ 1) is adense Gδ-subset of the spa
e of all maps. Also, we investigate the existen
eof surje
tive Krasinkiewi
z maps from 
ontinua to polyhedra.2. Main theorem. In this se
tion we prove Theorem 1.1. First we in-drodu
e our notation and terminology. By I̊ we denote the manifold interiorof I, I̊ = (0, 1), and by ∂I its manifold boundary, ∂I = {0, 1}. Analogoussymbols are used for the unit 
ube In. Let f : X → Y be a mapping. Fora point x ∈ X we denote by C(x, f) the 
omponent of the �ber f−1(f(x))
ontaining x, and 
all it the 
omponent of f at x. Any 
omponent of f at apoint is said to be a 
omponent of f . A mapping g : X → Y is said to be analteration of f on U over V , where U ⊂ X and V ⊂ Y are arbitrary sets, if

g(x) = f(x) for ea
h x /∈ U ∩ f−1(V ), and g(U ∩ f−1(V )) ⊂ V .The easy proof of the next lemma is left to the reader.Lemma 2.1. Let q : X → X ′ be a mapping between 
ompa
ta, and let
u : X → I and u′ : X ′ → I be mappings su
h that u = u′ ◦ q.(i) If v′ : X ′ → I is an alteration of u′ on G′ over (a, b), then v = v′ ◦ qis an alteration of u on G = q−1(G′) over (a, b). Moreover , d(u, v) ≤

d(u′, v′).(ii) If q is a monotone surje
tion and C ′ is a 
omponent of u′ then C =
q−1(C ′) is a 
omponent of u.The next lemma is a strengthening of a result proved by M. Levin [7℄.Lemma 2.2. Let u : X → I be a mapping of a 
ompa
tum X and let

(a, b) ⊂ I. Suppose Z is a nonvoid 
losed subset of X whose 
omponents liein �bers of u, and u(Z) ⊂ (a, b). Then, for any open neighborhood G of Z inX , u 
an be approximated by mappings v : X → I su
h that :(i) v is an alteration of u on G \ Z over (a, b),(ii) ea
h 
omponent of Z is a 
omponent of v.Proof. Let X ′ denote the quotient spa
e obtained from X by shrinkingthe 
omponents of Z to points, and let q : X → X ′ denote the quotientmapping. Then Z ′ = q(Z) is a 
losed 0-dimensional subset of X ′ and G′ =
q(G) is an open neighborhood of Z ′ in X ′. Sin
e 
omponents of Z lie in�bers of u, there is a map u′ : X ′ → I su
h that u = u′ ◦ q. Fix ε > 0. Inview of Lemma 2.1, if v′ : X ′ → I is an alteration of u′ on G′ \Z ′ over (a, b)
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with d(v′, u′) < ε, then v = v′ ◦ q satis�es the 
on
lusion of our lemma, and
d(v, u) < ε. Therefore, without loss of generality, we may assume that(1) dim Z = 0.Let U = G ∩ u−1((a, b)). Sin
e U ⊂ X is open and Z ⊂ U , by (1) thereexist open sets U1, . . . , Un(∅) su
h that for ea
h i, i′ = 1, . . . , n(∅) we have:(21) Z ⊂ U1 ∪ · · · ∪ Un(∅), Z ∩ Ui 6= ∅, cl Ui ⊂ U ,(31) clUi ∩ clUi′ = ∅ for i 6= i′,(41) diamUi < 1/21, diamu(cl Ui) < ε/21.Hen
e Zi = Z ∩ Ui is a nonvoid 
losed subset of the open set Ui. Therefore,we 
an repeat the pro
edure for Ui, Zi in pla
e of U, Z; and so on. Thus,for ea
h k ≥ 1, we 
onstru
t open sets Uα, where α = (i1, . . . , ik), satisfying
onditions (2k)�(4k). Then we pi
k open sets Vα, Wα and intervals [aα, bα] ⊂
[a, b] su
h that(5k) 
lUα ⊂ Vα ⊂ clVα ⊂Wα ⊂ clWα ⊂ Uβ, where β = (i1, . . . , ik−1),(6k) cl Wα ∩ cl Wα′ = ∅, where α′ = (i1, . . . , ik−1, i

′
k), ik 6= i′k,(7k) diamWα < 1/2k,(8k) u(cl Wα) ⊂ [aα, bα] and diam[aα, bα] < ε/2k.Moreover, we 
an 
hoose the intervals so that(9) all the initial points aα are di�erent.Then take any mappings vα : clWα \ Uα → [aα, bα] whi
h map ∂Vα to aα,and whi
h 
oin
ide with u on ∂Wα ∪ ∂Uα. Finally, de�ne v : X → I to bethe union of the maps vα on clWα \ Uα, and u on the 
omplement of thesesets.It follows from (8) that d(v, u) < ε. Suppose there is a nondegenerate
omponent D of v whi
h meets Z. It follows from (5) and (7) that D meetstwo di�erent boundaries ∂Vα. Hen
e v(D) 
ontains at least two di�erentpoints aα, a 
ontradi
tion.Lemma 2.3. Let f : X → I be a mapping of a 
ompa
tum X and let Gbe an open subset of X. Then f 
an be approximated by mappings g : X → Isu
h that(i) g is an alteration of f on G over I̊,(ii) if L ⊂ G is a 
ontinuum lying in no �ber of g , then L 
ontains a
omponent of g.Proof. Fix ε > 0. We need a map g : X → I whi
h is ε-
lose to f andsatis�es the 
on
lusion of our lemma. It will be de�ned as the limit of asequen
e of maps u0, u1, . . . from X to I. To de�ne the latter, �rst 
hoose asequen
e of 
losed intervals [a1, b1], [a2, b2], . . . in I̊, and a sequen
e of Cantorsets C1, C2, . . . satisfying the following 
onditions (for i, j = 1, 2, . . . ):
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(1) diam [ai, bi] < ε/2i,(2) Ci ⊂ (ai, bi),(3) ([ai, bi] ∩ [aj, bj ] 6= ∅ and i < j) ⇒ ([aj, bj ] ⊂ (ai, bi) \ Ci),(4) ea
h nonvoid open subset of I 
ontains some [ai, bi].Next, take an in
reasing sequen
e G0, G1, . . . of open subsets of X su
hthat G = G0∪G1∪· · · and cl Gi−1 ⊂ Gi for ea
h i. Then de�ne the mappings

ui−1 by indu
tion. Put(5) u0 = f .If ui−1 has been de�ned, de�ne ui as follows. Take a 
ontinuous surje
tion
ϕi : Ci → 2X , where 2X denotes the hyperspa
e of 
losed subsets of X, andset

Zi =
⋃
{ϕi(c) ∩ u−1

i−1(c) ∩ cl Gi−1 | c ∈ Ci}.Then Zi is a 
losed subset of X, its 
omponents lie in �bers of ui−1, and
ui−1(Zi) ⊂ Ci. Therefore, by Lemma 2.2, there is a mapping ui : X → Isu
h that(6) ui is an alteration of ui−1 on Gi \ Zi over (ai, bi),(7) ea
h 
omponent of Zi is a 
omponent of u−1

i (c) for some c ∈ Ci.Let us observe that(8) if L ⊂ Gi−1 is a 
ontinuum and Ci ⊂ ui−1(L), then L 
ontains a
omponent of u−1
i (c) for some c ∈ Ci.In fa
t, there is c0 ∈ Ci su
h that ϕi(c0) = L. Sin
e c0 ∈ ui−1(L), we have

L ∩ u−1
i−1(c0) 6= ∅. On the other hand,

L ∩ u−1
i−1(c0) = ϕi(c0) ∩ u−1

i−1(c0) ∩ cl Gi−1is a subset of Zi. Let D be a 
omponent of L ∩ u−1
i−1(c0). Then D is a
omponent of Zi. Sin
e ui(D) = ui−1(D) = {c0}, by (7) we infer that D isa 
omponent of u−1

i (c0). Thus, L 
ontains a 
omponent of u−1
i (c0), whi
hproves (8).From (3) and (6) we infer that(9) if ui(x) ∈ [aj , bj ] for some j > i, and j0 = min{j > i | ui(x) ∈

[aj , bj ]}, then uk(x) ∈ [aj0 , bj0 ] for ea
h k > i.Now we are ready to 
omplete the proof. We are going to show that
g = limui satis�es the 
on
lusion of our lemma. The limit is well de�ned inview of (6) and (1). Then, by (1), (5) and (6), g is ε-
lose to f . Condition (i)follows from (6). It remains to prove (ii). To this end, 
onsider a 
ontinuum
L ⊂ G su
h that g(L) is not a singleton. Then there is i ≥ 1 su
h that
L ⊂ Gi−1 and [ai, bi] ⊂ ui−1(L). By (2) and (8), L 
ontains a 
omponent of
u−1

i (c) for some c ∈ Ci. Therefore, it is enough to show that(10) g−1(c) = u−1
i (c).
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By (3) and (6) one easily sees that u−1

i (c) ⊂ g−1(c). To prove the 
on-verse, suppose on the 
ontrary that there is a point x ∈ g−1(c) \ u−1
i (c).Then g(x) = c 6= ui(x). It follows that ui(x) ∈ [aj, bj ] for some j > i (other-wise g(x) = ui(x)). By (9), uk(x) ∈ [aj0 , bj0 ] for ea
h k ≥ i, where j0 > i.It follows that g(x) ∈ [aj0 , bj0 ]. On the other hand, [aj0 , bj0 ] ⊂ (ai, bi) \ Ci,by (3). Hen
e c = g(x) /∈ Ci, a 
ontradi
tion. This proves (10), and ends theentire proof.Lemma 2.4. Let X be a 
ompa
tum and let f = (f1, . . . , fn) : X → In bea mapping su
h that f |f−1(∂In) : f−1(∂In)→ ∂In is a Krasinkiewi
z map.Then f 
an be approximated by Krasinkiewi
z maps g : X → In whi
h are al-terations of f on f−1(I̊n) over I̊n. In other words, ea
h g extends f |f−1(∂In)and transforms f−1(I̊n) into I̊n.Proof. Fix ε > 0 and let G = f−1(I̊n). By Lemma 2.3, for ea
h i =

1, . . . , n, there is a mapping gi : X → I whi
h is (ε/√n)-
lose to fi and su
hthat(1) gi is an alteration of fi on G over I̊,(2) if L ⊂ G is a 
ontinuum lying in no �ber of gi, then L 
ontains a
omponent of gi.We shall show that g = (g1, . . . , gn) : X → In satis�es the 
on
lusion.First note that g is ε-
lose to f , and g is an alteration of f on f−1(I̊n)over I̊n. It remains to show that g is a Krasinkiewi
z map. To this end,
onsider a 
ontinuum L ⊂ X su
h that g(L) is not a singleton. We mustshow that L 
ontains a 
omponent of g. If L ∩ G = ∅, then L ⊂ f−1(∂In)hen
e, by our hypothesis L 
ontains a 
omponent of f |f−1(∂In), whi
h isalso a 
omponent of f . Next, assume L ∩G 6= ∅. Then there is a 
ontinuum
L′ ⊂ L∩G su
h that g(L′) is not a singleton. Hen
e gi(L

′) is not a singletonfor some i. By Lemma 2.3, L′ 
ontains a 
omponent C(x, gi). Sin
e C(x, g) ⊂
C(x, gi) ⊂ L′ ⊂ L, this ends the proof.Before the proof of Theorem 2.5 we give some notations. If X and Y are
ompa
ta, then K(X, Y ) denotes the set of all Krasinkiewi
z maps from Xto Y . If K is a simpli
ial 
omplex, we write Kn = {σ ∈ K | dim σ ≤ n} anddenote the polyhedron of K by |K|. Let X be a 
ompa
tum, K a simpli
ial
omplex and f : X → |K| a mapping. A mapping g : X → |K| is said to be a
K-modi�
ation of f if f(x) ∈ σ̊ implies g(x) ∈ σ̊ for every x ∈ X and σ ∈ K.One easily sees that(∗) if g is a K-modi�
ation of f and L is a sub
omplex of K then g−1(|L|)

= f−1(|L|) and the mapping g−1(|L|) → L determined by g is an
L-modi�
ation of the mapping f−1(|L|)→ L determined by f.
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Theorem 2.5. Let X be a 
ompa
tum and P a polyhedron. Then K(X, P )is a dense subset of C(X, P ).Proof. For any ε > 0 there is a simpli
ial 
omplex K su
h that P = |K|and meshK < ε. Therefore our theorem readily follows from the followingassertion:(∗∗) for any mapping f : X → |K|, where X is a 
ompa
tum and K is asimpli
ial 
omplex, there is a Krasinkiewi
z map g : X → |K| whi
his a K-modi�
ation of f.We prove (∗∗) by indu
tion on dimK. For dimK = 0 it is obvious be-
ause every map from a 
ompa
tum into a dis
rete spa
e is a Krasinkiewi
zmap. Then 
onsider any mapping f : X → |K|, where n = dimK > 0,and assume (∗∗) holds for any (n − 1)-dimensional 
omplex. It su�
es to�nd a Krasinkiewi
z map g : X → |K| whi
h is a K-modi�
ation of f . Tothis end 
onsider the mapping f0 : f−1(|Kn−1|) → |Kn−1| determined by

f (i.e. f0(x) = f(x) for every x). By the indu
tive assumption there is aKrasinkiewi
z map g0 : f−1(|Kn−1|)→ |Kn−1| whi
h is a Kn−1-modi�
ationof f0. For any n-simplex σ ∈ K \ Kn−1, by (∗), g−1
0 (∂σ) = f−1(∂σ) andthe mapping g∂σ : g−1

0 (∂σ) → ∂σ determined by g0 is a ∂σ-modi�
ationof the mapping f−1(∂σ) → ∂σ determined by f . Sin
e σ is homeomorphi
to In and the mapping g∂σ is a Krasinkiewi
z map, by Lemma 2.4, thereis a Krasinkiewi
z map gσ : f−1(σ) → σ su
h that gσ(x) = g0(x) for all
x ∈ f−1(∂σ), and gσ(x) ∈ σ̊ if f(x) ∈ σ̊. Now we de�ne the mapping
g : X → |K| to be g0 on the inverse f−1(|Kn−1|), and gσ on f−1(σ) for ea
h
σ ∈ K \ Kn−1. One easily veri�es that g is well de�ned and has the desiredproperties, whi
h ends the proof.A set A ⊂ X is said to be residual in X if A 
ontains a dense Gδ-subsetin X. In [8℄ M. Levin and W. Lewis 
laimed that if X is a 
ompa
tum, then
K(X, I) is a residual set of C(X, I). In fa
t, they 
laimed that the set ofmaps f in C(X, I) satisfying the following 
ondition is a dense Gδ-subset of
C(X, I):(#) for every 
ontinuum F ⊂ X su
h that f(F ) is not a singleton thereexists a subset D ⊂ f(F ) dense in f(F ) su
h that for every d ∈ D,

f−1(d) ∩ F is the union of some 
omponents of f−1(d).Contrary to this assertion, one 
an show that there exist 
ontinua X su
hthat the set of maps in C(X, I) satisfying (#) is not dense in C(X, I). Forinstan
e, take any mapping f : I×I → I 
lose enough to the �rst proje
tion
pr1 : I × I → I. Then f does not satisfy (#). In fa
t, let F = I × {1/2}.Then f(F ) is not a singleton, but if d ∈ f(F ) and 1/2 ∈ f(F ) are su�
ientlynear, then there exists a 
omponent C of f−1(d) su
h that C ∩ (I × {0}) 6=
∅ 6= C ∩ (I × {1}). So there does not exist a subset D ⊂ f(F ) as in (#).
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So K(X, I) need not be a residual subset of C(X, I). However, we provethat if X and Y are 
ompa
ta, then K(X, Y ) is a Gδ-subset of C(X, Y ).If δ > 0 and A ⊂ X, we denote the set {x ∈ X | d(x, A) < δ} by B(A, δ).Theorem 2.6. Let X and Y be 
ompa
ta. Then K(X, Y ) is a Gδ-subsetof C(X, Y ).Proof. For ea
h m, n ∈ N, let Hm,n be the set of all maps f ∈ C(X, Y )satisfying the 
ondition:(⋆) if L ⊂ X is a sub
ontinuum with diam f(L) ≥ 1/n, then there exists

x ∈ L su
h that C(x, f) ⊂ B(L, 1/m).We 
laim that(A) Hm,n is an open subset of C(X, Y ),(B) K(X, Y ) =
⋂

m,n∈N
Hm,n.To prove (A), we show that C(X, Y )\Hm,n is a 
losed subset of C(X, Y ).Note that C(X, Y ) \Hm,n is the set of all maps f ∈ C(X, Y ) satisfying:(⋆⋆) there exists a sub
ontinuum K ⊂ X su
h that diam f(K) ≥ 1/nand C(x, f) 6⊂ B(K, 1/m) for ea
h x ∈ K.Let f ∈ cl(C(X, Y ) \ Hm,n). Then there exists a sequen
e of maps

{fi}∞i=1 ⊂ C(X, Y ) \ Hm,n su
h that lim fi = f . For ea
h i = 1, 2, . . . ,there exists a sub
ontinuum Ki ⊂ X su
h that diam fi(Ki) ≥ 1/n and
C(x, fi) 6⊂ B(Ki, 1/m) for ea
h x ∈ Ki. We may assume that Ki 
onvergesto a sub
ontinuum K ⊂ X. Then it is easy to see that diam f(K) ≥ 1/n.Let x ∈ K. Then there exists a sequen
e {xi}∞i=1 ⊂ X su
h that xi ∈ Kifor ea
h i = 1, 2, . . ., and limxi = x. Hen
e C(xi, fi) 6⊂ B(Ki, 1/m) for ea
h
i = 1, 2, . . . . We may assume that C(xi, fi) 
onverges to a sub
ontinuum
C ⊂ X. Then it is easy to see that x ∈ C ⊂ C(x, f) and C 6⊂ B(K, 1/m).So f ∈ C(X, Y ) \Hm,n. This 
ompletes the proof of (A).Next we prove (B). It is easy to see that K(X, Y ) ⊂ ⋂

m,n∈N
Hm,n. Sowe only prove the reverse in
lusion. Let f ∈ ⋂

m,n∈N
Hm,n and let L ⊂ Xbe a sub
ontinuum su
h that diam f(L) > 0. Let L1 = L. Now we provethat there exists a sub
ontinuum L2 ⊂ L1 su
h that diam f(L2) > 0 and

C(x, f) ⊂ B(L1, 1/2) for ea
h x ∈ L2. Sin
e diam f(L1) > 0, there exists
n1 ∈ N su
h that diam f(L1) ≥ 1/n1. Sin
e f ∈ H2,n1

, there exists x0 ∈ L1su
h that C(x0, f) ⊂ B(L1, 1/2). Sin
e B(L1, 1/2) is open and C(x0, f) is a
omponent of the 
ompa
t set f−1(f(x0)), there exist two disjoint open sets
U, U ′ su
h that(1) f−1(f(x0)) ⊂ U ∪ U ′,(2) C(x0, f) ⊂ U ⊂ B(L1, 1/2).
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Sin
e f is a 
losed mapping, by (1) there is an open neighborhood V of f(x0)in Y su
h that(3) f−1(clV ) ⊂ U ∪ U ′.Sin
e diam f(L1) > 0, we 
an also assume that(4) f(L1) \ V 6= ∅.Consider the open set W = f−1(V ) ∩ U . Note that(5) C(x0, f) ⊂W .Let C0 denote the 
omponent of W ∩L1 whi
h 
ontains x0. We are going toshow that L2 = clC0 is a 
ontinuum with the desired properties. First weshow that(6) diam f(L2) > 0.Sin
e L1 is a 
ontinuum and L1 6⊂ W by (4), we infer that clC0 ∩
∂L(W ∩ L1) 6= ∅. Note that ∂L(W ∩ L1) ⊂ ∂W . The set f−1(clV ) ∩ U is
losed, be
ause it is a 
losed subset of the 
losed set f−1(clV ), by (3). Itfollows that cl W ⊂ f−1(clV ) ∩ U , hen
e ∂W = clW \W ⊂ (f−1(clV ) ∩
U)\ (f−1(V )∩U) ⊂ f−1(∂V ). Consequently, ∂L(W ∩L1) ⊂ f−1(∂V ), hen
e
cl C0∩f−1(∂V ) 6= ∅. Therefore, f(clC0) 
ontains f(x0) and meets ∂V , whi
hproves (6).Now 
onsider any x ∈ cl C0. In order to end the proof it is enough toshow that(7) C(x, f) ⊂ B(L1, 1/2).Sin
e f−1(clV ) ∩ U is 
losed, clC0 ⊂ f−1(clV ) ∩ U , so x ∈ f−1(cl V ) ∩ U .Therefore, x ∈ f−1(f(x)) ∩ U . The set f−1(f(x)) ∩ U is 
losed and open in
f−1(f(x)), as f−1(clV ) ∩ U is 
losed and open in f−1(cl V ), by (3), and
f−1(f(x)) ⊂ f−1(cl V ). It follows that C(x, f) ⊂ f−1(f(x)) ∩ U ⊂ U . Thus,by (2), we get (7).By indu
tion, we 
an �nd a de
reasing sequen
e {Lk}∞k=1 of sub
ontinuaof L su
h that if k ∈ N , then
• diam f(Lk) > 0,
• C(x, f) ⊂ B(Lk, 1/(k + 1)) for ea
h x ∈ Lk+1.Then it is easy to see that C(x, f) ⊂ L for ea
h x ∈ ⋂∞

k=1 Lk (⊂ L). Thisimplies f ∈ K(X, Y ), and 
ompletes the proof.By Theorems 2.5 and 2.6, we get Theorem 1.1.3. Appli
ations. In this se
tion we give some appli
ations of Theo-rem 1.1. First we prove the following result.
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Proposition 3.1. Let X, Y and Z be 
ompa
ta. If f : X → Y is aKrasinkiewi
z map and g : Y → Z is a 0-dimensional map, then g ◦f : X →

Z is a Krasinkiewi
z map.Proof. Let h = g ◦ f and L ⊂ X a 
ontinuum su
h that h(L) is not asingleton. Sin
e f(L) is not a singleton and f is a Krasinkiewi
z map, thereexists y ∈ Y su
h that L 
ontains a 
omponent C of f−1(y). Sin
e g is a0-dimensional map, {y} is a 
omponent of g−1(g(y)). Then C is a 
omponentof h−1(g(y)). This 
ompletes the proof.By Theorem 1.1, Proposition 3.1 and the proofs of Corollaries 4.3 and4.4 in [10℄ we obtain the following results.Theorem 3.2. Let X be a 
ompa
tum and Y a 1-dimensional lo
ally
onne
ted 
ontinuum. Then K(X, Y ) is a dense Gδ-subset of C(X, Y ).Theorem 3.3. Let X be a 
ompa
tum and M an n-dimensional Mengermanifold (n ≥ 1). Then K(X, M) is a dense Gδ-subset of C(X, M).(See [1℄ for properties of Menger manifolds.)We denote the spa
e of all surje
tive maps from X to Y by Cs(X, Y ).Also, we denote the set of all surje
tive Krasinkiewi
z maps from X to Y by
Ks(X, Y ). By Theorem 1.1, Proposition 3.1 and the argument in [3℄ we getthe following result.Theorem 3.4. Let X be a 
ontinuum and P a 
onne
ted polyhedron.Then Ks(X, P ) is a dense Gδ-subset of Cs(X, P ).By Proposition 3.1, Theorem 3.4 and the proofs of Theorem 6 and Corol-lary 7 in [3℄ we get the following results.Theorem 3.5. Let X be a 
ontinuum and Y a 1-dimensional lo
ally
onne
ted 
ontinuum. Then Ks(X, Y ) is a dense Gδ-subset of Cs(X, Y ).Theorem 3.6. Let X be a 
ontinuum and M an n-dimensional Mengermanifold (n ≥ 1). Then Ks(X, M) is a dense Gδ-subset of Cs(X, M).Also we give an appli
ation of Theorem 3.4. We need the following wellknown theorem.Theorem 3.7 (M. Brown [2℄). Let {Xi, fi} be an inverse sequen
e su
hthat Xi is 
ompa
t for ea
h i = 1, 2, . . . . Then there exist ε1 > ε2 > · · · > 0su
h that if {gi}∞i=1 (gi : Xi+1 → Xi for ea
h i = 1, 2, . . .) satis�es d(fi, gi)
< εi for ea
h i = 1, 2, . . . , then lim←−{Xi, gi} is homeomorphi
 to lim←−{Xi, fi}.By Theorems 3.4 and 3.7, we obtain the following result.Corollary 3.8. For ea
h 
ontinuum X, there exists an inverse sequen
e
{Pi, gi} su
h that Pi is a 
ompa
t 
onne
ted polyhedron, gi : Pi+1 → Pi is asurje
tive Krasinkiewi
z map for ea
h i = 1, 2, . . . , and X = lim←−{Pi, gi}.
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