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Summary. The theorem in the title is proven. Applications to product theorems are
given.

We adopt the terminology of [17], and so a topological space X = (X, )
is compact whenever one (and therefore all) of the following equivalent con-
ditions is satisfied.

e Every open cover of X contains a finite subcover;
e Every filter on X has a cluster point;
e Every ultrafilter on X is convergent.

We note that, in contrast to [5] or [14], Hausdorffness is not presupposed.
The following [17, Ch. 5, Theorem 6] is the Alexander Subbase Theorem:

AST. Let § be a subbase of O. If any cover of X by elements of §
contains a finite subcover, then X is compact.

We are interested in a more general form of AST in which the space X is
replaced by a filter base or, equivalently, a filter. We need to introduce some
terminology. Let P,’H be families of subsets of X. We write P # H and say
that P meshes with H if PN H # () for each P € P and each H € H. We
say that H is a cover (resp. undercover) of a set A C X if A C [JH (resp.
AcUH=U{H: HcH)}).

A filter in O is a nonempty subfamily G C O which does not contain the
empty set, is stable under finite intersections and such that if G € G and
G C H € O, then H € G. A filter which is a maximal element with respect
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to inclusion in the family of filters in O is called an wltrafilter in O. Note that
if @ = 2% (i.e., the topology is discrete), we may drop “in 0”, recovering the
usual notion of an (ultra) filter in X.

A variant of compactness, called absolute closedness [2], [5] or H-closed-
ness 3], [14], was defined in Hausdorff spaces. We do not presuppose Haus-
dorffness and because of our stress on the analogy with the compact case, it
is convenient to switch to a more flexible term of midcompactness. The term
was actually introduced as “midcompactoidness” in a survey of “compactoid
filters” [18]. However, in recent papers there is a tendency to return to the
classical terminology in which the term “compact filter” (instead of com-
pactoid filter) is used. The use of “midcompactness” is especially convenient
when dealing with many sorts of midcompact-like families of sets (see [11]).

We reserve B to denote a filter base in X.

COVER-FILTER DUALITY. The following conditions are equivalent.

(1) (resp. (2)) For each open cover P of A, there exist B € B and a
finite subfamily Py C P covering (resp. undercovering) B.

(1) (resp. (24)) For each filter (resp. filter in O) F such that F # B,
F has a cluster point in A.

(1') (resp. (2')) For each ultrafilter (resp. ultrafilter in O) U such that
U # B, U converges to a point in A.

Proof. Only (2')=(2,) is not standard. Suppose F is a filter in O meshing
with B. Denote by F V B the filter generated by the base {F N B : F € F,
B € B}. Let U be an ultrafilter finer than F V B. Define

OU) ={0 € 0 :3U € U such that U C O}.

Then O(U) is an ultrafilter in O which is finer than F and meshes with 5.
By (2'), O(U) converges to a point x € A. Clearly, x is a cluster point of F.
This shows (2.).

We say that B is compact (resp. midcompact) at A if any (and therefore
all) of the respective conditions above is satisfied. We also consider (mid)
compactness at a family of subsets of X. If A is such a family, then B is said
to be (mid) compact at A if it is so at A, for each A € A. If A = B, then B
is said to be selfcompact (resp. selfmidcompact).

Let 8 be a subbase of O and let S be the class of all covers of A consisting
of sets from S. We say that B is S-compact (resp. midcompact) at A if for
every Q € S there exist B € B and a finite subfamily {Q1,...,Q,} C Q
covering (resp. undercovering) B.

AST—GENERAL FORM. Let B be S-compact (resp. midcompact) at A.
Then B is compact (resp. midcompact) at A.
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Proof. Denying (1') (resp. (2')), let U be an ultrafilter (resp. in O), mesh-
ing with B and without a limit point in A. We claim that:

For each x € A, there exists G(x) 3 z, G(x) in 8, such that G(x) does
not mesh with U.

Otherwise, there exists x such that the sets G(x) € § containing = mesh
with Y. As U is an ultrafilter (resp. in O) and G(z) are open, the sets G(x)
would belong to U. As finite intersections of such sets form a base of the
neighborhood filter of z, the point z would be a limit point of i/.

Applying the assumption of the theorem to the cover {G(x) : x € A}, we
find z1,. ..,z and B € Bsuch that B ¢ U, G(x;) (resp. B ¢ U, G(1)).

On the other hand, as G(x;)’s do not mesh with i, it follows that neither
does G = |J;"_; G(z;). This gives a contradiction in the compact case, because
B C G and B#U. In the “mid case”, U € U being open, U NG = () for some
U € U. This contradicts the fact that G D B € B and U # B.

COROLLARY 1. If B is S-selfcompact (resp. S-selfmidcompact), then it
is selfcompact (resp. selfmidcompact).

The corollary solves a question left open in [18] (see the comment after
Th. 5.3 there). Actually, the statement in parentheses seems to be new even
in the special case of an absolutely closed space X. We now deduce a general
Tikhonov Product Theorem (TPT):

TPT—GENERAL FORM. Let X, be a filter on X,, which is compact (resp.
midcompact) at A,. The product filter X = [[,c; X, on X = [[,o; X, is
compact (resp. midcompact) at A =[] c; A..

Proof. Let 8 be a subbase of X defined by the sets pr, ' (E,), ¢ € I, where
FE, is an open set in X,. Suppose that G is a family of sets from 8 so that there
is no D € X and no finite subfamily of G covering (resp. undercovering) D.
Let & be the family of all open sets in X, such that pr;'(£) C G. As
pr,(X) = X,, there is no B, € X, and no finite subfamily of &, which covers
(resp. undercovers) B,. By compactness (resp. midcompactness) of X, at A,,
there is a, € A, not covered by &,. Then a = (a,) € A is not covered by G.
Hence X is S-compact at A. Now apply the general form of AST.

el el

The “compact case” of the theorem goes back to Pettis [19] (who thought
in terms of nets). The “midcompact case” has been announced in [12] but no
proof has ever been published. In the special case of the product of spaces
this is a theorem of Chevalley and Frink [9].

Let us consider a still more general compactness theorem [13]. Recall that
a USCO-map is an upper semicontinuous function taking nonempty compact
values.
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COROLLARY 2. Foreach it €1, letl,: X, =Y, be a USCO-map. Then

the product map
r:[[x.=v=[[v
el el

defined by I'((z.).er) = [[,c; Li(x.) is also a USCO-map.

The following proof shows that the filter generalizations may be useful.
Indeed, let N, = N(z,) be the neighborhood filter of x,. Then the image
filter I',(N,) is compact at I'(z,). Hence the product filter J[,o; I.(N,) is
compact at [[,.; I'(x,). This also means that

(H n) (H NL) — I'(N(z))

is compact at I'(x), where = (z,),er, or, which is the same, that I" is upper
semicontinuous at x.

REMARK 1. The Alexander Subbase Theorem is [1, Theorem 1]. As its
first corollary [1, Theorem 2|, Alexander gives the Tikhonov Product The-
orem declaring its proof evident. Kelley gives a proof in [17]. Nonetheless
Kelley, discussing the connections with the axiom of choice in [16], speaks
about “Alexander’s proof” and calls it “the most illuminating” of all the
proofs (of TPT). The present paper adapts the “Alexander approach” to the
more general situation studied here.

Kelley also gives in [17] a second proof calling it “Bourbaki’s proof”. Ac-
tually, the proof is the one of Chevalley and Frink [9]. A proof a la Bourbaki
[5] of the general TPT as stated above will appear in [10]. Whether it is
less “illuminating” than Alexander’s proof is perhaps a matter of taste. It is
undeniable though that Bourbaki’s proof works in non-topological situations
of convergence theory (see for instance [4]).

REMARK 2. In [6], a book aimed at beginning students, Buskes and van
Rooij have a section entitled “Dates from the History of General Topology”
in which the important events are listed. Here is one of the entries:

— 19387 Cech proves the Tychonoff Theorem.

I tried to trace a source of this “canard” in the literature. The earliest
claim of this type that I found, was in [20]. Walter Rudin apparently liked
to stir calm waters; some other historical remarks in Appendix B of the
book prompted further, rather sceptical, comments in the Russian transla-
tion of [20] (Moscow 1975). In the case at hand, Rudin briefly summarizes
the contents of [21] and [8] concluding that “it appears that Cech proved the
Tychonoff theorem, whereas Tychonoff found the Cech compactification—
a good illustration of the historical reliability of mathematical nomencla-
ture”.
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The claims were later examined again by Cameron in [7|. Although the

conclusion about the compactification is, to some extent, acknowledged in [8]
by Cech himself, both Cameron and later Simon in [15] find the Cech-Stone
or Stone—Cech denominations to be correct. On the other hand, similarly to
Rudin, Cameron concludes that the full version of the Tikhonov theorem is
due to Cech. Yet, while it is true that in [21] only products of unit intervals
are considered and in [8] one finds the TPT for topological spaces, it is also
true that Tikhonov states the general theorem in [22]. Besides, this last in-
formation can also be found in [14]. To conclude, the Tikhonov theorem is
due—no sensation here—to Tikhonov.
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