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Alexander Subbase Theorem for FiltersbyIwo LABUDAPresented by Czesªaw BESSAGA
Summary. The theorem in the title is proven. Appli
ations to produ
t theorems aregiven.We adopt the terminology of [17℄, and so a topologi
al spa
e X = (X, O)is 
ompa
t whenever one (and therefore all) of the following equivalent 
on-ditions is satis�ed.

• Every open 
over of X 
ontains a �nite sub
over;
• Every �lter on X has a 
luster point;
• Every ultra�lter on X is 
onvergent.We note that, in 
ontrast to [5℄ or [14℄, Hausdor�ness is not presupposed.The following [17, Ch. 5, Theorem 6℄ is the Alexander Subbase Theorem:AST. Let S be a subbase of O. If any 
over of X by elements of S
ontains a �nite sub
over, then X is 
ompa
t.We are interested in a more general form of AST in whi
h the spa
e X isrepla
ed by a �lter base or, equivalently, a �lter. We need to introdu
e someterminology. Let P,H be families of subsets of X. We write P # H and saythat P meshes with H if P ∩ H 6= ∅ for ea
h P ∈ P and ea
h H ∈ H. Wesay that H is a 
over (resp. under
over) of a set A ⊂ X if A ⊂

⋃

H (resp.
A ⊂

⋃

H =
⋃

{H : H ∈ H}).A �lter in O is a nonempty subfamily G ⊂ O whi
h does not 
ontain theempty set, is stable under �nite interse
tions and su
h that if G ∈ G and
G ⊂ H ∈ O, then H ∈ G. A �lter whi
h is a maximal element with respe
t2000 Mathemati
s Subje
t Classi�
ation: Primary 54D30.Key words and phrases: Alexander subbase theorem, Tikhonov produ
t theorem, �lter,ultra�lter, 
ompa
t, mid
ompa
t, absolutely 
losed, USCO-map.[147℄
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to in
lusion in the family of �lters in O is 
alled an ultra�lter in O. Note thatif O = 2X (i.e., the topology is dis
rete), we may drop �in O�, re
overing theusual notion of an (ultra) �lter in X.A variant of 
ompa
tness, 
alled absolute 
losedness [2℄, [5℄ or H-
losed-ness [3℄, [14℄, was de�ned in Hausdor� spa
es. We do not presuppose Haus-dor�ness and be
ause of our stress on the analogy with the 
ompa
t 
ase, itis 
onvenient to swit
h to a more �exible term of mid
ompa
tness. The termwas a
tually introdu
ed as �mid
ompa
toidness� in a survey of �
ompa
toid�lters� [18℄. However, in re
ent papers there is a tenden
y to return to the
lassi
al terminology in whi
h the term �
ompa
t �lter� (instead of 
om-pa
toid �lter) is used. The use of �mid
ompa
tness� is espe
ially 
onvenientwhen dealing with many sorts of mid
ompa
t-like families of sets (see [11℄).We reserve B to denote a �lter base in X.Cover-Filter Duality. The following 
onditions are equivalent.(1) (resp. (2)) For ea
h open 
over P of A, there exist B ∈ B and a�nite subfamily P0 ⊂ P 
overing (resp. under
overing) B.

(1∗) (resp. (2∗)) For ea
h �lter (resp. �lter in O) F su
h that F # B,

F has a 
luster point in A.
(1′) (resp. (2′)) For ea
h ultra�lter (resp. ultra�lter in O) U su
h that

U # B, U 
onverges to a point in A.Proof. Only (2′)⇒(2∗) is not standard. Suppose F is a �lter in O meshingwith B. Denote by F ∨ B the �lter generated by the base {F ∩ B : F ∈ F ,

B ∈ B}. Let U be an ultra�lter �ner than F ∨ B. De�ne
O(U) = {O ∈ O : ∃U ∈ U su
h that U ⊂ O}.Then O(U) is an ultra�lter in O whi
h is �ner than F and meshes with B.By (2′), O(U) 
onverges to a point x ∈ A. Clearly, x is a 
luster point of F .This shows (2∗).We say that B is 
ompa
t (resp. mid
ompa
t) at A if any (and thereforeall) of the respe
tive 
onditions above is satis�ed. We also 
onsider (mid)
ompa
tness at a family of subsets of X. If A is su
h a family, then B is saidto be (mid) 
ompa
t at A if it is so at A, for ea
h A ∈ A. If A = B, then Bis said to be self
ompa
t (resp. selfmid
ompa
t).Let S be a subbase of O and let S be the 
lass of all 
overs of A 
onsistingof sets from S. We say that B is S-
ompa
t (resp. mid
ompa
t) at A if forevery Q ∈ S there exist B ∈ B and a �nite subfamily {Q1, . . . , Qn} ⊂ Q
overing (resp. under
overing) B.AST�General Form. Let B be S-
ompa
t (resp. mid
ompa
t) at A.Then B is 
ompa
t (resp. mid
ompa
t) at A.
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Proof. Denying (1′) (resp. (2′)), let U be an ultra�lter (resp. in O), mesh-ing with B and without a limit point in A. We 
laim that:For ea
h x ∈ A, there exists G(x) ∋ x, G(x) in S, su
h that G(x) doesnot mesh with U .Otherwise, there exists x su
h that the sets G(x) ∈ S 
ontaining x meshwith U . As U is an ultra�lter (resp. in O) and G(x) are open, the sets G(x)would belong to U . As �nite interse
tions of su
h sets form a base of theneighborhood �lter of x, the point x would be a limit point of U .Applying the assumption of the theorem to the 
over {G(x) : x ∈ A}, we�nd x1, . . . , xk and B ∈ B su
h that B ⊂

⋃

k

i=1
G(xi) (resp. B ⊂

⋃

k

i=1
G(xi)).On the other hand, as G(xi)'s do not mesh with U , it follows that neitherdoes G =

⋃

n

i=1
G(xi). This gives a 
ontradi
tion in the 
ompa
t 
ase, be
ause

B ⊂ G and B#U . In the �mid 
ase�, U ∈ U being open, U ∩G = ∅ for some
U ∈ U . This 
ontradi
ts the fa
t that G ⊃ B ∈ B and U # B.Corollary 1. If B is S-self
ompa
t (resp. S-selfmid
ompa
t), then itis self
ompa
t (resp. selfmid
ompa
t).The 
orollary solves a question left open in [18℄ (see the 
omment afterTh. 5.3 there). A
tually, the statement in parentheses seems to be new evenin the spe
ial 
ase of an absolutely 
losed spa
e X. We now dedu
e a generalTikhonov Produ
t Theorem (TPT):TPT�General Form. Let Xι be a �lter on Xι, whi
h is 
ompa
t (resp.mid
ompa
t) at Aι. The produ
t �lter X =

∏

ι∈I
Xι on X =

∏

ι∈I
Xι is
ompa
t (resp. mid
ompa
t) at A =

∏

ι∈I
Aι.Proof. Let S be a subbase of X de�ned by the sets pr−1

ι (Eι), ι ∈ I, where
Eι is an open set in Xι. Suppose that G is a family of sets from S so that thereis no D ∈ X and no �nite subfamily of G 
overing (resp. under
overing) D.Let Eι be the family of all open sets in Xι su
h that pr−1

ι (Eι) ⊂ G. As
prι(X) = Xι, there is no Bι ∈ Xι and no �nite subfamily of Eι whi
h 
overs(resp. under
overs) Bι. By 
ompa
tness (resp. mid
ompa
tness) of Xι at Aι,there is aι ∈ Aι not 
overed by Eι. Then a = (aι) ∈ A is not 
overed by G.Hen
e X is S-
ompa
t at A. Now apply the general form of AST.The �
ompa
t 
ase� of the theorem goes ba
k to Pettis [19℄ (who thoughtin terms of nets). The �mid
ompa
t 
ase� has been announ
ed in [12℄ but noproof has ever been published. In the spe
ial 
ase of the produ
t of spa
esthis is a theorem of Chevalley and Frink [9℄.Let us 
onsider a still more general 
ompa
tness theorem [13℄. Re
all thata USCO-map is an upper semi
ontinuous fun
tion taking nonempty 
ompa
tvalues.
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Corollary 2. For ea
h ι ∈ I, let Γι : Xι ⇉ Yι be a USCO-map. Thenthe produ
t map

Γ :
∏

ι∈I

Xι ⇉ Y =
∏

ι∈I

Yιde�ned by Γ ((xι)ι∈I) =
∏

ι∈I
Γι(xι) is also a USCO-map.The following proof shows that the �lter generalizations may be useful.Indeed, let Nι = N(xι) be the neighborhood �lter of xι. Then the image�lter Γι(Nι) is 
ompa
t at Γι(xι). Hen
e the produ
t �lter ∏

ι∈I
Γι(Nι) is
ompa
t at ∏

ι∈I
Γ (xι). This also means that

(

∏

ι∈I

Γι

)(

∏

ι∈I

Nι

)

= Γ (N(x))is 
ompa
t at Γ (x), where x = (xι)ι∈I , or, whi
h is the same, that Γ is uppersemi
ontinuous at x.Remark 1. The Alexander Subbase Theorem is [1, Theorem 1℄. As its�rst 
orollary [1, Theorem 2℄, Alexander gives the Tikhonov Produ
t The-orem de
laring its proof evident. Kelley gives a proof in [17℄. NonethelessKelley, dis
ussing the 
onne
tions with the axiom of 
hoi
e in [16℄, speaksabout �Alexander's proof� and 
alls it �the most illuminating� of all theproofs (of TPT). The present paper adapts the �Alexander approa
h� to themore general situation studied here.Kelley also gives in [17℄ a se
ond proof 
alling it �Bourbaki's proof�. A
-tually, the proof is the one of Chevalley and Frink [9℄. A proof à la Bourbaki[5℄ of the general TPT as stated above will appear in [10℄. Whether it isless �illuminating� than Alexander's proof is perhaps a matter of taste. It isundeniable though that Bourbaki's proof works in non-topologi
al situationsof 
onvergen
e theory (see for instan
e [4℄).Remark 2. In [6℄, a book aimed at beginning students, Buskes and vanRooij have a se
tion entitled �Dates from the History of General Topology�in whi
h the important events are listed. Here is one of the entries:� 1937 �e
h proves the Ty
hono� Theorem.I tried to tra
e a sour
e of this �
anard� in the literature. The earliest
laim of this type that I found, was in [20℄. Walter Rudin apparently likedto stir 
alm waters; some other histori
al remarks in Appendix B of thebook prompted further, rather s
epti
al, 
omments in the Russian transla-tion of [20℄ (Mos
ow 1975). In the 
ase at hand, Rudin brie�y summarizesthe 
ontents of [21℄ and [8℄ 
on
luding that �it appears that �e
h proved theTy
hono� theorem, whereas Ty
hono� found the �e
h 
ompa
ti�
ation�a good illustration of the histori
al reliability of mathemati
al nomen
la-ture�.
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The 
laims were later examined again by Cameron in [7℄. Although the
on
lusion about the 
ompa
ti�
ation is, to some extent, a
knowledged in [8℄by �e
h himself, both Cameron and later Simon in [15℄ �nd the �e
h�Stoneor Stone��e
h denominations to be 
orre
t. On the other hand, similarly toRudin, Cameron 
on
ludes that the full version of the Tikhonov theorem isdue to �e
h. Yet, while it is true that in [21℄ only produ
ts of unit intervalsare 
onsidered and in [8℄ one �nds the TPT for topologi
al spa
es, it is alsotrue that Tikhonov states the general theorem in [22℄. Besides, this last in-formation 
an also be found in [14℄. To 
on
lude, the Tikhonov theorem isdue�no sensation here�to Tikhonov.
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