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Summary. We study the Dirichlet problem for degenerate elliptic equations, and show
that the probabilistic solution is a unique viscosity solution.

1. Introduction. We deal with the Dirichlet problem for a linear de-
generate elliptic equation in a bounded domain G of RV with boundary 0G:
{ Hy(x,u(x), Du(x), D*u(z)) == au—Lu—g=0 inG,

u=nh on 0G,

for a > 0. Here we are given

(1)

(2) g : bounded continuous on G, h € C(9G),
(3) b:RY - RY, 6 : RY — RV*M | Lipschitz on G,

and £ denotes the second-order differential operator defined by

Lu = 2 tr(o(@)o T (2) D) + (b(x), Du).

2
Let {X;} be a solution to the stochastic differential equation
(4) dX; = b(X,)dt + 0(X)dB,, Xo=x, t>0,

on a complete probability space ({2, F, P,{F;}) carrying an M-dimensional
standard Brownian motion {B;}, where F; denotes the o-algebra generated
by Bs, s < t.
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The purpose of this paper is to show that
T
(5) u(z) = E [ Jeotg(X0) dt + e Th(X,)
0

is a unique viscosity solution of the degenerate elliptic equation (1), where
7 is the time of first exit from G defined by 7 = inf{t > 0: X; ¢ G}. This
kind of probabilistic solution has been studied by many authors [1], [5], [7],
[9], [12] when L is uniformly elliptic and a regularity condition on 0G is
satisfied. In the present paper, we assume the following mild condition on
the boundary: there exist a non-negative function ¢ € C(G) N C?(G) and

A > 0 such that
(6) {—aC+£C+)\§0 in G,
(=0 on 0G.

By (6) and the Markov property of the stopped process Z; = Xia, at 7, we
show that

(7)  v(x)=E [ | e—<a+1/f>t{% v+ g}(Xt) dt + e~ @ F/ATh(X)
0

admits a unique solution v, independent of € > 0, which coincides with wu.
Furthermore, by passage to the limit as a — 0, we give a viscosity solution
w of

(8) {Ho(:c,w(x),Dw(m), D*w(z)) = —Lw—g=0 inG,

w=~h on 0G.

2. Main results. Following [3|, we define the notion of viscosity solution
of (1).

DEFINITION 2.1. k € C(G) is called a viscosity solution of (1) if
9) k(z) =h(x) for all z € 0G,

and for any ¢ € C?(G) and any local maximum (resp., minimum) point
z € G of k — ¢, we have

Ho(2,k(2), Dp(2), D?p(2)) <0 (resp., Ha(z k(2), Dp(2), D*p()) > 0).

Concerning (9), we mention the works [4], [11] for the existence of vis-
cosity solutions of semilinear elliptic PDE’s in terms of backward stochastic
differential equations under the generalized boundary conditions.

Now the main results of this paper are the following.

THEOREM 2.2. Assume (2), (3), (6). Then there exists a unique solution
v of (7), for sufficiently small € > 0, in the Banach space C of all bounded
uniformly continuous functions f on RN with norm || f|| = sup, | f(z)].
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THEOREM 2.3. Assume (2), (3), (6). Then v is a unique viscosity solution
of (1), independent of € > 0, and

(10) v =u.

For the uniqueness of (8), we assume that there exists a constant v > 0
such that

1
(11) 5 vitr(o(x)o ' (z)) + (b(z),e1) >0 for all z € G,
where e; = (1,0,...,0)" € RN and I; = (e1,0eq,...,0e;) € RN @ RV,

THEOREM 2.4. Under the assumptions of Theorem 2.3, suppose that (11)
holds and

(12) Elr]<oo or g=0.
Then
w(z) = B[ [ g(x0) dt + h(X,)]
0

is a unique viscosity solution of (8).

3. Proof of Theorem 2.2
LEMMA 3.1. Let G be the potential operator of {X:}, i.e.,

o0

G f(z) = E[ ferxe) dt], v > 0.
0

Then, under (3), the class D :={yG,f : f € C, v > 0} is dense in C.
Proof. Let {X[} be the solution of (4) with X = z/. Since
|b(z) — b(z")| + ||o(z) — o(2')|| < L|z — 2’|  for some L > 0,

we have
EHXt N X£|2] < |ZE . 1‘/’26(2L+L2)t.

Let f € C. It is clear that

G f(2) = [(@)] < B[ § 1e "1 F(X0) = f()] dt]
0

oo
<E[ [ e If(Xi) - f@)dt] =0 asy— oo,
0
Note that for any ¢ > 0 there exists C, > 0 such that

(13) 1f(@) = fW)| < Colz —yl+ 0o, zyeR".
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Hence, taking sufficiently large 79 > 0, we have

[e.o]

WG f(z) = 1Go f(2)] < | e7'Cyla — a/[eEHE /DT dt + o
0
2 —1
S%(l—LJFTL/Q) 2] + o
0

for all v > ~y. Also, f can be extended over the compactification R_N, em-
bedded in [0,1]>°, of RY. Therefore
Gy f(x) — f(z) asy— o0,z € RN,

By the Riesz representation theorem, for every A in the dual space C*, there
exists a measure p on RN such that A(f) = {fdu for all f € C. So, if

A(f) =0 for all f € D, then A(f) = lim,—.c A(vG+f) = 0. By the Hahn—

Banach theorem, the closure D coincides with C.

Proof of Theorem 2.2. For any f € C, we define the operator 7 = 7, by

T

Tf(z)=E [ée_%t{é f+ g}(Xt) dt + e “Th(X,)|,

where o = o+ 1/e. Clearly, ||7 f|| < oo.
We shall show that

(14) T f(z) is uniformly continuous on RY if h € D.

Let h = vG.n € D for some 1 € C. Then, by the resolvent equation for G,

h=Ga.n, 1n:=79{n—(v—a)Gyn}
By the Markov property,

T

Tf(x) = E[(S)e_o‘gt{é [+ g}(Xt) dt + oge—%tﬁ(xt) dt} .

We choose ¢ < 1/(L + L?/2). Then, taking into account (13), we see that

/

B[ | e 50 - (xplat] < B[ [ et 5(x) - £(x) d]
0 0
< Colz — /| L 0
~1/e—(L+L?%/2) o
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where 7/ is the time of first exit for {X/}. Also, by (6) and Ito’s formula,

E[ § e’o‘ft)\dt} < Ele= A (X por) — e~%T¢(X)]

= E[{e 7 ((Xr) — € *T(X ) Hrrary]
< E[{e ™ ((Xp) — €T (X0 g ary]
< Ble|¢(X) = (X)L o).
Since for any ¢ > 0 there exists C, > 0 such that
C(z) = C(2)] < Cplz — 2’| + 0, z,2"€G,

TAT

we have

.
E[ [ oot dt] < C,E[e=" | X, — XL|] + 0

TAT!

< lim C,Ele 2" DX p — XL | V% + 0

T—o00

< Cyplz — 2| + 0.
Combining these facts, we get
Tf(x) = Tf(2)] < Cole —a'|+o, w2’ €RY,
which implies (14).

Now, we have

[e.9]

T fi(x) =T fa(w)| < éE[ S et £1(X) — fo(X0)] dt
0
- eal—i— 1 If1 = fall,  fr,feeC.

Thus the map 7 : C — C is a contraction, and 7 has a fixed point v € C for
sufficiently small € > 0.

In the general case, by Lemma 3.1, there exists h, € D such that h, —
h € C asy — oo. Let v() be the solution of (7) for h,. Then

1
v (z) = E[ | e-aet{g o 4+ g}(Xt) dt 4+ e=*h.(X,)|,
0
and hence
ea+ 1

EQ

[0 — o] < Ihy —hyll = 0 as 7,7 — oo.

Therefore v(?) converges to v € C, which satisfies (7). The uniqueness is
immediate.
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4. Proof of Theorem 2.3

LEMMA 4.1. Under the assumptions of Theorem 2.3, the solution v € C
of (7) satisfies
ONT 1
(15) v@g::E[ ge%ﬁ{_u+g}pxgds+e%w”ﬂmx@mq
€
0

for any bounded {F;}-stopping time 6.

Proof. We notice that (15) corresponds to the dynamic programming
principle [6]. We shall deduce (15) stepwise from the Markov property of the
stopped process Z; = Xinr.

STEP 1. Let X} denote the solution to (4) with Xy = z. It is well known
that ¢ (r) := E[supy<s<, | X# — X/|?] is continuous. Also, by Gronwall’s
inequality, we observe that

Y(r) < Crlz —y’,  z,yeRY,

for some constant C, > 0 depending on r > 0. Hence, if z,, — x in RY, then
X/™ — X! in probability. Let f be a bounded continuous function on RN,
Then

E[f(X{)] = E[f(XP)];

which implies that the map x — E[f(X])] is continuous. Let A be an open
subset of RYV. We set

kd(z, A)

Ie) = e, 4

It is clear that fx(x) /" 1a(z) as k — oo, and so the map x — P(X} € A)
is Borel measurable. By the monotone class theorem, this map is Borel
measurable for all Borel sets A. Therefore we conclude that the map x +—
P(X},, € A) is Borel measurable.

STEP 2. Let {x¢} be the solution of
dxy = b(xy)dt + o(xy)dBy, x0 =,

for a Brownian motion {;} on the canonical probability space (W, B, P, {B;})
[9], and consider the stopped process z; = z407 , where T is the time of first
exit from G. Then

(16) dzy = b(zt)l{K;}dt + U(Zt)l{t<7~.}dﬁt, 20 = X.

We note that the pathwise uniqueness holds for (16), and 7 and 7 have the
same law. In view of the Yamada-Watanabe theorem [9], we can show that
the uniqueness in law holds for (16). Thus the two processes {Z;, B;} and
{zt, B¢} have the same law.
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STEP 3. Fix T > 0 and let Q(w, -) be the regular conditional probability
for E[- | Br](w). We define the system (W, B, P, {B:};z, 3) by
Bt = Bi+1 — Br(wo), 2t = 241, gt = Biir, ]5() = Q(wo, "),
for fixed wy € 2y with P(£2y) = 1. Let A € gt, € e RN and u > t. It is easy
to see that {8,417 — Bi+1} is a Brownian motion under P, and thus
EP[ei€Bu=B1 ] = E[ei(€BuP01 | By
= B[E[e!&Burr=Bur) | B, 11 4 | By
= e EP=0/2p(4),
where EF denotes the expectation with respect to P. Hence (W, B, ]5, gt; B)

is a Brownian motion. Further, taking the difference and using the change
of variables, we have

t+T t+T
Zi=x+ S b(zu)l{u<7~.} du + S J(Zu)l{u<7~.} d,@u
0 0
t+T t+T
=zr+ | b(z)ljucrydu+ | o(z0)1fucry dBu
T T
t t »
= + 0@ pcqydr + {0 (Z) 15y dB,,  Pas.
0 0
Therefore
t t _ »
Zt = ZT(WO) + S b(gr)l{r<?} dr + S U(gr)l{r<7~'} dpr, P-as.,
0 0
and
t t
2z = zp(wo) + S b(zr)l{r<;} dr + S U(ZT)l{T<;} dgr, PzT(wo)'a-S-a
0 0

where P, denotes the probability measure induced by {z;} with zy = z. Since
{21, P} and {2, P, (4,)} have the same law,

EP[f(2)] = Bepon)f (22)]
for any bounded Borel function f. On the other hand,

Ey[f (zt47) | Brl(wo) = E9“0) [f(zi7)] = EX[f(Z)].
This implies that {z;, P,} has the Markov property:
Eu[f(ze47) | Br] = Eop[f(22)],  as.
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STEP 4. By Step 2 and Theorem 2.2, we have

o0

v(z) =Tv(z) = Ex{ S et ¢(z) dt},

0
where

§(x) =

By the Markov property,

{ Lu(z)+g(z) ifzeq,
azh(z) if v € 0G.

o0

e lE, [ S T (25) ds ‘ Bt] = z[ e %% (zs41) ds ‘ Bt}

t
|

=v(z), as.

e % (z5) ds}

g
|

This implies that {e™%'v(z) + S e~ %%¢(zs) ds} is a martingale and, by
Step 2, so is {e~ v (Z;) + Sg e~ 5¢(Zs) ds}. Thus, by the optional sampling
theorem, we deduce
ONT
v(@) = B | e¢(Z,) ds + e Du(Zy)]
0
which implies (15).

Proof of Theorem 2.3. By (7), it is clear that v = h on 0G. By Lemma 4.1
and a slight modification of the theory of viscosity solutions [6, Thm. 3.1,
p. 220, Cor. 3.1, p. 223], we observe that v is a viscosity solution of

1
(17) aEU—Ev—<gv+g):0 in G.

This shows that v is a viscosity solution of (1).
For uniqueness, let v;, i = 1,2, be two viscosity solutions of (1). We apply
Ishii’s lemma to

W(r,y) = v1(a) — valy) — 5 v

at its local maximum point (zy, yx) € G x G for k > 0 to obtain symmetric
matrices X,Y such that

(k(zr, — yi), X) € T o (),
(k(z — yp), Y) € T va(yn),

X 0 I —I . .
< 3k , I = identity,
0 —-Y I I
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where
j2’+vi(m) ={(p, X) : Jzp, — x, I(pn, Xn) € J>Tvi(20),
(Ui(xn),pn, Xn) - (Uz‘(@,p, X)}, 1=1,2,

and J>T and J?~ are the second-order superjets and subjets. According to
[6, Lemma 6.2, p. 240], we have

ltr(o(2)o ' (2)X) — tr(a(y)o " (y)Y)| < 3k[lo(x) - o(y)]*.

Thus, as in [3, Thm. 3.3] or [10, Thm. 3.7], we see that v = vs.
To prove (10), we note that (17) is independent of € > 0. Let v = 7Zsv for
any d > 0. Then v is a viscosity solution of

{aﬁ— Lo — (3v+g) =0 inG,
v=nh on 0G.
By uniqueness, we have v = v, so that v satisfies (7) for all € > 0, Clearly,
T
E “ e~ @1/t g(X,) dt + ef(o‘H/E)Th(XT)} —u(r) ase— oo,
0

where u is as in (5). Thus, we conclude

v(z) = lim E [S e_(a+1/€)t{ év + g}(Xt) dt + e~ OFVITR(X )| = u(z).

e—00
0

5. Proof of Theorem 2.4. Let v, denote the viscosity solution of (1)
for a > 0. Since

T

[0a(2) = var(2)] < B[ §le™ = e~ ] lgl) + Ble™" — 7},
0

we see by (12) that {v,} is a Cauchy sequence, and v, converges to T in
C(G) as o — 0. By the stability result for viscosity solutions [6, Lemma 6.2,
p. 73|, ¥ is a viscosity solution of (8). Passing to the limit in (5) and (10),
we deduce v = w.

Now, in the same way as for [10, Thm. 3.9], we shall show the uniqueness
for (8) under (11). Let w;, i = 1,2, be two viscosity solutions of (8). Suppose
that maxz(w; —wz) =: 9 > 0. We choose ¢ > 0 such that
cx = (z1,...,2ny) € G} <92

omax{e”"!

Define "
P(w,y) = wi(z) = wa(y) = 5 o = y[* + o™

for k > 0. Then there exists a maximum point (z3,yx) € G x G of @ over
G x G. By compactness, extracting a subsequence, we may assume that
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(Tr, yp) — (&

,7) € G x G as k — oo. Since $(xy,y;) > max, (wi(z) —
wa(x) + 0e”™t) >

9, we have

2
|2k — yil* < % (max wy — minwsy +19/2),
e G

which implies ¥ = §. Moreover, &(xg, yx) > D(zy, x). Hence

k
5 ok = yrl? < wa(zg) —walye) — 0  as k — oo.
Thus
B(T,7) = w1 (F) — wo(T) + 0e”™ > 0.

This implies that ¥ € G and (xg, yx) € G x G for sufficiently large k.
Ishii’s lemma applied to &(,y) = @ (z) —w2(y) — &z —y|?, where @(z) =
w(x) + 0e’™1, yields symmetric matrices X,Y such that

(k(zk — i), X) € T2 @ (ay),
(k(zr — yr),Y) € J> wa(yr),

X 0 I -1
<3k .
0 -Y -1 I
Note that Dz = ey, D?*z1 = I; and

(B, X) := (k(zx — yi) — r(@e)er, X —vr(an) 1) € T Twi (zp),

where r(z) = gve’®*. By the definition of viscosity solutions, we have

~

HO(ZE‘k,QUl(xk),]/?\,X) < 07
Ho(yr, w2(yr), k(xk — yx),Y) > 0.
Thus
0< HD(yk7w2(yk)v k(xk - yk)v Y) - HO(CCk,wl(fk),]/)\,)?)

_ _% tr(o(yr)o " (Ue)Y) = (bun), k(zx — ye)) = 9(us)
+ % tr(o(zx)o | (z)X) + (b(zx), D) + g(ar)

< 2 llotex) — ol - 3 vrta) ulolao” (@)
+ k[b(zr) = 0(yr)| ok — yrl — r(zr) (b(zr), €1) + g(xr) — 9(yr)-

Letting k — oo, we obtain 0 < —r(Z){3v tr(c(Z)o " (2)11)+(b(Z), e1)}, which
contradicts (11). The proof is complete.

6. Examples. We give some examples of ¢, A of (6) to illustrate our
theory.
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EXAMPLE 1. Let ¢ be a non-negative function in C?(RY) such that
Lo > p¢ for some constant g > 0. Let G be a bounded domain of the form

G={z:¢(x) <1}, 0G={x:¢(z)=1}
Define ( =1 — ¢. Then

—aC+LCHA< —a+ (a—p)o+ A
< —a+max(a—p,00+A<0 indG

for a suitable choice of A > 0.
EXAMPLE 2. We consider
G={(x,y): 2" +y* <1} CR?

and
z 0
o(z,y) = ( ) b(z,y) = (z,y)-
0y
Take ¢(x,y) = 22 + y%. Then we have

Lo =39,

which satisfies the conditions of Example 1.
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