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Summary. We present two new models of the dynami
s of phytoplankton aggregates.The �rst one is an individual-based model. Passing to in�nity with the number of indi-viduals, we obtain an Eulerian model. This model des
ribes the evolution of the densityof the spatial-mass distribution of aggregates. We show the existen
e and uniqueness ofsolutions of the evolution equation.1. Introdu
tion. In [4℄ the authors built a model of the phytoplanktondynami
s, where the individual is an aggregate�a group of phytoplankton
ells living together. Aggregates are stru
tured by their size, whi
h 
hangesdue to three pro
esses: growth 
aused by 
ell division, fragmentation and
oagulation. The size distribution of aggregates satis�es the equation(1) ∂u

∂t
=

∂

∂m
[g(m)u] + Φu + Cu,where m is the size of an aggregate, g(m) is the growth rate, and Φ and Care the operators of fragmentation and 
oagulation, respe
tively. The authorsproved the existen
e and uniqueness theorem for equation (1) and 
he
kedthe long-time behaviour of the distribution of size for some spe
ial 
ases.In the present paper we 
onstru
t an individual-based model whi
h isadditionally spatially stru
tured and 
ontains a pro
ess of random movementof aggregates. Our aim is to show that the limit passage in the model, whenthe number of individuals goes to in�nity whereas the mass of a single 
elltends to zero, leads to a transport equation of type (1) with a di�usion term.In many papers su
h a limit is a sto
hasti
 pro
ess with values in the spa
e ofmeasures, 
alled a superpro
ess (see [9, 13, 16, 2, 15℄). The measures whi
h2000 Mathemati
s Subje
t Classi�
ation: Primary 60K35; Se
ondary 47J35, 92D40.Key words and phrases: phytoplankton dynami
s, measure-valued pro
esses, frag-mentation-
oagulation equation. [175℄
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are values of this superpro
ess des
ribe the distribution of parti
les in spa
e.In our model we also obtain a limit but it is deterministi
. In fa
t, we derivethe evolution of the distribution density a

ording to the equation(2) ∂u

∂t
= D(m)∆xu +

∂

∂m
[λ(m)u] + Φ∗u + Cu,where Φ∗ and C are operators responsible for fragmentation and 
oagulation(for their form, see (29) and (30) in Se
tion 6). Finally, we prove the existen
eand uniqueness of solutions of our equation.The approa
h resembling ours was applied to a model of 
oagulationwith di�usion by Norris [24℄ and in a di�erent setting of intera
ting parti
lesystems by Kolokoltsov [20℄. Measure-valued limits of intera
ting parti
lesystems leading to so-
alled generalized Smolu
howski equations were also
onsidered in [6, 14℄. Similar equations, but used in a di�erent 
ontext, ap-pear e.g. in [1, 5, 7, 25℄, while in [11℄ one 
an �nd a survey of 
oagulationequations. Other results 
on
erning this subje
t 
an be found in [3, 22℄ andthe papers quoted therein. For the biologi
al models that use similar meth-ods we also refer to [10, 21, 23, 30℄. We exploit methods that were developedby Dawson (
f. [9℄) and other probabilists working on superpro
esses (seealso [16, 17, 13℄).The s
heme of this paper is as follows. In the next se
tion we introdu
eour model, whi
h is mathemati
ally formulated in Se
tion 3. Se
tion 4 
on-
erns the res
aling of the individual model and the limit passage; the proofof the 
onvergen
e theorem is given in Se
tion 5. In Se
tion 6 we derive theevolution equation that des
ribes the behaviour of the limit pro
ess, and weprove the existen
e and uniqueness theorem.2. Individual-based model of phytoplankton 
ells. We 
onstru
tan individual-based model of phytoplankton. In our model an individualis an aggregate that 
onsists of indistinguishable 
ells with equal massesjoined by some organi
 glue. Cells in the aggregate may die or divide intotwo daughter 
ells, whi
h 
auses the de
rease or growth of the aggregate. Anaggregate may shatter into two smaller aggregates or die (sink or be eaten).Thus the whole situation is des
ribed by the following pro
esses:

• A single 
ell in the aggregate may die in a unit of time with probability
λm(m) depending on the mass (number of 
ells) m of the aggregate ormay divide into two new 
ells with probability λb(m).

• A whole aggregate moves a

ording to the ε-random walk�i.e. it skipsby a ve
tor of length ε in one of 2d dire
tions (parallel to one of theaxes, d is the dimension of the spa
e) with probability (1/ε2)D(m)(where D is a 
oe�
ient depending on the mass).
• The aggregate may die in a unit of time with probability λd(m).
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• The aggregate of mass m may split in a unit of time with probabil-ity λf (m) into two parts with masses m and m − m with probability

p(1)(m, m) (where ∑m
m=1 p(1)(m, m) = 1). We assume that after frag-mentation both new aggregates appear at the same lo
ation as theirparent.

• Two aggregates may join up with probability k(1) depending on theirmasses and lo
ations, and on the state of the whole population. Morepre
isely, let the rate of 
oagulation of the ith aggregate be c(mi). Thenthe probability that it joins the jth aggregate is c(mj)/
∑N

k=1 c(mk)and it is modi�ed by a distan
e-dependent 
oe�
ient v(xi − xj), thus
k(1) takes the form(3) k(1)(mi, mj, xi − xj , ν) =

c(mi)c(mj)∑
k c(mk)

v(xi − xj),where the sum in the denominator extends over all living individuals.Our model of the 
oagulation pro
ess is essentially di�erent from standardphysi
al models (e.g. Smolu
howski [29℄) where the probability of 
oagula-tion is proportional to the square of the number of parti
les. We 
onsider themore biologi
ally justi�able 
ase, when the ability of 
oagulation of a singleaggregate is not unbounded, but approximately 
onstant. Ability of 
oagu-lation depends on the 
on
entration of some organi
 glue (TEP) [8, 26℄. Thismeans that the probability of joining is a fun
tion of produ
tion of TEP byan aggregate, whi
h depends on the mass of the aggregate.It should be noted that the probability of 
oagulation of two aggregates:1) is proportional to the ability of both aggregates to 
oagulate,2) depends on the distan
e of the aggregates,3) is symmetri
al, i.e. it does not depend on the order of the aggregates.It seems di�
ult to �nd another model of 
oagulation whi
h has all the abovefeatures and, at the same time, has good mathemati
al properties.3. Sto
hasti
 pro
ess des
ribing the model. The state of our modelis des
ribed by the ve
tor (k; x1, m1, . . . , xk, mk), where k is the number ofaggregates and xi, mi, for i = 1, . . . , k, denote, respe
tively, the lo
ation andmass of the ith aggregate. Sin
e k (and so the number of variables) 
hangesduring evolution, and the order of pairs xi, mi is not important, we need aspe
ial state spa
e. We use the set of measures
N =

{ k∑

i=1

δxi,mi
: k ∈ N, (xi, mi) ∈ R

d × N

}
,i.e. we denote the aggregate of size m at position x by the Dira
 delta
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measure δx,m at (x, m) ∈ R

d ×N. The set N is a subspa
e of the spa
e M ofall �nite Borel measures on R
d ×R

+ with the topology of weak 
onvergen
e.Constrained by the nature of N (whi
h is not even a Bana
h spa
e), we usethe formalism of D([0,∞),N ) martingale problems. By D([0,∞),N ) wedenote the spa
e of all 
àdlàg fun
tions on N , i.e. right 
ontinuous fun
tionswith left hand limits. Let us re
allDefinition 1. Let B(N ) be the spa
e of measurable and bounded fun
-tions on N and let L be a linear operator de�ned on a subspa
e of B(N )with values in B(N ). We say that a sto
hasti
 pro
ess X(t) solves the
D([0,∞),N ) martingale problem for L and the initial state ν0 if this pro
esshas D([0,∞),N )-traje
tories, Prob(X(0) = ν0) = 1 and for every f fromthe domain of L,

f(X(t)) − f(X(0)) −
t\
0

Lf(X(s)) dsis a martingale with respe
t to
F̂t = σ

(
X(s),

s\
0

h(X(r)) dr : s ≤ t, h ∈ B(N )
)
,where B(N ) denotes the set of bounded Borel fun
tions on N .Throughout this paper we omit the D([0,∞), E) and by the martingaleproblem we mean the D([0,∞), E) martingale problem. We will also speakof the (L, δν0

)-martingale problem, where δν0
is the Dira
 delta at the initialpoint. We will refer to L as the generator of the sto
hasti
 pro
ess. Foran extensive guidebook to sto
hasti
 pro
esses and martingale problems werefer to [17℄.We formulate an individual version of the model in the setting of purejump pro
esses. We de�ne a generator L(1) as a jump operator

(4) L(1)f(ν)

=
N∑

i=1

[
D(mi)

ε2

d∑

k=1

[f(ν − δxi,mi
+ δxi+εk,m) + f(ν − δxi,mi

+ δxi−εk,m)]

+ miλb(mi)f(ν − δxi,mi
+ δxi,mi+1) + miλm(mi)f(ν − δxi,mi

+ δxi,mi−1)

+ λd(mi)f(ν − δxi,mi
)

+ λf (mi)

mi∑

m=1

p(mi, m)f(ν − δxi,mi
+ δxi,m + δxi,mi−m)

]

+
N∑

i,j=1

c(mi)c(mj)v(xi − xj)∑
k c(mk)

f(ν − δxi,mi
− δxj ,mj

+ δ(xi+xj)/2,mi+mj
)

− λ(ν)f(ν),



Fragmentation-Coagulation Models of Phytoplankton 179
where

λ(ν) =

N∑

i=1

[
2d D(mi)

ε2
+ miλb(mi) + miλm(mi) + λd(mi) + λf (mi)

]

+

N∑

i,j=1

c(mi)c(mj)v(xi − xj)∑
k c(mk)and εi is a d-dimensional ve
tor with ε at the ith pla
e and zeros elsewhere. Inthis se
tion we assume that ε = 1, but in the next se
tion we use a modi�edform of the operator L(1) with ε = 1/N . We assume that the fun
tions

D(m), mλm(m), mλb(m), λf (m), λd(m) , c(m) and v(x − x) are boundedand 
ontinuous; moreover c(m) > 0 for all m ∈ [0,∞). Sin
e the probabilityof extin
tion of the pro
ess is nonzero, we must also assume that for ν = 0we have L(1)f(ν) = 0 (this means that after extin
tion the pro
ess remainsin the state ν(t) = 0).Proposition 1. For any initial state ν0 ∈ N there exists a unique so-lution {ν(1)(t)}t≥0 of the martingale problem for (L(1), δν0
).Proof. The operator L(1) given by (4) is a jump operator with unboundedjump rate (for the theory of jump pro
esses see [18℄ or [17℄). To obtain theexisten
e of the pro
ess generated by L(1) we 
onstru
t an approximatingsequen
e of sto
hasti
 pro
esses that are solutions of stopped martingaleproblems with operators with bounded jump rates. For any n ∈ N de�ne

N≤n = {ν ∈ N : 〈1, ν〉 ≤ n}. Noti
e that the jump rate satis�es(5) λ(ν) ≤ Cnon N≤n with some 
onstant C. That is why the solution of the stoppedmartingale problem for (L(1), δν0
,N≤n) 
oin
ides with the solution of thestopped martingale problem with the operator bounded by Cn. Moreover,the stopping time

τn = inf{t ≥ 0 : ν(t) 6∈ N≤n or ν(t−) 6∈ N≤n}is su
h that
τn ≥

n∑

k=1

∆k

Cn

n→∞
−−−→ ∞,where {∆n}n∈N is a sequen
e of i.i.d. random variables, exponentially dis-tributed with intensity one. We use Proposition 3.2 in Chapter 4 of [17℄ toend the proof.Remark 1. Although the des
ription of the pro
ess is now formulated inthe language of jump pro
esses, in the subsequent se
tions we will use a dif-ferent setting. That is why we will write the operator (4) in a di�erent form.Compare it with the approa
h used in papers on superpro
esses (
f. [16℄,
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[17℄). Let C2

b be the spa
e of all bounded fun
tions with bounded derivativesup to se
ond order and C2
b,pos = {g : R

d×R
+ → R : g ∈ C2

b and inf g > 0}.For a given g ∈ C2
b,pos we de�ne a fun
tion Fg ∈ Cb(M) (bounded and
ontinuous on M) by the formula Fg(ν) = exp [〈log g, ν〉] . The generatingoperator L(1) on the fun
tions Fg(ν) has the form(6) L(1)Fg(ν) = exp [〈log g, ν〉]

[〈
L(1)g + B(1)g + Φ(1)g

g
, ν

〉
+ C(g, ν)

]
,where

L(1)g(x, m) =
D(mi)

ε2

d∑

k=1

[g(x + εk, m) + g(x − εk, m) − 2g(x, m)]

is the operator responsible for the spatial movement;
B(1)g(x, m) = m[λm(m)g(x, m − 1) + λb(m)g(x, m + 1)

− (λm(m) + λb(m))g(x, m)]is the operator of birth and death inside aggregates;
Φ(1)g(x, m) = λf (m)

[ m∑

m=1

g(x, m − m)g(x, m)p(1)(m, m) − g(x, m)
]

+ λd(m)(1 − g(x, m))is responsible for the fragmentation and death of whole aggregates; and
C(g, ν) =

\\\\ c(m)c(m)TT
c(m) ν(dx dm)

v(x − x)

×

[
g((x + x)/2, m + m)

g(x, m)g(x, m)
− 1

]
ν(dx dm) ν(dxdm)is the 
oagulation term.4. The limit passage. Now, we 
onstru
t a sequen
e of res
aled pro-
esses {ν(N)(t)}t≥0, N ∈ N, based on {ν(1)(t)}t≥0 that will approximate some
ontinuous model. Assume that the number of parti
les at time 0 in
reasesto in�nity as N → ∞ and assume that the mass of ea
h 
ell is 1/N . The

Nth pro
ess ν(N) has values in the spa
e
NN =

{
1

N

k∑

i=1

δxi,ni/N : k ∈ N,

(
xi,

ni

N

)
∈ R

d ×
1

N
N

}
.

From now on we set m = n/N . The res
aling means that the pro
ess Nν(N)behaves like ν(1) with appropriate 
oe�
ients. Namely:
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• The birth or death of a 
ell means the 
hange of mass by a fa
tor of

1/N .
• We set the step of the random walk to be ε = 1/N .
• The result of fragmentation of an aggregate of size m = n/N may haveany mass in 1/N, 2/N, . . . , (n−1)/N ; so we assume that the 
oe�
ients

p(N) are su
h that ∑n
n=1 p(N)(n/N, n/N) = 1; moreover, we assumethat there exists a 
ontinuous fun
tion q : R

+ × R
+ → R

+ su
h thatfor all m, m ∈ R
+ with m ≤ m and all sequen
es (nN ), (nN ) of positiveintegers su
h that nN/N → m and nN/N → m as N → ∞ we have

Np(N)(nN/N, nN/N) → q(m, m) and this 
onvergen
e is uniform,
• the 
oagulation term remains un
hanged.Noti
e that the fun
tion q satis�es Tm0 q(m, m) dm = 1 for m > 0 and theprobabilisti
 kernel P (m, A) :=

T
A q(m, m) dm will des
ribe the distribu-tion of the size of the aggregates after fragmentation if the aggregate beforefragmentation has size m.So the operator governing this Nth approximation has the form

L(N)Fg(Nν) = exp [〈log g, Nν〉](7)
×

[〈
L(N)g + B(N)g + Φ(N)g

g
, Nν

〉
+ C(g, Nν)

]
,

with L(N) equal to L(1) (at m = n/N instead of n) and with
B(N)g

(
x,

n

N

)
= n

(
λm

(
n

N

)
g

(
x,

n − 1

N

)
+ λb

(
n

N

)
g

(
x,

n + 1

N

)

−

(
λm

(
n

N

)
+ λb

(
n

N

))
g

(
x,

n

N

))
,

Φ(N)g

(
x,

n

N

)

= λf

(
n

N

)[ n∑

n=1

g

(
x,

n − n

N

)
g

(
x,

n

N

)
p(N)

(
n

N
,

n

N

)
− g

(
x,

n

N

)]

+ λd

(
n

N

)(
1 − g

(
x,

n

N

))
.

The sequen
e of res
aled pro
esses 
onverges weakly to some measure-valued sto
hasti
 pro
ess (governed also by a martingale problem), but itturns out that the limit pro
ess des
ribes a deterministi
 behaviour.Theorem 1. Let ν(N)(0)
w
→ ν0. The sequen
e of pro
esses ν(N) 
on-verges weakly in distribution to the deterministi
 measure-valued pro
ess
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uniquely determined by the equation(8) 〈h, ν(t)〉 − 〈h, ν0〉 =

t\
0

[〈(L + B + Φ)h, ν(s)〉 + C(h, ν(s))] dsfor all h ∈ C2
b, with

Lh(x, m) = D(m)∆xh(x, m),(9)
Bh(x, m) = m(λb(m) − λm(m))

∂

∂m
h(x, m),(10)

Φh(x, m) = λf (m)
[
2

m\
0

h(x, m)q(m, m) dm − h(x, m)

](11)
− λd(m)h(x, m),

C(h, ν) =
\\\\c(m)c(m)v(x − x)TT

c(m) ν(dx dm)
(12)

× (h(x + x/2, m + m) − h(x, m) + h(x, m))

× ν(dx dm) ν(dxdm).The limit pro
ess ν has values in the spa
e M.5. Proof of Theorem 1. The s
heme of the proof is as follows. Firstlywe de�ne a new operator L (see (16)). Next we prove that if the pro
ess
{ν(t)}t≥0 solves the (L, ν0)-martingale problem then it is a deterministi
evolution of measure given by (8); moreover it is unique (i.e. there exists atmost one solution of the (L, ν0)-martingale problem). Then we 
he
k thatthe sequen
e ν(N) 
onverges to the solution of this problem.In the proof we will use the following auxiliary theorem of Kurtz andEthier:Proposition 2 ([17, Corollary 8.16, Chapter 4℄). Let (E, r) be a Polishspa
e, A ⊂ Cb(E) × Cb(E) be an operator (possibly multivalued), and P0 bea probability measure on E. Suppose that the martingale problem for (A, P0)has at most one solution. For N = 1, 2, . . . , suppose that YN is a progressiveMarkov pro
ess in a Polish spa
e EN 
orresponding to a measurable 
ontra
-tion semigroup with generator AN and ηN : EN → E is Borel measurable.Let XN = ηN ◦YN . Assume that : the distribution of XN (0) 
onverges weaklyto P0 as N → ∞, XN satis�es the 
ompa
t 
ontainment 
ondition, and the
losure of the linear span of D(A) 
ontains an algebra that separates points.If , moreover , for all (f, g) ∈ A and T > 0 there exist sequen
es of fun
tions
(fN , gN ) ∈ AN and sets ΓN ⊂ EN su
h that :(i) lim

N→∞
Prob({YN (t) ∈ ΓN , 0 ≤ t ≤ T}) = 1,(ii) sup

N
‖fN‖ < ∞,
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(iii) lim

N→∞
sup

y∈ΓN

|f ◦ ηN (y)− fN (y)| = lim
N→∞

sup
y∈ΓN

|g ◦ ηN (y)− gN (y)| = 0,then there exists a solution X of the (A, P0) martingale problem and XN
onverges weakly in distribution to X. Here ‖ · ‖ is the maximum norm in
Cb(E).Remark 2. By the 
ompa
t 
ontainment 
ondition we mean that forevery ε > 0 and T > 0 there is a 
ompa
t set Γε,T su
h that

inf
N

Prob{XN (t) ∈ Γε,T , 0 ≤ t ≤ T} ≥ 1 − ε.Moreover we need some lemmas:Lemma 1. If the pro
ess {ν(t)}t≥0 solves the (L(N), δν0
)-martingale prob-lem (where L(N) is given by (7)) then(13) Prob( sup

0≤t≤T
〈1, ν(t)〉 ≥ a) ≤

〈1, ν0〉

a
exp[T (‖λf − λd‖ + ‖cv‖)].The proof is based on that of Lemma 4.1 in [17, Chapter 9℄. Although itrequires some 
al
ulation, it is not very interesting, so we omit it here.Lemma 2. The operator L+B+Φ generates a strongly 
ontinuous semi-group on C0(R

d × R
+).Proof. The operator L + B generates a strongly 
ontinuous semigroupon C0(R

d × R
+) (
f. [28℄) and Φ is a bounded operator on Cb(R

d × R
+), sothe Phillips perturbation theorem [12℄ gives the result.Let us write C(h, ν) as 〈h, Ĉν〉, where

Ĉν(A) =
\\\\c(m)c(m)v(x − x)TT

c(m) ν(dx dm)

× [1A((x + x)/2, m + m) − 1A(x, m) − 1A(x, m)] ν(dx dm) ν(dxdm).One 
an prove that for every measure ν ∈ M we have Ĉν ∈ M.Lemma 3. Let h ∈ C(Rd × R
+) be su
h that ‖h‖ ≤ 1 and let ν, µ ∈ M.Then(14) |〈h, Ĉν − Ĉµ〉| ≤ ‖µ − ν‖TV.Here ‖ν‖TV denotes the total variation norm of the measure ν (
f. e.g.[17℄).Proof. Set α(ν) =

TT
c(m) ν(dx dm) and

ĥ = h

(
x + x

2
, m + m

)
− h(x, m) − h(x, m).
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Fix µ ∈ M \ {0} and let ε = ‖c‖−1α(µ). Then α(ν) ≤ 2α(µ) for ‖ν − µ‖TV
≤ ε. Moreover

|〈h, Ĉν − Ĉµ〉|

=

∣∣∣∣
(α(µ) − α(ν))

α(ν)α(µ)

\\\\
c(m)c(m)v(x − x)ĥ ν(dx dm) ν(dxdm)

+
1

α(µ)

\\\\
c(m)c(m)v(x − x)ĥ (ν + µ)(dx dm) (ν − µ)(dx dm)

∣∣∣∣

≤ 3‖v‖
|α(µ) − α(ν)|

α(ν)α(µ)
α(ν)α(ν)

+
3‖v‖ ‖c‖α(µ + ν)

α(µ)

\\
fh,µ,ν(x, m) (ν − µ)(dx dm),where

fh,µ,ν(x, m) =
\\c(m)c(m)v(x − x)

3‖v‖ ‖c‖α(µ + ν)
ĥ(ν + µ)(dx dm).Noti
e that fh,µ,ν is bounded by 1. Therefore Tfh,µ,ν d(µ − ν) ≤ ‖µ − ν‖TV.Thus, going on with the above 
al
ulations, for ‖ν − µ‖TV ≤ ε we have

|〈h, Ĉν − Ĉµ〉| ≤ 3‖v‖
2α(µ)

α(µ)
‖c‖ ‖ν − µ‖TV(15)

+3‖v‖ ‖c‖
3α(µ)

α(µ)
‖ν − µ‖TV

≤ 15‖v‖ ‖c‖ ‖ν − µ‖TV.Let us now take arbitrary measures µ, ν ∈ M\{0}. Let µt = (1−t)µ+tνand ε = ‖c‖−1 inf0≤t≤1 α(µt). Choose an n su
h that ‖ν − µ‖TV/n < ε. Frominequality (15) it follows that
|〈h, Ĉµi/n − Ĉµ(i−1)/n〉| ≤ 15‖v‖ ‖c‖ ‖µi/n − µ(i−1)/n‖TVfor i = 1, . . . , n. Therefore

|〈h, Ĉν − Ĉµ〉| ≤
n∑

i=1

|〈h, Ĉµi/n − Ĉµ(i−1)/n〉|

≤
n∑

i=1

15‖v‖ ‖c‖ ‖µi/n − µ(i−1)/n‖TV

≤ 15‖v‖ ‖c‖ ‖ν − µ‖TV.Proof of Theorem 1. De�ne the operator(16) L[exp[−〈h, ν〉]] = exp[−〈h, ν〉][〈−Lh− Bh − Φh, ν〉 + C(h, ν)]with L, B, Φ and C given by (9)�(12) in Se
tion 4.
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Assume that {ν(t)}t≥0 solves the (L, ν0)-martingale problem. This meansthat(17) E

[
e−〈h,ν(t)〉 − e−〈h,ν(s)〉 −

t\
s

L[e−〈h,ν(r)〉] dr
∣∣∣ Fs

]
= 0

for all h ∈ C2
b. Take h = θh and di�erentiate with respe
t to θ; setting now

θ = 0 we get
E

[
〈h, ν(s)〉 − 〈h, ν(t)〉 +

t\
s

[〈(L + B + Φ)h, ν(r)〉 + C(h, ν(r))] dr
∣∣∣ Fs

]
= 0.That means that

〈h, ν(t)〉 = 〈h, ν0〉(18)
+

t\
0

[〈(L + B + Φ)h, ν(s)〉 + C(h, ν(s))] ds + M(t),where M(t) is a Pν0
-martingale. From the It� formula (see e.g. [19℄) we have

e−〈h,ν(t)〉 − e−〈h,ν0〉 −
t\
0

e−〈h,ν(s)〉[〈Lh + Bh + Φh, ν(r)〉 + C(h, ν(r))] dr

=

t\
0

e−〈h,ν(s)〉 dM(s) +
1

2

t\
0

e−〈h,ν(s)〉 d〈M〉(s),where 〈M〉 is the quadrati
 variational pro
ess of M . We know that the lefthand side is a martingale with mean value 0 and the �rst integral on theright hand side has the same property. Therefore the integral
t\
0

e−〈h,ν(s)〉 d〈M〉(s)is also a martingale with mean value 0. But it is the integral of a nonnegative,nontrivial fun
tion with respe
t to a quadrati
 variational pro
ess, whi
h isin
reasing. Thus, sin
e its mean value is 0, we know that 〈M〉(s) = 0. Thismeans that also M(s) = 0. Therefore (18) implies that ν(t) satis�es (8) forall h ∈ C2
b.Now we prove that this solution is unique. Assume that the (nonrandom)right 
ontinuous family {ν(t)} of measures satis�es (8) and ν(0) = ν0. Itfollows from (8) that 〈h, ν(t)〉 is di�erentiable as a fun
tion of time, thereforethis equation 
an be rewritten as(19) ∀h∈C2

b

d

dt
〈h, ν(t)〉 = 〈(L + B + Φ)h, ν(s)〉 + 〈h, Ĉν(s)〉.
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Fix h0 ∈ C2

0 su
h that ‖h‖ ≤ 1. By Lemma 2 the evolution equation
(20) 





dh

dt
= (L + B + Φ)h,

h(0) = h0,has a unique solution. Noti
e that this solution satis�es ‖h(t)‖ ≤ ‖h0‖eat ≤
eat for some a > 0 that is independent of h0. Sin
e h0 ∈ D(L+B +Φ) ⊂ C2

0 ,we also have h(t) ∈ C2
0 for all t > 0. Thus for any ν ∈ M we 
an write(21) d

dt
〈h(t), ν〉 = 〈(L + B + Φ)h(t), ν〉.Using (19) and (21) we 
an write(22) ∂

∂s
〈h(t − s), ν(s)〉 = 〈h(t − s), Ĉν(s)〉.Integrating both sides of (22) with respe
t to s we get(23) 〈h0, ν(t)〉 = 〈h(t), ν0〉 −

t\
0

〈h(t − s), Ĉν(s)〉 ds.Now assume that {ν(t)}t≥0 and {µ(t)}t≥0 satisfy (8) with the same ini-tial 
ondition ν(0) = µ(0) = ν0. Then, using the above 
al
ulations andLemma 3, we have
〈h0, ν(t) − µ(t)〉 =

t\
0

〈h(t − s), Ĉµ(s) − Ĉν(s)〉 ds

= eat
t\
0

〈h(t − s)e−at, Ĉµ(s) − Ĉν(s)〉 ds

≤ eat
t\
0

‖µ(s) − ν(s)‖TV ds.Re
all that this is valid for any h0 ∈ C2
0 . Hen
e(24) ‖ν(t) − µ(t)‖TV ≤ eat
t\
0

‖µ(s) − ν(s)‖TV ds,and from the Gromwall inequality µ(t) = ν(t) for all t ≥ 0.Our aim now is to prove that the sequen
e of the pro
esses ν(N) 
onvergesto a solution of the (L, ν0)-martingale problem. In order to do it, we 
he
k theassumptions of Proposition 2. We have already 
he
ked that this martingaleproblem has at most one solution. To prove the 
ompa
t 
ontainment of thesequen
e we will 
hange our spa
e a little: namely we repla
e R
d ×R

+ by its
ompa
ti�
ation Ê = (Rd ×R
+)∪{∞} and so the pro
esses XN take valuesin the spa
e M̂ = M(Ê) of all �nite Borel measures on the 
ompa
ti�
ation
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of R

d × R
+. Observe how our situation �ts into the frame of Proposition 2:In our 
ase E = M̂ and we 
an 
onsider EN = NN as subsets of Ê so that

XN = µ(N) 
oin
ides with YN and ηN is just the identity. For the 
ompa
t
ontainment 
ondition we use the fa
t that the set {µ : 〈1, µ〉 ≤ M} is
ompa
t in Ê. So by Lemma 1,
Prob(νN (t) ∈ {µ : 〈1, µ〉 ≤ M} for 0 ≤ t ≤ T )

≥ 1 −
〈1, ν0〉

a
eT (‖λf−λd‖+‖cv‖),whi
h proves the 
ompa
t 
ontainment.The family of fun
tions {e−〈h,ν〉 : h ∈ C2

b} is ri
h enough to separatepoints in M̂. Fix h ∈ Cb,pos. We now 
onstru
t fun
tions FN su
h that FN
onverges to exp[−〈h, ν〉] and L(N)FN 
onverges to L exp[−〈h, ν〉]. Namely,let FN (ν) = exp[〈N log(1− h/N), ν〉] (for N su�
iently large 1 − h/N > 0)and ΓN = NN . Obviously XN (t) ∈ ΓN for all t ≥ 0 and FN are uniformlybounded. Then
sup

ν∈NN

|FN (ν) − exp[−〈h, ν〉]|

≤ sup
ν∈NN

exp[−〈1, ν〉 inf h]|〈h + N log(1 − h/N), ν〉|

≤ sup
ν∈NN

exp[−〈1, ν〉 inf h]〈1, ν〉‖h − log(1 − h/N)−N‖

≤ sup
ν∈NN

C‖h − log(1 − h/N)−N‖
N→∞
−−−→ 0,where C is some 
onstant. Similar 
al
ulations show that(25) sup

ν∈NN

|L(N)FN (ν) − L[exp(−〈h, ν〉)]|
N→∞
−−−→ 0,whi
h 
ompletes the proof.6. Equation on densities. Consider the solution ν(t) of (8) and assumethat it is absolutely 
ontinuous with respe
t to the Lebesgue measure, i.e.

ν(t)(dx dm) = u(t, x, m) dx dm.Remark 3. Sin
e (8) implies uniqueness (
f. proof of Theorem 1) andTheorem 2 will give us an absolutely 
ontinuous solution for any initialdensity, it su�
es to assume that the initial measure ν0 in (8) is absolutely
ontinuous.Then by simple 
al
ulations one 
an 
he
k that (8) is the mild version ofthe equation
(26)

∂u(t, x, m)

∂t
= L∗u(t, x, m)+B∗u(t, x, m)+Φ∗u(t, x, m)+Cu(t, x, m),
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where

L∗f(x, m) = D(m)∆xf(x, m),(27)
B∗f(x, m) =

∂

∂m
[m(λm(m) − λb(m))f(x, m)],(28)

Φ∗f(x, m) = λf (m)
[
2

∞\
m

f(x, m)q(m, m) dm − f(x, m)
](29)

− λd(m)f(x, m),

Cf(x, m) =
\

Rd

m\
0

2d c(m − m)c(m)v(2(x − x))TT
c(m)f(x, m) dx dm

(30)
× f(2x − x, m − m)f(x, m) dmdx

−
\

Rd

∞\
0

2
c(m)c(m)v(x − x)TT
c(m)f(x, m) dx dm

× f(x, m)f(x, m) dm dx,where ∆x is the Lapla
e operator with respe
t to the spatial variable x.Theorem 2. Let D(m) > 0 and c(m) > 0 for m ≥ 0. For any u0 ∈
L1

+(Rd×R
+) there exists a unique solution u(t, x, m) ∈ L1

+(Rd×R
+) of (26)su
h that u(0, x, m) = u0(x, m).Proof. The operator L∗ + B∗ generates a strongly 
ontinuous Markovsemigroup of linear operators on X = L1(Rd ×R

+), whi
h 
an be written inthe form(31) P (t)ϕ(x, m)

=






\
Rd

κ+(π−tm, m, x, x)ϕ(x, π−tm)
∂

∂m
π−tm dx for λ(m) > 0,\

Rd

κ0(t; m; x, x)ϕ(x, m) dx for λ(m) = 0,\
Rd

κ−(π−tm, m, x, x)ϕ(x, π−tm)
∂

∂m
π−tm dx for λ(m) < 0.

Noti
e that, be
ause λ is 
ontinuous, we 
an divide the half-line R
+ intointervals where λ < 0 or λ > 0 and pla
es�single points or intervals�where

λ = 0. The term πtm is the solution of
d

dt
πtm = λ(πtm)with π0m = m and λ(m) = m[λm(m) − λb(m)]. The fun
tions κ+/0/− are
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de�ned by

κ+(τ0, τ1, x, x) =
1

√
4π
Tτ1

τ0

D(τ)
λ(τ) dτ

d
exp

(
−

|x − x|2

4
Tτ1

τ0

D(τ)
λ(τ) dτ

)
,

κ0(t; m; x, x) =
1

√
4πD(m) t

d
exp

(
−
|x − x|2

4D(m)t

)
,

κ−(τ0, τ1, x, x) =
1

√
4π
Tτ0

τ1

D(τ)
−λ(τ) dτ

d
exp

(
−

|x − x|2

4
Tτ0

τ1

D(τ)
−λ(τ) dτ

)
.

The terms κ+, κ0, and κ− have the following natural interpretation. Fun
-tions κ+ and κ− are fundamental solutions of the non-autonomous, respe
-tively, forward and ba
kward heat equation
λ(τ)

∂

∂τ
u(τ, x) = D(τ)∆u(τ, x),whereas κ0 is the fundamental solution of the autonomous heat equationwith 
onstant di�usion D(m).Sin
e λf , λd and p are bounded, Φ∗ is a bounded linear operator on X.Thus, by the Phillips perturbation theorem, the operator L∗ + B∗ + Φ∗generates a strongly 
ontinuous semigroup of bounded positive operatorson X.One 
an prove that the operator C is Lips
hitzian on X+ = L1

+(Rd×R
+).This proof is based on that of Theorem 1 in [4℄ and is similar to the proof ofLemma 3. The rest of the proof of the existen
e of the semigroup generatedby (26) is a simple 
onsequen
e of the method of variation of parameters(see e.g. [27℄).Remark 4. We should underline that (26) is a fragmentation-
oagula-tion equation, whi
h, a

ording to Theorem 2, has a unique solution thatexists for all positive time. This feature distinguishes (26) from physi
al
oagulation equations whi
h do not have global solutions. This surprisingproperty of (26) results from the spe
ial form of the 
oagulation term (30),whi
h is homogeneous with respe
t to f .
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