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Summary. We present two new models of the dynamics of phytoplankton aggregates.
The first one is an individual-based model. Passing to infinity with the number of indi-
viduals, we obtain an Eulerian model. This model describes the evolution of the density
of the spatial-mass distribution of aggregates. We show the existence and uniqueness of
solutions of the evolution equation.

1. Introduction. In [4] the authors built a model of the phytoplankton
dynamics, where the individual is an aggregate—a group of phytoplankton
cells living together. Aggregates are structured by their size, which changes
due to three processes: growth caused by cell division, fragmentation and
coagulation. The size distribution of aggregates satisfies the equation

(1) % = %[g(m)u] + Pu + Cu,
where m is the size of an aggregate, g(m) is the growth rate, and ¢ and C
are the operators of fragmentation and coagulation, respectively. The authors
proved the existence and uniqueness theorem for equation (1) and checked
the long-time behaviour of the distribution of size for some special cases.
In the present paper we construct an individual-based model which is
additionally spatially structured and contains a process of random movement
of aggregates. Our aim is to show that the limit passage in the model, when
the number of individuals goes to infinity whereas the mass of a single cell
tends to zero, leads to a transport equation of type (1) with a diffusion term.
In many papers such a limit is a stochastic process with values in the space of
measures, called a superprocess (see |9, 13, 16, 2, 15]). The measures which
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are values of this superprocess describe the distribution of particles in space.
In our model we also obtain a limit but it is deterministic. In fact, we derive
the evolution of the distribution density according to the equation

(2) % = D(m)Azu + %[A(m)u] + @&*u + Cu,

where &* and C are operators responsible for fragmentation and coagulation
(for their form, see (29) and (30) in Section 6). Finally, we prove the existence
and uniqueness of solutions of our equation.

The approach resembling ours was applied to a model of coagulation
with diffusion by Norris [24] and in a different setting of interacting particle
systems by Kolokoltsov [20]. Measure-valued limits of interacting particle
systems leading to so-called generalized Smoluchowski equations were also
considered in [6, 14]. Similar equations, but used in a different context, ap-
pear e.g. in [1, 5, 7, 25], while in [11] one can find a survey of coagulation
equations. Other results concerning this subject can be found in [3, 22| and
the papers quoted therein. For the biological models that use similar meth-
ods we also refer to [10, 21, 23, 30]. We exploit methods that were developed
by Dawson (cf. [9]) and other probabilists working on superprocesses (see
also [16, 17, 13]).

The scheme of this paper is as follows. In the next section we introduce
our model, which is mathematically formulated in Section 3. Section 4 con-
cerns the rescaling of the individual model and the limit passage; the proof
of the convergence theorem is given in Section 5. In Section 6 we derive the
evolution equation that describes the behaviour of the limit process, and we
prove the existence and uniqueness theorem.

2. Individual-based model of phytoplankton cells. We construct
an individual-based model of phytoplankton. In our model an individual
is an aggregate that consists of indistinguishable cells with equal masses
joined by some organic glue. Cells in the aggregate may die or divide into
two daughter cells, which causes the decrease or growth of the aggregate. An
aggregate may shatter into two smaller aggregates or die (sink or be eaten).
Thus the whole situation is described by the following processes:

e A single cell in the aggregate may die in a unit of time with probability
Am(m) depending on the mass (number of cells) m of the aggregate or
may divide into two new cells with probability \,(m).

e A whole aggregate moves according to the e-random walk—i.e. it skips
by a vector of length £ in one of 2d directions (parallel to one of the
axes, d is the dimension of the space) with probability (1/£2)D(m)
(where D is a coefficient depending on the mass).

e The aggregate may die in a unit of time with probability \;(m).
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e The aggregate of mass m may split in a unit of time with probabil-
ity Af(m) into two parts with masses T and m — ™ with probability
pM (m,m) (where >°7_ p()(m,m) = 1). We assume that after frag-
mentation both new aggregates appear at the same location as their
parent.

e Two aggregates may join up with probability &) depending on their
masses and locations, and on the state of the whole population. More
precisely, let the rate of coagulation of the ith aggregate be ¢(m;). Then
the probability that it joins the jth aggregate is c(mj)/zgzl c(my,)
and it is modified by a distance-dependent coefficient v(z; — z;), thus
k™M takes the form

clmi)e(my)
= ),

where the sum in the denominator extends over all living individuals.

(3) k(l)(miamjvxi_$j7y) =

Our model of the coagulation process is essentially different from standard
physical models (e.g. Smoluchowski [29]) where the probability of coagula-
tion is proportional to the square of the number of particles. We consider the
more biologically justifiable case, when the ability of coagulation of a single
aggregate is not unbounded, but approximately constant. Ability of coagu-
lation depends on the concentration of some organic glue (TEP) [8, 26]. This
means that the probability of joining is a function of production of TEP by
an aggregate, which depends on the mass of the aggregate.

It should be noted that the probability of coagulation of two aggregates:

1) is proportional to the ability of both aggregates to coagulate,
2) depends on the distance of the aggregates,
3) is symmetrical, i.e. it does not depend on the order of the aggregates.

It seems difficult to find another model of coagulation which has all the above
features and, at the same time, has good mathematical properties.

3. Stochastic process describing the model. The state of our model
is described by the vector (k;xi,my,...,xE, my), where k is the number of
aggregates and x;, m;, for i = 1,..., k, denote, respectively, the location and
mass of the ith aggregate. Since k (and so the number of variables) changes
during evolution, and the order of pairs x;,m; is not important, we need a
special state space. We use the set of measures

= {i Ozim,; - k€N, (z,m;) € R% x N}?

=1

i.e. we denote the aggregate of size m at position x by the Dirac delta
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measure g, at (x,m) € R? x N. The set A is a subspace of the space M of
all finite Borel measures on R? x RT with the topology of weak convergence.
Constrained by the nature of A (which is not even a Banach space), we use
the formalism of D([0,00),N') martingale problems. By D([0,0),N) we
denote the space of all cadlag functions on N, i.e. right continuous functions
with left hand limits. Let us recall

DEFINITION 1. Let B(N) be the space of measurable and bounded func-
tions on A and let £ be a linear operator defined on a subspace of B(N)
with values in B(N). We say that a stochastic process X (t) solves the
D([0,00),N') martingale problem for £ and the initial state vy if this process
has D([0,00), N)-trajectories, Prob(X(0) = 19) = 1 and for every f from
the domain of L,

FX(®) = F(X(0)) = [ ££(X (5)) ds
0

is a martingale with respect to
S

Fi= O'(X(S),Sh(X(T))dT cs<t,he B(N)),
0
where B(N) denotes the set of bounded Borel functions on N.

Throughout this paper we omit the D([0,c0), E') and by the martingale
problem we mean the D([0,c0), E') martingale problem. We will also speak
of the (L, é,,)-martingale problem, where d,, is the Dirac delta at the initial
point. We will refer to £ as the generator of the stochastic process. For
an extensive guidebook to stochastic processes and martingale problems we
refer to [17].

We formulate an individual version of the model in the setting of pure
jump processes. We define a generator LM as a jump operator

4 £Yfw)

- Z g2 Z[f(l/ - 5xi,m¢ + 5$i+€k7m) + f(l/ - 5$i,m¢ + 6$i—5k,m)]
=1 k=1
+ mi)‘b(mi)f(y - 5$i,mi + 5$i7mi+1) + mlkm(ml)f(y - 5551’7”%’ + 5551’777%_1)

+ )\d(mi)f(y - 6xi,mi)

A (i) S p(miy ) f(v = Gymy + Oy 3 + Oy )
m=1
X, emi)e(m;)o(a; — ;)
+ Z ijc(mk) J f(V — 5mi,mi - 5mj,m]~ + 5(xi+1’j)/2,mi+mj)
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where

X(V) = Z I:QdDE;grnl) + miNp(m;) + miAy (M) + Ag(m;) + )\f(mi)

=1

N
c(mi)e(my)v(z; — x;)
t T )

and ¢; is a d-dimensional vector with € at the ith place and zeros elsewhere. In
this section we assume that ¢ = 1, but in the next section we use a modified
form of the operator £ with ¢ = 1/N. We assume that the functions
D(m), mAn(m), mAy(m), A¢(m), Ag(m), ¢(m) and v(x — T) are bounded
and continuous; moreover ¢(m) > 0 for all m € [0, 00). Since the probability
of extinction of the process is nonzero, we must also assume that for v = 0
we have £ f(v) = 0 (this means that after extinction the process remains
in the state v(¢) = 0).

PROPOSITION 1. For any initial state vy € N there exists a unique so-
lution {vM) (t)}i>0 of the martingale problem for (L1, 5,,).

4,j=1

Proof. The operator L) given by (4) is a jump operator with unbounded
jump rate (for the theory of jump processes see [18] or [17]). To obtain the
existence of the process generated by £(1) we construct an approximating
sequence of stochastic processes that are solutions of stopped martingale
problems with operators with bounded jump rates. For any n € N define
N="={v e N :(1,v) <n}. Notice that the jump rate satisfies
(5) Av) < Cn
on N'=" with some constant C. That is why the solution of the stopped
martingale problem for (£, §,,, N<") coincides with the solution of the
stopped martingale problem with the operator bounded by Cn. Moreover,
the stopping time

To = inf{t >0:v(t) € N" or v(t—) € N="}
is such that

n
Ak n—o0
Tn > E - —— 0
"= Cn ’
k=1

where {4, },en is a sequence of i.i.d. random variables, exponentially dis-
tributed with intensity one. We use Proposition 3.2 in Chapter 4 of [17] to
end the proof. =

REMARK 1. Although the description of the process is now formulated in
the language of jump processes, in the subsequent sections we will use a dif-
ferent setting. That is why we will write the operator (4) in a different form.
Compare it with the approach used in papers on superprocesses (cf. [16],
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[17]). Let C? be the space of all bounded functions with bounded derivatives
up to second order and Ol?),pos ={g:RIxRt =R :g¢c C’g and infg > 0}.
For a given g € C’g’pos we define a function F, € Cy(M) (bounded and
continuous on M) by the formula Fy(v) = exp[(logg,v)]. The generating
operator £(1) on the functions Fy(v) has the form

e B o)
6) LOF,(W) = exp[(logg, v [< p s g,u>+c<g,u>]
where
D(m;) &
LWg(a,m) = =53 g + e m) + gl — e, m) — 2g(z,m)]

k=1

is the operator responsible for the spatial movement;

BWg(z,m) = m[An(m)g(z,m —1) + \p(m)g(z, m +1)
— (Am(m) + Xp(m))g(z, m)]

is the operator of birth and death inside aggregates;

m

#Wg(a,m) = Ap(m)| D g(w,m — Mg @, (m. ) — gz, m)
=1

m
+ Ag(m)(1 = g(z,m))
is responsible for the fragmentation and death of whole aggregates; and

) =1 o i
g((z+7T)/2,m +m)
8 [ g(x, m)g(x, m)

— 1| v(dx dm) v(dz dm)
is the coagulation term.

4. The limit passage. Now, we construct a sequence of rescaled pro-
cesses {v(M(t)}1>0, N € N, based on {v(1)(#) };>0 that will approximate some
continuous model. Assume that the number of particles at time 0 increases
to infinity as N — oo and assume that the mass of each cell is 1/N. The
Nth process vN) has values in the space

k
NN:{Nizglémi’ni/N:k€N7 <IL’Z,N> eR XNN}

From now on we set m = n/N. The rescaling means that the process Nv/(V)
behaves like v(1) with appropriate coefficients. Namely:
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e The birth or death of a cell means the change of mass by a factor of
1/N.

o We set the step of the random walk to be ¢ = 1/N.

e The result of fragmentation of an aggregate of size m = n/N may have
any massin 1/N,2/N,...,(n—1)/N; so we assume that the coefficients
p™) are such that Yooy pM)(n/N,7i/N) = 1; moreover, we assume
that there exists a continuous function ¢ : R™ x R™ — R™ such that
for all m,m € RT with m < m and all sequences (ny), (my) of positive
integers such that ny/N — m and iy /N — ™ as N — oo we have
Np™N)(ny /N, 7iny /N) — q(m, ) and this convergence is uniform,

e the coagulation term remains unchanged.

Notice that the function ¢ satisfies Sgn q(m,m)dm = 1 for m > 0 and the

probabilistic kernel P(m,A) := {, q(m,m)dm will describe the distribu-
tion of the size of the aggregates after fragmentation if the aggregate before
fragmentation has size m.

So the operator governing this Nth approximation has the form

(7) LM F,(Nv) = exp [(log g, Nv)]
L) (V) (N)
y K g+ BWNg+oeWNVg NV>

+C(g,Ny)],

with L(N) equal to L™ (at m = n/N instead of n) and with

o)l 2
() m(%))ol=5))

RS2 D () (-2)

n

() (el 5))

The sequence of rescaled processes converges weakly to some measure-
valued stochastic process (governed also by a martingale problem), but it
turns out that the limit process describes a deterministic behaviour.

TurEOREM 1. Let v(N)(0) 2 vy. The sequence of processes vN)
verges weakly in distribution to the deterministic measure-valued process

con-
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uniquely determined by the equation
t

(8) (h,v(t)) — (h,vp) = S [((L+ B+ ®)h,v(s)) + C(h,v(s))]ds

for all b € C2, with ’

(9)  Lh(e,m) = D(m)A.h(z,m),

(10)  Bh(e,m) = m(X(m) ~ An(m) h(z,m),

(11)  h(z,m) = Ap(m) [Z?h(m,m)q(m,m) dr — h(z,m)
- Ad(m)’t(fb‘?m),

o

x (h(z +%/2,m+m) — h(x,m) + h(ZT, m))
x v(dx dm) v(dz dm).

The limit process v has values in the space M.

5. Proof of Theorem 1. The scheme of the proof is as follows. Firstly
we define a new operator £ (see (16)). Next we prove that if the process
{v(t)}+>0 solves the (L, 1p)-martingale problem then it is a deterministic
evolution of measure given by (8); moreover it is unique (i.e. there exists at
most one solution of the (L, vp)-martingale problem). Then we check that
the sequence ) converges to the solution of this problem.

In the proof we will use the following auxiliary theorem of Kurtz and
Ethier:

PROPOSITION 2 ([17, Corollary 8.16, Chapter 4]). Let (E,r) be a Polish
space, A C Cp(E) x Cp(FE) be an operator (possibly multivalued), and Py be
a probability measure on E. Suppose that the martingale problem for (A, Pp)
has at most one solution. For N = 1,2,..., suppose that Yy is a progressive
Markov process in a Polish space En corresponding to a measurable contrac-
tion semigroup with generator An and ny : Enxy — E is Borel measurable.
Let Xy = nnoYyn. Assume that: the distribution of X (0) converges weakly
to Py as N — oo, Xy satisfies the compact containment condition, and the
closure of the linear span of D(A) contains an algebra that separates points.
If, moreover, for all (f,g) € A and T > 0 there exist sequences of functions
(fn,9N) € An and sets I'y C En such that:

(i) A}im Prob({Yn(t) € I'n, 0<t<T}) =1,

(i) sup [[fn]| < oo,
N
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(iii) lim sup |fonn(y)— fn(y)| = lim sup |gonn(y) —gn(y)| =0,
N_’OOyEFN N—oo yely

then there exists a solution X of the (A, Py) martingale problem and Xy
converges weakly in distribution to X. Here || - || is the mazimum norm in

O (E).

REMARK 2. By the compact containment condition we mean that for
every € > 0 and 7" > 0 there is a compact set I} 7 such that

i%fProb{XN(t) €lr,0<t<T}>1—c¢.

Moreover we need some lemmas:

LEMMA 1. If the process {v(t) }s>0 solves the (L) 8, )-martingale prob-
lem (where LN is given by (7)) then

(13) PrOb(OiltlgT<17y(t)> > a) < <1,auo>

The proof is based on that of Lemma 4.1 in [17, Chapter 9]. Although it
requires some calculation, it is not very interesting, so we omit it here.

exp[T([[As = Aall + [lev]))]-

LEMMA 2. The operator L+ B+ ® generates a strongly continuous semi-
group on Cy(R? x RT).

Proof. The operator L + B generates a strongly continuous semigroup
on Co(R? x R*) (cf. [28]) and & is a bounded operator on C},(R? x RY), so
the Phillips perturbation theorem [12] gives the result. =

Let us write C(h, v) as (h, Cv), where

W
x [1La((x +7)/2,m + M) — La(z,m) — 14(T, M) v(dx dm) v(dT dm).
One can prove that for every measure v € M we have Cv e M.

LEMMA 3. Let h € C(R% x R*) be such that ||h|| < 1 and let v, u € M.
Then

(14) [(h, Cv = Cp)| < [l = V|1

Here ||v|Tv denotes the total variation norm of the measure v (cf. e.g.
[17]).
Proof. Set a(v) = | {e(m)v(dzdm) and

h= h(x";m,m+m> — h(z,m) — h(z, ).
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Fix € M\ {0} and let £ = ||¢[|"*a(u). Then a(v) < 2a(p) for ||v — pl|py
< e. Moreover

[(h,Cv — Cp)
_ (agz)y);gf)” D8 cOom)emyo(e — 2hw(de dm) v(dz dm)
a(lﬂ) 11 cm)e@myo(e — 2k (v + ) (da dm) (v — p)(dz dm)
< 3o u%aw)a(u)
1 Sllel ”C|((;§” ) I o @ 0) (v — ) (dz am),
where

— . rrcm)em)v(x —7)
(T, 10) = SS 3ol [lelle(pe + v)

Notice that f ,, is bounded by 1. Therefore { f4 ., d(p—v) < || — || py-
Thus, going on with the above calculations, for ||v — u|p < € we have

h(v + p)(dz dm).

(15) \(h, G — ] < 3uvu20f“(%) el v — ullzy

3ou(p)
+3||v]| ||c vV— U
[l el ) | Iy

< 15[ol[flelHlv = pllrv-

Let us now take arbitrary measures p,v € M\ {0}. Let py = (1 —t)u+tv
and € = ||c[| ! info<t<1 (). Choose an n such that || — plpy/n < . From
inequality (15) it follows that

|<h’ é\'Nz/n - é\’N(z—l)/n>| < 15””” HCH H:uz/n - ﬂ(z’—l)/nHTV
for i =1,...,n. Therefore

[(h, Cv — Cp) <Y 1(h, Cpaign — Crigiy )]
=1

=< Z 1l|vl[ el lmi/n — 1) mllTv

< 15||vH el = pllrv. =
Proof of Theorem 1. Define the operator
(16) Llexp[—(h,v)]] = exp[—(h,v)][(—Lh — Bh — ®h,v) + C(h,v)]
with L, B, @ and C given by (9)-(12) in Section 4.
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Assume that {v(t)};+>0 solves the (L, vp)-martingale problem. This means
that
t
(17) E[e—m,y(t» _ o (ha(s)) _ S Lle= 0] gy ‘ fs} _ 0

s

for all h € C’g. Take h = @h and differentiate with respect to 6; setting now
=0 we get
t
B[ (R v(s)) = (B w(6)) + [ (L + B+ @)h,v(r)) + Clh, w(r) dr | | =0.

That means that

(18)  (h,v(t)) = (h, o)
+ S [(((L+ B+ ®)h,v(s)) + C(h,v(s))]ds+ M(t),
0

where M (t) is a P, -martingale. From the It6 formula (see e.g. [19]) we have

t
e~ (hv(t) _ g=(hwo) _ S e~ WV (Lh + Bh + ®h, v(r)) + C(h,v(r))] dr
0
t ¢
= §em ) ant(s) + 2 Jem D () (s),
0 0

where (M) is the quadratic variational process of M. We know that the left
hand side is a martingale with mean value 0 and the first integral on the
right hand side has the same property. Therefore the integral

Jem @D agary(s)
0

is also a martingale with mean value 0. But it is the integral of a nonnegative,
nontrivial function with respect to a quadratic variational process, which is
increasing. Thus, since its mean value is 0, we know that (M)(s) = 0. This
means that also M(s) = 0. Therefore (18) implies that v(t) satisfies (8) for
all h € C3.

Now we prove that this solution is unique. Assume that the (nonrandom)
right continuous family {v(¢)} of measures satisfies (8) and v(0) = vp. It
follows from (8) that (h,v(t)) is differentiable as a function of time, therefore
this equation can be rewritten as

(19) Ve g hv(0) = {(L+ B+ ®)hw(s) + (h, Ous))
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Fix hg € CZ such that ||h| < 1. By Lemma 2 the evolution equation

dh
(20) q = (L+ B+ d)h,
h( ) = h07

has a unique solution. Notice that this solution satisfies ||h(t)|| < ||holle® <
e for some a > 0 that is independent of hg. Since hg € D(L+ B+®) C C3,
we also have h(t) € CZ for all t > 0. Thus for any v € M we can write

(21) %(h(t),y) =((L+ B+ P)h(t),v).

Using (19) and (21) we can write

(22) %(h(t —5),0(5)) = (h(t — 5),Cv(s)).

Integrating both sides of (22) with respect to s we get

(23) (ho, v(t)) = ((t), v0) = § ((t = 5), Cu(s)) ds
0

Now assume that {v(t)},~, and {u(t)},~, satisfy (8) with the same ini-
tial condition v(0) = pu(0) = vy. Then, using the above calculations and
Lemma 3, we have

(ho, v(t) = u(t)) = Y (h(t = s),Cp(s) — Cu(s)) ds

Il
O ey
)
)

Recall that this is valid for any ho € C2. Hence
t

(24) () = 1®llpy < e {luls) = v(s) v ds,
0

and from the Gromwall inequality p(t) = v(t) for all ¢ > 0.

Our aim now is to prove that the sequence of the processes u( converges
to a solution of the (L, 1p)-martingale problem. In order to do it, we check the
assumptions of Proposition 2. We have already checked that this martingale
problem has at most one solution. To prove the compact containment of the
sequence we will change our space a little: namely we replace R? x Rt by its
compactification £ = (R x RT)U{oo} and so the processes Xy take values
in the space M = M(E) of all finite Borel measures on the compactification

N)
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of RY x Rt. Observe how our situation fits into the frame of Proposition 2:
In our case E = M and we can consider Ey = N as subsets of E so that
Xy = ,u(N) coincides with Yy and 7y is just the identity. For the compact
containment condition we use the fact that the set {u : (1,u) < M} is
compact in E. So by Lemma 1,

Prob(vn(t) € {p: (L,u) < M} for 0 <t <T)

51— LH0) (=gl + el
a
which proves the compact containment.

The family of functions {e_<h”’> th e Cg} is rich enough to separate
points in M. Fix h € Ch,pos- We now construct functions Fy such that Fyy
converges to exp|—(h,v)] and LIV Fyy converges to £ exp[—(h,v)]. Namely,
let Fy(v) = exp[(Nlog(1 — h/N),v)] (for N sufficiently large 1 — h/N > 0)
and I'v = Ny. Obviously Xn(t) € I'y for all ¢ > 0 and Fy are uniformly
bounded. Then

sup |Fiy(v) — exp[—(h, v)]|

VE./\/N
< sup exp[—(1,v)inf h]|(h + Nlog(l — h/N),v)|
VENN
< sup exp[—(1,v) inf B](1, »)||h — log(1 — h/N) 7|
VENN
< sup C|lh—log(1 — h/N)~N|| 2= 0,
VENN
where C is some constant. Similar calculations show that
(25) sup | Fy (v) — Llexp(—(h, )] 2= 0,
VE./\/N

which completes the proof. m

6. Equation on densities. Consider the solution v(¢) of (8) and assume
that it is absolutely continuous with respect to the Lebesgue measure, i.e.
v(t)(dxdm) = u(t,z,m) dx dm.

REMARK 3. Since (8) implies uniqueness (cf. proof of Theorem 1) and
Theorem 2 will give us an absolutely continuous solution for any initial
density, it suffices to assume that the initial measure vy in (8) is absolutely
continuous.

Then by simple calculations one can check that (8) is the mild version of
the equation

ou(t,z,m)

5 = L*u(t,z,m)+ B*u(t,z,m) +®*u(t, z,m) + Cu(t, z, m),

(26)
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where

(27) L f(z,m) = D(m) Ay f(z,m),

(98) B fwm) = o m(m(m) — A(m))fr m),

(20) @ f(w,m) = Ap(m) |2 § fla,m)a(m,m) diw — f(z,m)
= Aa(m) f(z, m),

— W e(m —m)e(@)v(2(z —T))

(30) Cf(x,m)= 24 —
Rgd(g) {§c(m)f(z, m)dTdm
x f(2x — T, m —m)f(Z,m)dm dT

Re O
x f(x,m)f (&, m) dm dz,

where A, is the Laplace operator with respect to the spatial variable x.

THEOREM 2. Let D(m) > 0 and ¢(m) > 0 for m > 0. For any ug €
LY (R? xRT) there ezists a unique solution u(t,z,m) € L1 (R*xRT) of (26)
such that w(0,x,m) = up(z, m).

Proof. The operator L* + B* generates a strongly continuous Markov
semigroup of linear operators on X = Ll(Rd x RT), which can be written in
the form

(31)  P(t)p(x,m)

;

S kT (m_ym,m,x,T)p(T, 7_ym) —n_ymdz for \(m) > 0,
e om
_ S K0(t; m; z, )@ (T, m) dT for A\(m) =0,
R4
S K~ (m—gm, m, x,T)p(T, T_ym) 5, -t dz for A(m) < 0.
m
R4

Notice that, because \ is continuous, we can divide the half-line R* into
intervals where A < 0 or A > 0 and places—single points or intervals—where
A = 0. The term mym is the solution of

d
Eﬂ'tm = )\(th)

with mom = m and A(m) = m[\n(m) — X\y(m)]. The functions x+/%/~ are
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defined by
1 =2
K+(70571)$a§) = d exp(—%),
A7 S:(l) ?((I)) dr 4ST0 A7) dr
1 |z —T|?
0 —
KO(tmy e, T) = —— eXp<—7>,
mD(m) 1 4D (m)t
k- ( x,T) ! e p( v — 2/’
70,71, X, T) = d P\ 0 D) )
4n | B0 dr e Sm

The terms xT, x°, and k= have the following natural interpretation. Func-
tions kT and k™ are fundamental solutions of the non-autonomous, respec-
tively, forward and backward heat equation

Nr) u(r, ) = D(r)du(r, 2)
or
whereas k° is the fundamental solution of the autonomous heat equation
with constant diffusion D(m).

Since Af, Ay and p are bounded, $* is a bounded linear operator on X.
Thus, by the Phillips perturbation theorem, the operator L* + B* 4+ &*
generates a strongly continuous semigroup of bounded positive operators
on X.

One can prove that the operator C is Lipschitzian on X = L} (RYxR™).
This proof is based on that of Theorem 1 in [4] and is similar to the proof of
Lemma 3. The rest of the proof of the existence of the semigroup generated

by (26) is a simple consequence of the method of variation of parameters
(see e.g. [27]). m

0

REMARK 4. We should underline that (26) is a fragmentation-coagula-
tion equation, which, according to Theorem 2, has a unique solution that
exists for all positive time. This feature distinguishes (26) from physical
coagulation equations which do not have global solutions. This surprising
property of (26) results from the special form of the coagulation term (30),
which is homogeneous with respect to f.
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