On Equations $y^2 = x^n + k$ in a Finite Field

A. SCHINZEL and M. SKAŁBA

Presented by Andrzej SCHINZEL

Summary. Solutions of the equations $y^2 = x^n + k$ (n = 3, 4) in a finite field are given almost explicitly in terms of k.

Let F be a finite field. It follows easily from Hasse's theorem on the number of points on an elliptic curve over F that each of the curves

(1)
$$y^2 = x^n + k \quad (n = 3, 4; k \in F)$$

Theorem 1. Let char F > 3 and $k \in F$. Set

has a point (x, y) in F^2 , except for n = 4, $F = \mathbb{F}_5$, k = 2. The aim of the present paper is to indicate such a point almost explicitly in terms of k. Note that if char K = 2, then (1) is satisfied by $y = (x^n + k)^{\operatorname{card} F/2}$, and if char K = 3, n = 3 then (1) is satisfied by $x = (y^2 - k)^{\operatorname{card} F/3}$. We shall prove

$$y_1 = \begin{cases} 12 & \text{if } k + 72 = 0, \\ \frac{k}{12} + 3 & \text{if } k^2 - 72k + 72^2 = 0, \end{cases}$$
and if $k^3 + 72^3 \neq 0$, set
$$y_1 = -2^{-9}3^{-5}k^3 + 2^{-6}3^{-3}k^2 - 2^{-3}k - 3,$$

$$y_2 = 2^{-8}3^{-6}k^3 - 2^{-5}3^{-3}k^2 + 2^{-2}3^{-1}k + 2,$$

$$y_3 = \frac{k^6 - 288k^5 + 46656k^4 - 3732480k^3}{2^83^5(k + 72)^3} + \frac{134369280k^2 - 11609505792k + 139314069504}{2^83^5(k + 72)^3},$$

2000 Mathematics Subject Classification: 11G20, 11A15, 11D25. Key words and phrases: finite fields, elliptic curves.

$$y_4 = \frac{k^9 - 504k^8 + 124416k^7 - 17915904k^6 + 1558683648k^5}{2^{10}3^5(k^2 - 72k + 72^2)^3} + \frac{-69657034752k^4 + 5851190919168k^3}{2^{10}3^5(k^2 - 72k + 72^2)^3} + \frac{20061226008576k^2 + 2166612408926208k + 51998697814228992}{2^{10}3^5(k^2 - 72k + 72^2)^3}$$

Then for at least one $j \leq 4$ the equation $y_j^2 = x^3 + k$ is solvable in $x \in F$.

Theorem 2. Let char $F \neq 2$ and $k \in F^*$. If k-2=0 and char $F \neq 5$, set

$$u_1 = \frac{-5}{8}, \quad u_2 = 2, \quad u_3 = 5;$$

if char F = 5 and $\alpha \in F \setminus \mathbb{F}_5$, set

$$u_1 = \frac{4\alpha}{1+\alpha^2}, \quad u_2 = \frac{2-2\alpha^2}{1+\alpha^2}, \quad u_3 = \frac{4\alpha(2-2\alpha^2)}{(1+\alpha^2)^2};$$

if
$$k^2 - 4k - 4 = 0$$
 and $k^3 - 8 \neq 0$, set

$$u_1 = \frac{-k^6 - 16k^3 + 64}{16k^4}, \quad u_2 = \frac{1}{k}, \quad u_3 = \frac{-k^6 - 16k^3 + 64}{k(k^3 - 8)^2};$$

if
$$k^2 - 4k - 4 = k^3 - 8 = 0$$
, set

$$u_1 = u_2 = u_3 = -1$$
:

and if $(k-2)(k^2-4k-4) \neq 0$, set

$$u_1 = \frac{k^2 - 4k - 4}{16}$$
, $u_2 = \frac{k}{4}$, $u_3 = \frac{k(k^2 - 4k - 4)}{4(k - 2)^2}$.

Then $u_j \in F^*$ $(1 \le j \le 3)$ and for at least one $j \le 3$ the equation

$$\left(\frac{4u_j^2 + k}{4u_j}\right)^2 = x^4 + k$$

is solvable in $x \in F$.

The proof of Theorem 1 is based on the following

LEMMA 1. Let A, B, C, D be in F and

$$z_1 = A$$
, $z_2 = B$, $z_3 = ABC^3$, $z_4 = AB^2D^3$.

Then for at least one $j \leq 4$ the equation $x^3 = z_j$ is solvable in $x \in F$.

Proof. If ABCD = 0 the assertion is clear and if $ABCD \neq 0$ it follows from the fact that the multiplicative group of F is cyclic and for all a, b in \mathbb{Z} at least one of the numbers a, b, a + b, a + 2b is divisible by 3.

Proof of Theorem 1. If k+72=0 or $k^2-72k+72^2=0$ we have $y_1^2-k=6^3$ or $(-3)^3$, respectively. If $k^3+72^3\neq 0$ we put in Lemma 1 $A=y_1^2-k,\quad B=y_2^2-k,\quad C=2^63^4(k+72)^{-2},\quad D=2^{10}3^8(k^2-72k+72^2)$ and verify that

$$y_3 = \frac{y_1 y_2 + k}{y_1 + y_2}, \qquad y_3^2 - k = ABC^3,$$

$$y_4 = \frac{y_1 y_2^2 + k y_1 + 2k y_2}{y_2^2 + 2y_1 y_2 + k}, \quad y_4^2 - k = AB^2D^3.$$

The proof of Theorem 2 is based on the following

LEMMA 2. Let u_j be as in Theorem 2. Then $u_j \in F^*$ and

(2)
$$\sqrt{4u_j^3 - ku_j} \in F \quad \text{for at least one } j \le 3.$$

Proof. If k-2=0 and char $K\neq 5$, then $u_1u_2u_3\neq 0$ and (2) holds because

$$(4u_1^3 - ku_1)(4u_2^3 - ku_2) = (4u_3^3 - ku_3)(1/8)^2.$$

If k-2=0 and char K=5, $\alpha \in F \setminus \mathbb{F}_5$, then clearly $u_1u_2u_3 \neq 0$ and (2) holds as

$$(4u_1^3 - ku_1)(4u_2^3 - ku_2) = (4u_3^3 - ku_3)2^2.$$

If $k^2 - 4k - 4 = 0$ and $k^3 - 8 \neq 0$, then $u_1u_2u_3 \neq 0$, since otherwise $k^6 + 16k^3 - 64 = 0$, while char $F \neq 2$ implies

$$(k^2 - 4k - 4, k^6 + 16k^3 - 64) = 1.$$

Also (2) holds in view of the identity

$$(4u_1^3 - ku_1)(4u_2^3 - ku_2) = (4u_3^3 - ku_3)\left(\frac{k^3 - 8}{2k^2}\right)^6 (1/4)^2.$$

If $k^2 - 4k - 4 = k^3 - 8 = 0$, then char F = 7, k = 1, $u_1u_2u_3 \neq 0$ and $4u_1^3 - ku_1 = 2^2$.

If $(k-2)(k^2-4k-4) \neq 0$, then clearly $u_1u_2u_3 \neq 0$ and (2) holds since

$$(4u_1^3 - ku_1)(4u_2^3 - ku_2) = (4u_3^3 - ku_3)\left(\frac{k-2}{4}\right)^6 2^2.$$

Proof of Theorem 2. We have the identity

$$\left(\frac{4u_j^2+k}{4u_j}\right)^2-k=\left(\frac{4u_j^2-k}{4u_j}\right)^2$$

and by Lemma 2 for at least one $j \leq 3$ we have $\sqrt{(4u_j^2 - k)/4u_j} \in F$.

The following problem related to the proof of Lemma 2 remains open.

PROBLEM. Let $f \in \mathbb{Z}[x]$ have the leading coefficient positive and assume that the congruence $f(x) \equiv y^2 \pmod{m}$ is solvable for every natural number m. Does there exist an odd integer k > 0 and integers x_1, \ldots, x_k such that $\prod_{i=1}^k f(x_i)$ is a square?

A. Schinzel and M. Skałba Institute of Mathematics Polish Academy of Sciences 00-956 Warszawa, Poland E-mail: schinzel@impan.gov.pl skalba@impan.gov.pl

> Received July 16, 2004; received in final form July 28, 2004 (7406)