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Summary. Solutions of the equations y2 = xn + k (n = 3, 4) in a finite field are given
almost explicitly in terms of k.

Let F be a finite field. It follows easily from Hasse’s theorem on the
number of points on an elliptic curve over F that each of the curves

y2 = xn + k (n = 3, 4; k ∈ F )(1)

has a point (x, y) in F 2, except for n = 4, F = F5, k = 2. The aim of the
present paper is to indicate such a point almost explicitly in terms of k.
Note that if charK = 2, then (1) is satisfied by y = (xn + k)cardF/2, and
if charK = 3, n = 3 then (1) is satisfied by x = (y2 − k)cardF/3. We shall
prove

Theorem 1. Let charF > 3 and k ∈ F . Set

y1 =
{

12 if k + 72 = 0,
k
12 + 3 if k2 − 72k + 722 = 0,

and if k3 + 723 6= 0, set

y1 = − 2−93−5k3 + 2−63−3k2 − 2−3k − 3,

y2 = 2−83−6k3 − 2−53−3k2 + 2−23−1k + 2,

y3 =
k6 − 288k5 + 46656k4 − 3732480k3

2835(k + 72)3

+
134369280k2 − 11609505792k + 139314069504

2835(k + 72)3 ,

2000 Mathematics Subject Classification: 11G20, 11A15, 11D25.
Key words and phrases: finite fields, elliptic curves.

[223]



224 A. Schinzel and M. Skałba

y4 =
k9 − 504k8 + 124416k7 − 17915904k6 + 1558683648k5

21035(k2 − 72k + 722)3

+
−69657034752k4 + 5851190919168k3

21035(k2 − 72k + 722)3

+
20061226008576k2 + 2166612408926208k + 51998697814228992

21035(k2 − 72k + 722)3 .

Then for at least one j ≤ 4 the equation y2
j = x3 + k is solvable in x ∈ F .

Theorem 2. Let charF 6= 2 and k ∈ F ∗. If k − 2 = 0 and charF 6= 5,
set

u1 =
−5
8
, u2 = 2, u3 = 5;

if charF = 5 and α ∈ F \ F5, set

u1 =
4α

1 + α2 , u2 =
2− 2α2

1 + α2 , u3 =
4α(2− 2α2)

(1 + α2)2 ;

if k2 − 4k − 4 = 0 and k3 − 8 6= 0, set

u1 =
−k6 − 16k3 + 64

16k4 , u2 =
1
k
, u3 =

−k6 − 16k3 + 64
k(k3 − 8)2 ;

if k2 − 4k − 4 = k3 − 8 = 0, set

u1 = u2 = u3 = −1;

and if (k − 2)(k2 − 4k − 4) 6= 0, set

u1 =
k2 − 4k − 4

16
, u2 =

k

4
, u3 =

k(k2 − 4k − 4)
4(k − 2)2 .

Then uj ∈ F ∗ (1 ≤ j ≤ 3) and for at least one j ≤ 3 the equation
(

4u2
j + k

4uj

)2

= x4 + k

is solvable in x ∈ F .

The proof of Theorem 1 is based on the following

Lemma 1. Let A,B,C,D be in F and

z1 = A, z2 = B, z3 = ABC3, z4 = AB2D3.

Then for at least one j ≤ 4 the equation x3 = zj is solvable in x ∈ F .

Proof. If ABCD = 0 the assertion is clear and if ABCD 6= 0 it follows
from the fact that the multiplicative group of F is cyclic and for all a, b in
Z at least one of the numbers a, b, a+ b, a+ 2b is divisible by 3.
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Proof of Theorem 1. If k + 72 = 0 or k2 − 72k + 722 = 0 we have
y2

1 − k = 63 or (−3)3, respectively. If k3 + 723 6= 0 we put in Lemma 1

A = y2
1−k, B = y2

2−k, C = 2634(k+72)−2, D = 21038(k2−72k+722)

and verify that

y3 =
y1y2 + k

y1 + y2
, y2

3 − k = ABC3,

y4 =
y1y

2
2 + ky1 + 2ky2

y2
2 + 2y1y2 + k

, y2
4 − k = AB2D3.

The proof of Theorem 2 is based on the following

Lemma 2. Let uj be as in Theorem 2. Then uj ∈ F ∗ and
√

4u3
j − kuj ∈ F for at least one j ≤ 3.(2)

Proof. If k − 2 = 0 and charK 6= 5, then u1u2u3 6= 0 and (2) holds
because

(4u3
1 − ku1)(4u3

2 − ku2) = (4u3
3 − ku3)(1/8)2.

If k − 2 = 0 and charK = 5, α ∈ F \ F5, then clearly u1u2u3 6= 0 and (2)
holds as

(4u3
1 − ku1)(4u3

2 − ku2) = (4u3
3 − ku3)22.

If k2 − 4k − 4 = 0 and k3 − 8 6= 0, then u1u2u3 6= 0, since otherwise
k6 + 16k3 − 64 = 0, while charF 6= 2 implies

(k2 − 4k − 4, k6 + 16k3 − 64) = 1.

Also (2) holds in view of the identity

(4u3
1 − ku1)(4u3

2 − ku2) = (4u3
3 − ku3)

(
k3 − 8

2k2

)6

(1/4)2.

If k2 − 4k − 4 = k3 − 8 = 0, then charF = 7, k = 1, u1u2u3 6= 0 and

4u3
1 − ku1 = 22.

If (k − 2)(k2 − 4k − 4) 6= 0, then clearly u1u2u3 6= 0 and (2) holds since

(4u3
1 − ku1)(4u3

2 − ku2) = (4u3
3 − ku3)

(
k − 2

4

)6

22.

Proof of Theorem 2. We have the identity
(

4u2
j + k

4uj

)2

− k =
(

4u2
j − k
4uj

)2

and by Lemma 2 for at least one j ≤ 3 we have
√

(4u2
j − k)/4uj ∈ F .
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The following problem related to the proof of Lemma 2 remains open.

Problem. Let f ∈ Z[x] have the leading coefficient positive and assume
that the congruence f(x) ≡ y2 (modm) is solvable for every natural number
m. Does there exist an odd integer k > 0 and integers x1, . . . , xk such that∏k
i=1 f(xi) is a square?
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