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Summary. The paper is devoted to the Cauchy problem for a semilinear damped wave
equation in the whole of Rn. Under suitable assumptions a bounded dissipative semigroup
of global solutions is constructed in a locally uniform space Ḣ1

lu(Rn)×L̇2
lu(Rn). Asymptotic

compactness of this semigroup and the existence of a global attractor are then shown.

1. Introduction. The uniform spaces, which can be traced back to [K],
have already been used by many authors in the study of both parabolic and
hyperbolic problems (see e.g. [M], [M-S], [F]). In this paper we develop the
ideas of [F] for the Cauchy problem for a semilinear wave equation

{
utt + ηut −∆u = f(u) + g(x), t > 0, x ∈ Rn,
u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Rn.(1)

By a functional analytic approach we construct a semigroup {T (t)} of global
solutions corresponding to (1) in locally uniform spaces and prove the ex-
istence of an absorbing set. We also show the validity of an appropriate
asymptotic compactness condition and prove the existence of a global at-
tractor for {T (t)}. Mention should be made that in contrast to [F] we do
not impose any monotonicity condition on f (see Remark 4.3). Our assump-
tions concerning f are borrowed from [T], where they were introduced for
the damped wave equation in a bounded domain.

The results of the paper can be summarized as follows. After a finite time
tB the image T (t)B of any bounded set B ⊂ Ḣ2

lu(Rn)×Ḣ1
lu(Rn) will enter an

absorbing set B0, bounded in Ḣ2
lu(Rn) × Ḣ1

lu(Rn). With further increase of
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time, T (t)B will be attracted—in a weaker topology ofH1
% (Rn)×L2

%(Rn)—by
a global attractor A, which is bounded in Ḣ1

lu(Rn)× L̇2
lu(Rn) and compact

in H1
%(Rn)×L2

%(Rn). In addition A is invariant with respect to the group of
translations in Rn.

2. Well posedness of the wave equation in uniform spaces

2.1. Wave operator and linear wave equation in uniform spaces. We
begin with the Cauchy problem for the homogeneous linear equation{

utt + ηut −∆u = 0, t > 0, x ∈ Rn,
u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Rn,(2)

where η ∈ R. We will consider (2) in the form of an initial value problem
for an abstract ordinary differential equation

d

dt

[
u
v

]
= Aη

[
u
v

]
,

[
u
v

]

t=0
=
[
u0
v0

]
,(3)

in the Banach space X = Ḣ1
lu(Rn)× L̇2

lu(Rn) with Aη defined in formula (5)
below.

For a strictly positive continuous weight function % : Rn → (0,∞) and
1 ≤ p <∞ we set

Lp%(Rn) =
{
φ ∈ Lploc(R

n); ‖φ‖Lp%(Rn) =
( �

Rn
|φ(x)|p%(x) dx

)1/p
<∞

}
.

We consider the translated weight functions

τy%(x) = %(x− y), y ∈ Rn,
and the locally uniform spaces

Lplu(Rn) = {φ ∈ Lploc(R
n); ‖φ‖Lplu(Rn) = sup

y∈Rn
‖φ‖Lpτy%(Rn) <∞},

L̇plu(Rn) = {φ ∈ Lplu(Rn); ‖τyφ− φ‖Lplu(Rn) → 0 as |y| → 0},
where L̇plu(Rn) is the closed subspace of Lplu(Rn) consisting of all its elements
that are translation continuous.

The locally uniform Sobolev spaces W k,p
lu (Rn) and Ẇ k,p

lu (Rn) are defined
as in [A-C-D-RB] and [M-S]. We recall that continuous Sobolev embeddings
are valid for such spaces:

Wm,p
lu (Rn) ⊂W j,q

lu (Rn) if j − n

q
≤ m− n

p
, 1 < p ≤ q <∞.

Also compact embeddings

Wm,p
lu (Rn) ⊂W j,q

% (Rn)

hold whenever j − n/q < m− n/p, 1 < p ≤ q <∞.
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We remark that if we take any positive integrable weight function % ∈
C2(Rn) such that∣∣∣∣

∂%

∂xj
(x)

∣∣∣∣ ≤ %0%(x), x ∈ Rn, j = 1, . . . , n,
∣∣∣∣
∂2%

∂xj∂xk
(x)
∣∣∣∣ ≤ %1%(x), x ∈ Rn, j, k = 1, . . . , n,

%0, %1 > 0, then the locally uniform spaces Ḣ2
lu(Rn), Ḣ1

lu(Rn), L̇2
lu(Rn) coin-

cide, respectively, with the uniform spaces Ḣ2
U (Rn), Ḣ1

U (Rn), L̇2
U (Rn) defined

from

L2
U (Rn) =

{
φ ∈ L2

loc(Rn); ‖φ‖L2
U (Rn) = sup

y∈Rn

( �

{|x−y|<1}
|φ(x)|2 dx

)1/2
<∞

}

(see [A-C-D-RB]). Also, choosing the particular weight function %(x) =
(1 + δ|x|2)−ν , δ > 0, ν > n/2, one can achieve the estimate

|∇%| ≤ c
√
δ %(4)

for any small δ > 0.
Our first concern will be to show that

Theorem 2.1. The wave operator

Aη =
[

0 I
∆ −ηI

]
, where η ∈ R,(5)

with the domain D(Aη) = Ḣ2
lu(Rn) × Ḣ1

lu(Rn), generates a C0 semigroup
{T (t)} of linear operators in X. Furthermore, the linear problem (3) with
initial data in Ḣ2

lu(Rn)× Ḣ1
lu(Rn) has a unique solution

[
u(t)
v(t)

]
= T (t)

[
u0
v0

]
for t ≥ 0.

Proof. The proof proceeds in three steps.

Step 1. Take Y =H1(Rn)×L2(Rn) and an operator Λ : D(Λ) ⊂ Y → Y ,
where

Λ = A0 + Cy

with

A0 =
[

0 I
∆ 0

]
, Cy =




0 0

−1
2
∆τy%

τy%
− ∇τy%

τy%
∇+

3
4
|∇τy%|2
τy%2 −ηI


 .

It is well known that A0 with the domain H2(Rn) × H1(Rn) generates a
C0 group {T0(t)} on Y satisfying ‖T0(t)‖L(Y,Y ) ≤ e|t| (see [P, §7.4]). Since
Cy : Y → Y is a bounded linear perturbation of A0, the operator Λ with the
domain H2(Rn)×H1(Rn) is the infinitesimal generator of a C0 semigroup
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{S(t)} on Y satisfying ‖S(t)‖L(Y,Y ) ≤ e(1+‖Cy‖L(Y,Y ))t (see [P, §3.1]). Note
that the norm ‖Cy‖L(Y,Y ) is bounded by a constant C which depends only
on the quantities %0, %1 and η, but is independent of y ∈ Rn.

Step 2. Take Xτy% = H1
τy%(R

n)×L2
τy%(R

n), and consider an isomorphism
Φ : Xτy% → Y ,

Φ =
[

(τy%)1/2 0
0 (τy%)1/2

]
.

Since Aη in Xτy% coincides with Φ−1ΛΦ : Φ−1(D(Λ)) ⊂ Xτy% → Xτy%,
where Φ−1(D(Λ)) = H2

τy%(R
n) × H1

τy%(R
n), the resolvent set of Aη in Xτy%

is the same as the resolvent set of Λ in Y . Thus %(Aη) contains the ray
(1 + C,∞) ⊂ R and

(6) ‖R(λ,Aη)k‖L(Xτy%,Xτy%) = ‖Φ−1R(λ,Λ)kΦ‖L(Xτy%,Xτy%)

≤ ‖Φ−1‖L(Y,Xτy%)‖R(λ,Λ)k‖L(Y,Y )‖Φ‖L(Xτy%,Y )

≤ M

(λ− 1− C)k
for λ > 1 + C, k = 1, 2, . . . .

Here M , which bounds ‖Φ‖L(Xτy%,Y )‖Φ−1‖L(Y,Xτy%), depends on %0 and %1

but not on y ∈ Rn. As a consequence, Aη generates a C0 semigroup {T (t)}
on Xτy% such that T (t) = Φ−1S(t)Φ.

Step 3. Note that the operator Aη : Ḣ2
lu(Rn) × Ḣ1

lu(Rn) ⊂ Ḣ1
lu(Rn) ×

L̇2
lu(Rn) → Ḣ1

lu(Rn) × L̇2
lu(Rn) is closed and densely defined because ∆ :

Ḣ2(Rn) ⊂ L̇2(Rn) → L̇2(Rn) has these properties (see [A-C-D-RB]). Fur-
thermore, since the inverse operator (λI − Aη)−1 may be written formally
in matrix form as

(λI − Aη)−1 =
[

(λ+ η)[λ(λ+ η)I −∆]−1 [λ(λ+ η)I −∆]−1

−I + λ(λ+ η)[λ(λ+ η)I −∆]−1 λ[λ(λ+ η)I −∆]−1

]
,

from the properties of the Laplacian in locally uniform spaces (see [A-C-D-
RB]) it is evident that (λI −Aη)−1 takes Ḣ1

lu(Rn)× L̇2
lu(Rn) into Ḣ2

lu(Rn)×
Ḣ1

lu(Rn) for all sufficiently large λ > 0. Using finally the fact that M in (6)
does not depend on y ∈ Rn we conclude that

∥∥∥∥R(λ,Aη)k
[
φ
ψ

]∥∥∥∥
Ḣ1

lu(Rn)×L̇2
lu(Rn)

≤ M(n+ 2)
(λ− C)k

∥∥∥∥
[
φ
ψ

]∥∥∥∥
Ḣ1

lu(Rn)×L̇2
lu(Rn)

(7)

for all sufficiently large λ and all k = 1, 2, . . ., which completes the proof.

2.2. Mild and classical solutions of the semilinear wave equation. In
the Banach space X = Ḣ1

lu(Rn) × L̇2
lu(Rn) consider the semilinear Cauchy



Hyperbolic Equations in Uniform Spaces 253

problem
{
utt + ηut −∆u = f(u) + g(x), t > 0, x ∈ Rn,
u(0, x) = u0(x), ut(0, x) = v0(x), x ∈ Rn,(8)

where η ∈ R, g ∈ L̇2
lu(Rn) and f : R→ R satisfies

|f(s1)− f(s2)| ≤ c|s1 − s2|(1 + |s1|q−1 + |s2|q−1), s1, s2 ∈ R,(9)

for some q ∈ [1, n/(n− 2)] if n ≥ 3 or any finite q ≥ 1 if n = 1, 2.
Rewrite (8) as

d

dt

[
u
v

]
= Aη

[
u
v

]
+ F

([
u
v

])
,

[
u
v

]

t=0
=
[
u0
v0

]
∈ X.(10)

From (9), Sobolev embeddings and the Young inequality it is evident that
the map

F
([

u
v

])
=
[

0
f(u) + g

]

from X into X is Lipschitz continuous on bounded sets. Thus, application
of a standard perturbation result (see [P, §6.1]) leads to the following ob-
servation concerning mild solutions to (10).

Proposition 2.2. If f satisfies (9) and g ∈ L̇2
lu(Rn), then the prob-

lem (10) is locally uniquely solvable in X = Ḣ1
lu(Rn) × L̇2

lu(Rn), i.e. there
exists τ > 0 and a unique X-valued function continuous on [0, τ ] such that
the equation

[
u(t)
v(t)

]
= T (t)

[
u0
v0

]
+

t�

0

T (t− s)F
([

u(s)
v(s)

])
ds(11)

is satisfied for t ∈ [0, τ ].
Furthermore, the mild solution to (10) is defined for all t ≥ 0 unless its

Ḣ1
lu(Rn)× L̇2

lu(Rn)-norm blows up in a finite time.

It was shown in [P, §6.1] that if the nonlinear term F is a C1 map
from X to X, then the mild solutions corresponding to initial data from
D(Aη) = Ḣ2

lu(Rn)× Ḣ1
lu(Rn) are in fact classical solutions to (10) such that

(12)

[
u(·, u0, v0)
v(·, u0, v0)

]
∈ C([0, τ ], Ḣ1

lu(Rn)× L̇2
lu(Rn))

∩ C1((0, τ), Ḣ1
lu(Rn)× L̇2

lu(Rn)),
[
u(t, u0, v0)
v(t, u0, v0)

]
∈ Ḣ2

lu(Rn)× Ḣ1
lu(Rn), t ∈ [0, τ ].

We remark that the Fréchet derivative of F exists and

F ′
([

u
v

])[
h1
h2

]
=
[

0
f ′(u)h1

]
,

[
u
v

]
,

[
h1
h2

]
∈ X,
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provided that

f ∈ C1(R), |f ′(s)| ≤ c|s1−s2|(1+|s1|p−1+|s2|p−1), s1, s2 ∈ R,(13)

where
p ∈ [1, 2] if n = 3, p ≥ 1 arbitrarily large if n = 1, 2.(14)

Proposition 2.3. If n ≤ 3, (13) and (14) hold , u0 ∈ Ḣ2
lu(Rn), v0 ∈

Ḣ1
lu(Rn) and g ∈ L̇2

lu(Rn), then the mild solution resulting from Proposi-
tion 2.2 is a classical solution.

Recall also that if
[
u
v

]
is a classical solution to (9) then, as shown in

the proof of [P, Theorem 1.5], the function [0, τ) 3 t 7→
[
ut
vt

]
=:
[
v
w

]
∈ X

satisfies the integral equation
[
v
w

]
= T (t)

[
v(0)
w(0)

]
+

t�

0

T (t− s)
[

0
f ′(u(s))v(s)

]
ds,

[
v(0)
w(0)

]
=
[

v0
∆u0 − ηv0 + f(u0) + g

]
.

Thus, under the assumptions of Proposition 2.3, any solution
[
u
v

]
corre-

sponding to initial data from D(Aη) is time differentiable (strongly in X)
and its derivative is a mild solution of the Cauchy problem obtained by
formal differentiation of (10).

Remark 2.4. Clearly, it is possible to consider other spaces of initial
data, like e.g. X s+1/2×X s, s ∈ R, with X s from a scale of fractional power
spaces corresponding to −∆+ I : Ḣ2

lu(Rn) ⊂ L̇2
lu(Rn)→ L̇2

lu(Rn).

3. Global solvability and dissipativeness of the damped wave
equation. Due to Proposition 2.2 a uniform in time estimate of ‖(u, v)‖X is
needed to justify global solvability of (8). Below, such an estimate is derived
under the assumptions used in [T, p. 207] for a damped wave equation in a
bounded domain.

3.1. A priori estimate in X. Consider η > 0 in (8) and assume the
following dissipativeness conditions:

∃k≥1, µ1>0 ∀µ∈(0,µ1] ∃Cµ∈R ∀s∈R sf(s)− kF (s) ≤ −µs2 + Cµ,(15)

∃ν1>0 ∀ν∈(0,ν1] ∃C′ν∈R ∀s∈R F (s) ≤ −νs2 + C ′ν ,(16)

where F (s) = � s0 f(z) dz (1).

(1) The function f(s) = s− s|s|q−1, q > 1, is an example of a nonlinearity satisfying
the above conditions.
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Fix a number ε satisfying

0 < ε <
η − ε

4
, 2ε(η − ε) ≤ µ1,(17)

decompose η = ε+ (η− ε) and multiply the equation (8) by (ut + εu)τy% to
get

�

Rn
(utt + εut)(ut + εu)τy% dx+ (η − ε)

�

Rn
ut(ut + εu)τy% dx

=
�

Rn
(∆u+ f(u) + g)(ut + εu)τy% dx.

Obvious calculations show that

(18)
d

dt
L(u, ut)

:=
d

dt

�

Rn

[
1
2

(ut + εu)2 +
1
2
ε(η − ε)u2 +

1
2
|∇u|2 − F (u)

]
τy% dx

= − (η − ε)
�

Rn
u2
t τy% dx+ ε

�

Rn
uf(u)τy% dx− ε

�

Rn
|∇u|2τy% dx

−
�

Rn
ut∇u · ∇τy% dx− ε

�

Rn
u∇u · ∇τy% dx+

�

Rn
g(ut + εu)τy% dx.

Thanks to (4) and (15) the right hand side of (18) is, for small δ > 0,
dominated by

ε

[
−η − ε

2ε

�

Rn
u2
t τy% dx−

µ

2

�

Rn
u2τy% dx

− 1
2

�

Rn
|∇u|2τy% dx+ k

�

Rn
F (u)τy% dx

]

+
(
ε

µ
+

1
η − ε

) �

Rn
g2τy% dx+ Cµε

�

Rn
τy% dx.

Choosing µ = µ0 = 2ε(η − ε) = η−ε
ε ε2 + ε(η − ε) we dominate the last

expression by

ε

[
−

�

Rn
u2
t τy% dx− ε2

�

Rn
u2τy% dx−

1
2
ε(η − ε)

�

Rn
u2τy% dx

− 1
2

�

Rn
|∇u|2τy% dx+

�

Rn
F (u)τy% dx

]
+

3
2(η − ε)

�

Rn
g2τy% dx

+ (k − 1)ε
�

Rn
F (u)τy% dx+ Cµ0ε

�

Rn
τy% dx.
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Since

−
�

Rn
u2
t τy% dx− ε2

�

Rn
u2τy% dx ≤ −

1
2

�

Rn
(ut + εu)2τy% dx,

and
(k − 1)ε

�

Rn
F (u)τy% dx ≤ (k − 1)εC ′ν

�
τy% dx,

we next estimate the right hand side of (18) by

−εL(u, ut) +
3

2(η − ε)
�

Rn
g2τy% dx+ ε(Cµ0 + (k − 1)C ′ν)

�

Rn
τy% dx.

It is thus seen that
d

dt
L(u, ut) ≤ −εL(u, ut) + εC1,(19)

and hence

L(u, ut) ≤ L(u0, v0)e−εt + C1(1− e−εt),(20)

where

C1 =
3
µ0

sup
y∈Rn

�

Rn
g2τy% dx+ (Cµ0 + (k − 1)C ′ν)

�

Rn
% dx.

Thanks to (16), for three components of the integrand in L(u, ut), we have

1
2

(ut + εu)2 +
1
2
ε(η − ε)u2 − F (u) ≥ 1

2
(1− ε)u2

t +
1
2

[ε(η − 1) + 2ν]u2 − C ′ν .

Choosing now ε sufficiently small satisfying (17) and ν = ν1 we can achieve

ν0 := min{1− ε, ε(η − 1) + 2ν1} > 0,

which leads to the estimate

L(u, ut) ≥
ν0

2

�

Rn
(u2
t + u2)τy% dx+

ν0

2

�

Rn
|∇u|2τy% dx− C2(21)

with C2 = C ′ν1
� Rn % dx. Combining (20) and (21) we get

ν0

2

�

Rn
(u2
t + u2 + |∇u|2)τy% dx ≤ L(u0, v0)e−εt + C1(1− e−εt) + C2.

Estimating the term | � Rn F (u0)τy% dx| by const(‖u0‖q+1
Ḣ1

lu(Rn)
+ � Rn τy% dx) we

finally obtain
ν0

2

�

Rn
(u2
t + u2 + |∇u|2)τy% dx ≤ const(‖u0‖Ḣ1

lu(Rn), ‖v0‖L̇2
lu(Rn), ‖g‖L̇2

lu(Rn)),

and
lim sup
t→∞

ν0

2

�

Rn
(u2
t + u2 + |∇u|2)τy% dx ≤ C1 + C2.
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This leads to the estimate

(22) ‖(u, ut)‖2Ḣ1
lu(Rn)×L̇2

lu(Rn)

≤ 6
ν0

const(‖u0‖Ḣ1
lu(Rn), ‖v0‖L̇2

lu(Rn), ‖g‖L̇2
lu(Rn))

and to the asymptotic estimate

lim sup
t→∞

‖(u, ut)‖2Ḣ1
lu(Rn)×L̇2

lu(Rn) ≤
6
ν0

(C1 + C2).(23)

Theorem 3.1. Suppose n ≤ 3, (13)–(16) hold , η > 0 and g ∈ L̇2
lu(Rn).

Then the problem (10) defines in X = Ḣ1
lu(Rn) × L̇2

lu(Rn) a C0 semigroup
{T (t)} of global mild solutions which has bounded orbits of bounded sets and
possesses a bounded absorbing set.

Proof. In the light of our previous considerations we merely need to
justify the uniform continuity of the solution on bounded time intervals with
respect to the initial condition. However, since orbits of bounded sets are
bounded and the nonlinear term in (10) is Lipschitz continuous on bounded
sets from X to X, this property is a direct consequence of (11) and the
Gronwall inequality.

3.2. Globally bounded smooth solutions to (8). Our further concern is
smooth Ḣ2

lu(Rn) × Ḣ1
lu(Rn) solutions to (10) for n ≤ 3. To get uniform

in time estimates of their Ḣ2
lu(Rn) × Ḣ1

lu(Rn)-norm and construct a global
attractor we need to sharpen the growth restriction imposed on f ′ in con-
ditions (13), (14). Assume, from now on, that the nonlinear term f has a
subcritical growth, that is,

|f ′(s)| ≤ c(1 + |s|2−δ0) with 0 < δ0 < 1 when n = 3.(24)

Formal time differentiation of (8) leads to the Cauchy problem, for v =
ut, having the form

{
vtt + ηvt −∆v = f ′(u)v, t > 0, x ∈ Rn,
v(0, x) = v0(x), vt(0, x) = w0(x), x ∈ Rn.

(25)

Since the linear semigroup {T (t)} introduced in Theorem 2.1 does not decay
to zero as t→∞, consider

d

dt

[
v
w

]
=
(
Aη +

[
0 0
−γI 0

])[
v
w

]
+
[

0
f ′(u)v + γv

]
, γ > 0,

[
v
w

]

t=0
=
[
v0
w0

]
∈ X,
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and the corresponding integral formula[
v
w

]
= S(t)

[
v0
w0

]
(26)

+
t�

0

S(t−s)
[

0
f ′(u(s))v(s) + γv(s)

]
ds, t ≥ 0,

[
v0
w0

]
∈X,

where {S(t)} denotes the linear semigroup generated by Aη +
[

0 0
−γI 0

]

on X.

Note that, for
[
u0
v0

]
∈ Ḣ2

lu(Rn) × Ḣ1
lu(Rn), the first coordinate of

{
S(t)

[
u0
v0

]}
is a solution to
{
ωtt + ηωt −∆ω = −γω, t > 0, x ∈ Rn,
ω(0, x) = u0(x), ωt(0, x) = v0(x), x ∈ Rn.

Therefore, estimating as in Subsection 3.1 and using a density argument we
obtain

(27)

∥∥∥∥S(t)
[
u0
v0

]∥∥∥∥
Ḣ1

lu(Rn)×L̇2
lu(Rn)

≤ C
∥∥∥∥
[
u0
v0

]∥∥∥∥
Ḣ1

lu(Rn)×L̇2
lu(Rn)

e−εt, t ≥ 0,
[
u0
v0

]
∈ X.

We are now ready to prove

Lemma 3.2. Under (24) and the assumptions of Theorem 3.1, for any
bounded set B ⊂ Ḣ2

lu(Rn)× Ḣ1
lu(Rn) there exists MB > 0 such that

∥∥∥∥
[
u(t, u0, v0)
v(t, u0, v0)

]∥∥∥∥
Ḣ2

lu(Rn)×Ḣ1
lu(Rn)

≤MB for each t > 0,
[
u0
v0

]
∈ B.

Proof. Let us focus on the case n = 3. Since
[
u0
v0

]
belongs to a bounded

subset B of D(Aη) = Ḣ2
lu(Rn) × Ḣ1

lu(Rn) and T (t)
([

u0
v0

])
is a classical

solution to (10) the quantity

w0 := utt(0) = −ηv0 +∆u0 + f(u0) + g ∈ L̇2
lu(Rn)

is well defined. Also, the elements
[
v0
w0

]
remain in a certain set B̃, bounded

in Ḣ1
lu(Rn)× L̇2

lu(Rn), and the function
[
v(t)
w(t)

]
=

d

dt
T (t)

([
u0
v0

])

satisfies (26).
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Furthermore, the linear semigroup in (26) decays exponentially to zero
and, thanks to (24), we obtain a subordination condition of the form
∥∥∥∥
[

0
f ′(u(s))v(s) + γv(s)

]∥∥∥∥
Ḣ1

lu(Rn)×L̇2
lu(Rn)

≤ ‖f ′(u(s))v(s)‖L̇2
lu(Rn) + γ‖v(s)‖L̇2

lu(Rn)

≤ c‖1 + |u(s)|2−δ0‖
L̇

3+δ1
lu (Rn)

‖v(s)‖
L̇

6−δ2
lu (Rn)

+ γ‖v(s)‖L̇2
lu(Rn)

≤ G(‖u(s)‖Ḣ1
lu(Rn))‖v(s)‖1−θ

L̇2
lu(Rn)

‖v(s)‖θ
Ḣ1

lu(Rn) + γ‖v(s)‖L̇2
lu(Rn)

≤ [G(‖u(s)‖Ḣ1
lu(Rn)) + γ]‖v(s)‖1−θ

L̇2
lu(Rn)

‖v(s)‖θ
Ḣ1

lu(Rn)

≤ G1(‖u(s)‖Ḣ1
lu(Rn) + ‖v(s)‖L̇2

lu(Rn))
∥∥∥∥
[
v(s)
w(s)

]∥∥∥∥
θ

Ḣ1
lu(Rn)×L̇2

lu(Rn)
,

where G,G1 : [0,∞) → [0,∞) are nondecreasing continuous functions and
θ ∈ (0, 1).

Since a uniform (in s ≥ 0) estimate of ‖u(s)‖Ḣ1
lu(Rn) + ‖v(s)‖L̇2

lu(Rn) has
already been found in Subsection 3.1, we have∥∥∥∥
[
v(t)
w(t)

]∥∥∥∥
Ḣ1

lu(Rn)×L̇2
lu(Rn)

≤ C
∥∥∥∥
[
v0
w0

]∥∥∥∥
Ḣ1

lu(Rn)×L̇2
lu(Rn)

e−εt

+ C
t�

0

e−ε(t−s)
∥∥∥∥
[

0
f ′(u(s))v(s) + γv(s)

]∥∥∥∥
Ḣ1

lu(Rn)×L̇2
lu(Rn)

ds

≤ C
∥∥∥∥
[
v0
w0

]∥∥∥∥
Ḣ1

lu(Rn)×L̇2
lu(Rn)

e−εt

+ CG1( sup
s∈[0,t]

{‖u(s)‖Ḣ1
lu(Rn) + ‖v(s)‖L̇2

lu(Rn)})

× sup
s∈[0,t]

∥∥∥∥
[
v(s)
w(s)

]∥∥∥∥
θ

Ḣ1
lu(Rn)×L̇2

lu(Rn)

1− e−εt
ε

.

Therefore the function

z(t) = sup
s∈[0,t]

∥∥∥∥
[
v(s)
w(s)

]∥∥∥∥
Ḣ1

lu(Rn)×L̇2
lu(Rn)

satisfies
z(t) ≤ C(1 + z(t)θ), t > 0,

and hence

sup
t≥0

∥∥∥∥
[
v(t)
w(t)

]∥∥∥∥
Ḣ1

lu(Rn)×L̇2
lu(Rn)

≤ z1,



260 J. W. Cholewa and T. Dlotko

where z1 is the unique positive root of the equation z = C(1 + zθ) (see
[C-D 1, Theorem 3.1.1] for details).

Estimating ∆u with the aid of (8) we obtain (for w = utt, v = ut)

‖∆u‖L̇2
lu(Rn) ≤ ‖w‖L̇2

lu(Rn) +η‖v‖L̇2
lu(Rn) +‖f(u)‖L̇2

lu(Rn) +‖g‖L̇2
lu(Rn),(28)

where all the terms appearing on the right hand side have already been
estimated independently of t ≥ 0 and (u0, v0) ∈ B. Since −∆+ λI (λ > 0)
is an isomorphism of Ḣ2

lu(Rn) onto L̇2
lu(Rn) (see [A-C-D-RB, Theorems 5.2

and 5.3]) it is clear that (28) and the previously obtained bound on u yield
an Ḣ2

lu(Rn)-estimate of u. The proof is complete.

Remark 3.3. When the growth of f is critical, that is, f is cubic if
n = 3, a similar procedure will still give a bound on the solutions in D(Aη),
but uniform merely on bounded time intervals.

According to (23) the Ḣ1
lu(Rn)× L̇2

lu(Rn)-estimate is asymptotically in-
dependent of (u0, v0) varying in bounded subsets of Ḣ1

lu(Rn)× L̇2
lu(Rn). As

in [C-D 1, Corollary 4.1.3] we thus conclude that

Lemma 3.4. Under the assumptions of Lemma 3.2 there is a set B0
bounded in D(Aη) = Ḣ2

lu(Rn) × Ḣ1
lu(Rn) and absorbing bounded subsets of

D(Aη) in D(Aη) norm.

Proof. Note that ∥∥∥∥
[
v(t)
w(t)

]∥∥∥∥
Ḣ1

lu(Rn)×L̇2
lu(Rn)

remains asymptotically independent of (v0, w0) (see [C-D 2, Theorem 1] for
details). From (28) and (23) the same is true for ‖∆u‖L̇2

lu(Rn). This may be
finally translated to an asymptotic estimate of ‖u‖Ḣ2

lu(Rn) with the aid of
the isomorphism property of −∆+ λI (λ > 0).

4. Continuity and asymptotic compactness of {T (t)}. In the fol-
lowing two subsections we will check additional conditions necessary to de-
duce the existence of a global attractor for space dimensions n ≤ 3.

4.1. Weak asymptotic compactness property. Recall from [CA-DL],
[A-C-D-RB] that any sequence bounded in H2

lu(Rn)×H1
lu(Rn) is precompact

in X% = H1
% (Rn)× L2

%(Rn). In addition, each element obtained as a limit of
its subsequence in X%-norm must in fact belong to Ḣ1

lu(Rn)× L̇2
lu(Rn). This

leads to the following conclusion.

Lemma 4.1. Suppose that n ≤ 3 and the assumptions of Lemma 3.2
hold , and let E = clX%(γ

+(B0)). Then E is bounded in X and the semigroup
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{T (t)} is asymptotically compact on E, i.e. if {(u0m, v0m)} is contained in

E and tm → ∞, then
{
T (tm)

[
u0m
v0m

]}
contains a subsequence convergent

in X%-norm to an element of E.

Proof. Thanks to boundedness of γ+(B0) in Ḣ2
lu(Rn)× Ḣ1

lu(Rn), the se-
quences from γ+(B0) approximating limit points (φ, ψ) ∈ clX%(γ

+(B0)) in
X% will be bounded in the norm of Ḣ2

lu(Rn)× Ḣ1
lu(Rn). Thus, clX%(γ

+(B0))
is in fact bounded in X.

If tm →∞ and {(u0m, v0m)} is contained in E then, since E is positively

invariant (see (29) below),
{
T (tm)

([
u0m
v0m

])}
remains in E. Therefore,

there exists
{[

φm
ψm

]}
⊂ γ+(B0) such that

∥∥∥∥T (tm)
([

u0m
v0m

])
−
[
φm
ψm

]∥∥∥∥
X%

≤ 1
m
, m ∈ N.

Since
{[

φm
ψm

]}
is bounded in D(Aη), there exists a subsequence

{[
φmk

ψmk

]}

convergent in X% to a certain
[
φ
ψ

]
∈ X. The above implies that

∥∥∥∥T (tmk
)
([

u0mk

v0mk

])
−
[
φ
ψ

]∥∥∥∥
X%

≤
∥∥∥∥T (tmk

)
([

u0mk

v0mk

])
−
[
φmk

ψmk

]∥∥∥∥
X%

+

∥∥∥∥
[
φmk

ψmk

]
−
[
φ
ψ

]∥∥∥∥
X%

,

with the right hand side convergent to zero as k → ∞. Evidently (φ, ψ)
belongs to E, which completes the proof.

4.2. Continuity in X%. For the set E = clX%(γ
+(B0)) we will now show

the continuity of the semigroup T (t) : E → E, t ≥ 0; namely

if {(u0m, v0m)} ⊂ E and (u0m, v0m)
X%→ (u0, v0) ∈ E,(29)

then T (t)(u0m, v0m)
X%→ T (t)(u0, v0) ∈ E for each t ≥ 0.

Note first that the set γ+(B0) is bounded in D(Aη). Then, thanks to the
embedding H2

lu(Rn) ⊂ L∞(Rn), n ≤ 3, the first coordinate φ of any pair
(φ, ψ) ∈ γ+(B0) stays in a bounded subset of L∞(Rn). Therefore,

∃M>0 ∀(φ,ψ)∈conv(γ+(B0)) |f ′(φ)| ≤M.(30)
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Now, for any
[
u1
v1

]
,

[
u2
v2

]
∈ γ+(B0) the X% norm of T (t)

([
u1 − u2
v1 − v2

])

will be estimated in terms of
∥∥∥∥
[
u1 − u2
v1 − v2

]∥∥∥∥
X%

. Indeed, setting U = u1 − u2,

we find that U satisfies

Utt + ηUt −∆U = f(u1)− f(u2).(31)

Multiplying (31) by (Ut + εU)%, 0 < ε < (η − ε)/4, and calculating as in
Subsection 3.1 we find that H(U,Ut) := � Rn

[1
2(Ut + εU)2 + 1

2ε(η − ε)U2 +
1
2 |∇U |2

]
% dx satisfies

d

dt
H(U,Ut) ≤ constH(U,Ut),

and hence
1
4
‖(U(t), Ut(t))‖2X% ≤ H(U(t), Ut(t)) ≤ H(U(0), Ut(0))econst t(32)

≤ const1‖(U(0), Ut(0))‖2X%.
By a density argument, estimate (32) holds for U being the difference of
any two elements of E, which proves (29). Note that the limit function
T (t)(u0, v0) obtained in (29) is in fact a mild solution to (10). This may be
verified by letting m→∞ in the integral formula

[
um(t)
vm(t)

]
= T (t)

[
u0m
v0m

]
+
t�

0

T (t− s)
([

0
f(um(s)) + g

])
ds, t ≥ 0,(33)

defining a mild solution for smooth data (u0m, v0m) ∈ γ+(B0).
The above considerations show the validity of all assumptions in the

theorem of [H, p. 39] concerning the existence of a global attractor. Under
the assumptions of Lemma 4.1 we thus conclude that:

Theorem 4.2. The semigroup {T (t)} restricted to a complete metric
subspace E of X% has a global attractor A. The attractor A is moreover
bounded in X-norm, attracts bounded subsets of Ḣ2

lu(Rn)× Ḣ1
lu(Rn) in the

topology of X% and is invariant with respect to the group of translations
in Rn.

Remark 4.3. Note that the assumptions of [F, condition (1.2)] in our
notation read

f ∈ C1(R), lim sup
|s|→∞

f(s)
s

< 0, ∃M>0 ∀s∈R f ′(s) ≤M.(34)

Also, f(s) = s − s3 + 2s cos s2 is an example of a nonlinearity satisfy-
ing (15), (16) for which the last condition in (34) fails. In particular such an
f will not be covered by the results of [F].
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