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Summary. Inspired by Pełczyński’s decomposition method in Banach spaces, we intro-
duce the notion of Schroeder–Bernstein quadruples for Banach spaces. Then we use some
Banach spaces constructed by W. T. Gowers and B. Maurey in 1997 to characterize them.

1. Introduction. For the sake of clarity we start with the notation.
Let X and Y be Banach spaces. We write X

c
↪→ Y if X is isomorphic to a

complemented subspace of Y , and X ∼ Y if X is isomorphic to Y . If n ∈ N∗
= {1, 2, . . . }, then Xn denotes the sum of n copies of X. It is useful to
define X0 = {0}. Finally, if m,n are integer numbers, then m |n means that
m divides n.

Suppose that X and Y are Banach spaces satisfying

(1) X
c
↪→ Y, Y

c
↪→ X.

In 1996 W. T. Gowers [6] solved the so-called Schroeder–Bernstein Problem
for Banach spaces by showing that X is not necessarily isomorphic to Y .
However Pełczyński’s decomposition method [1, p. 64] states that X ∼ Y if
we add to (1) the two conditions

(2) X ∼ X2, Y ∼ Y 2.

This decomposition method has played an important role in the isomorphic
theory of classical Banach spaces (see [1]). So after the variety of solutions
to the Schroeder–Bernstein Problem (see [2]–[7]) it is natural to ask whether
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it is possible to determine all pairs of non-trivial conditions similar to those
of (2) which added to (1) also yield X ∼ Y . To be more precise we define:

Definition 1.1. We say that a quadruple (p, q, r, s) of natural numbers
with p + q ≥ 2 and r + s ≥ 2 is a Schroeder–Bernstein quadruple (SBQ) if
X ∼ Y for any Banach spaces X and Y satisfying (1) and the conditions

(3) X ∼ Xp ⊕ Y q, Y ∼ Xr ⊕ Y s.

The restrictions p + q ≥ 2 and r + s ≥ 2 are imposed to avoid the
conditions X ∼ {0}, Y ∼ {0}, X ∼ X, Y ∼ Y and X ∼ Y in (3).

We also say that ∆ = (p − 1)(s − 1) − rq is the discriminant of the
quadruple (p, q, r, s).

Thus Pełczyński’s decomposition method states that (2, 0, 0, 2) is a SBQ.
The aim of this paper is to present a simple characterization of the SBQ
in terms of their discriminant. To do this, the Banach spaces constructed
by W. T. Gowers and B. Maurey in [7, p. 563] will be fundamental (see
Remark 2.4).

2. The result. Our characterization of the SBQ is given by Theo-
rem 2.1. It follows directly from Propositions 2.5 and 2.6.

Theorem 2.1. A quadruple (p, q, r, s) of natural numbers with p+q ≥ 2
and r+s ≥ 2 is a SBQ if and only if ∆ 6= 0, ∆ | (p+q−1) and ∆ | (r+s−1).

In order to prove our propositions, we need some auxiliary results. We
begin with a simple remark which will be used several times in this work.

Remark 2.2. Let X and Y be Banach spaces and (p, q, r, s) a quadruple
of natural numbers with p + q ≥ 2 and r + s ≥ 2, satisfying (3). Then the
discriminant of (s, r, q, p) is also ∆ and

Y ∼ Y s ⊕Xr, X ∼ Y q ⊕Xp.

Lemma 2.3. Let (p, q, r, s) be a quadruple of natural numbers with p > r,
q > s, r + s ≥ 2, ∆ | (p+ q − 1) and ∆ | (r + s− 1). Suppose that X and Y
are Banach spaces satisfying (3). Then there exist P,Q,R, S ∈ N such that
either P ≥ R and Q ≤ S, or P ≤ R and Q ≥ S, satisfying

(a) P +Q ≥ 2 and R+ S ≥ 2.
(b) The discriminant of (P,Q,R, S) is ∆.
(c) ∆ | (P +Q− 1) and ∆ | (R+ S − 1).
(d) X ∼ XP ⊕ Y Q and Y ∼ XR ⊕ Y S.

Proof. Let us start with two claims.

Claim 1. Put R = r and S = s. Then there exist P,Q ∈ N, with P ≤ R
or Q ≤ S, satisfying (a)–(d) of Lemma 2.3.

Indeed, we distinguish three cases: s = 0, s = 1 and s > 1.
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Case 1: s = 0. Then ∆ = −p+ 1− rq and r ≥ 2. We write p = rm+ n
for some m ∈ N∗ and 0 ≤ n < r. By (3), Y ∼ Xr and

(4) X ∼ (Xr)m ⊕Xn ⊕ Y q ∼ Y m ⊕Xn ⊕ Y q ∼ Xn ⊕ Y q+m.

Put P = n and Q = q+m. Thus P < R and according to (3) and (4), (d) is
satisfied. Moreover,

(a) P +Q = n+ q +m ≥ n+ 1 + 1 ≥ 2, because q > s = 0 and m ∈ N∗.
(b) The discriminant of (P,Q,R, S) is equal to −(n − 1) − r(q + m) =
−(p− rm− 1)− r(q +m) = −p+ 1− rq = ∆.

(c) Since P + Q − 1 = n + (q + m) − 1 = (p − rm) + (q + m) − 1 =
(p+q−1)−m(r−1) and by hypothesis ∆ | (p+q−1) and ∆ | (r−1),
it follows that ∆ | (P +Q− 1).

So in this case Claim 1 is proved.

Case 2: s = 1. Hence ∆ = −rq and q > s = 1. We write p = rm+ n for
some m ∈ N∗ and 0 ≤ n < r. By (3), Y ∼ Xr ⊕ Y and

X ∼ Xrm+n ⊕ Y q ∼ Xr ⊕Xr ⊕ · · · ⊕Xr ⊕ Y ⊕Xn ⊕ Y q−1(5)

∼ Xn ⊕ Y q.

Put P = n and Q = q. Thus P < R and according to (3) and (5), (d) is
satisfied. Moreover,

(a) P +Q = n+ q ≥ n+ 2 ≥ 2.
(b) The discriminant of (P,Q,R, S) is equal to −rq = ∆.
(c) Since P +Q−1 = n+q−1 = (p−rm)+q−1 = (p+q−1)−rm and

by hypothesis ∆ | (p+ q−1) and ∆ | r, it follows that ∆ | (P +Q−1).

Therefore in this case Claim 1 is also proved.

Case 3: s > 1.

Step 3.1. Put p1 = p− r > 0 and q1 = q − s > 0. By (3) we have

(6) X ∼ Xp1+r ⊕ Y q1+s ∼ Xr ⊕ Y s ⊕Xp1 ⊕ Y q1 ∼ Xp1 ⊕ Y q1+1.

Subcase 3.1.1: p1 ≤ r. Put P = p1 and Q = q1 + 1. Thus P ≤ R and
according to (3) and (6), (d) is satisfied. Moreover,

(a) P +Q = p1 + q1 + 1 ≥ 1 + 1 + 1 = 3.
(b) The discriminant of (P,Q,R, S) is equal to (p1−1)(s−1)−r(q1+1) =

(p− r − 1)(s− 1)− r(q − s+ 1) = ps− p− s+ 1− rq = ∆.
(c) Since P + Q − 1 = p1 + (q1 + 1) − 1 = (p − r) + (q − s) =

(p+q−1)−(r+s−1) and by hypothesis∆ | (p+q−1) and ∆ | (r+s−1),
it follows that ∆ | (P +Q− 1).

Hence in this subcase Claim 1 is proved.
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Subcase 3.1.2: q1 + 1 ≤ s. Put P = p1 and Q = q1 + 1. Thus Q ≤ S
and according to (3) and (6), (d) is satisfied. Now, from what we have just
done in Subcase 3.1.1, Claim 1 is also proved.

Otherwise
p1 > r, s < q1 + 1 = q − (s− 1).

Step 3.2. Put p2 = p1 − r > 0 and q2 = q1 + 1− s > 0. By (6) we have

(7) X ∼ Xp2+r ⊕ Y q2+s ∼ Xr ⊕ Y s ⊕Xp2 ⊕ Y q2 ∼ Xp2 ⊕ Y q2+1.

Subcase 3.2.1: p2 ≤ r. Put P = p2 and Q = q2 + 1. Thus P ≤ R and
according to (3) and (7), (d) is satisfied. The remaining assertions of Claim 1
are proved similarly to Subcase 3.1.1.

Subcase 3.2.2: q2 +1 ≤ s. Put P = p2 and Q = q2 +1. Thus Q ≤ S and
according (3) and (7), (d) is satisfied. The remaining assertions of Claim 1
are proved as in Subcase 3.1.2.

Otherwise
p2 > r, s < q2 + 1 = q − 2(s− 1).

Since s > 1, after a finite number of steps Claim 1 is proved.
Next, note that thanks to Remark 2.2, it follows from Claim 1 that the

following claim is also true:

Claim 2. Let (p′, q′, r′, s′) be a quadruple of natural numbers with dis-
criminant ∆, p′ < r′, q′ < s′, p′+q′ ≥ 2, ∆ | (p′+q′−1) and ∆ | (r′+s′−1).
Put P = p′ and Q = q′ and suppose that X and Y are Banach spaces
satisfying

X ∼ Xp′ ⊕ Y q′ , Y ∼ Xr′ ⊕ Y s′ .

Then there exist R,S ∈ N such that P ≥ R or Q ≥ S and satisfying (a)–(d)
of Lemma 2.3.

Now we are ready to prove Lemma 2.3.

Step 1. Put R1 = r and S1 = s. By Claim 1, there exist P1, Q1 ∈ N,
with P1 ≤ R1 or Q1 ≤ S1, such that the quadruple (P1, Q1, R1, S1) satisfies
(a)–(c) of Lemma 2.3 and

(8) X ∼ XP1 ⊕ Y Q1 , Y ∼ XR1 ⊕ Y S1 .

If P1 = R1 or Q1 = S1 then Lemma 2.3 is proved.
Otherwise P1 < R1 and Q1 < S1.

Step 2. Put P2 = P1 and Q2 = Q1. By Claim 2 applied in (8), there
exist R2, S2 ∈ N, with P2 ≥ R2 or Q2 ≥ S2, such that the quadruple
(P2, Q2, R2, S2) satisfies (a)–(c) of Lemma 2.3 and

X ∼ XP2 ⊕ Y Q2 , Y ∼ XR2 ⊕ Y S2 .

If P2 = R2 or Q2 = S2 then Lemma 2.3 is also proved.
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Otherwise P2 > R2 and Q2 > S2.
Finally observe that R2 < P2 = P1 < R1 = r. So after a finite number of

steps Lemma 2.3 is proved.

Remark 2.4. Let p, q, r, s ∈ N with p + q ≥ 2 and r + s ≥ 2. Suppose
that there exists a quintuple (i, j, k, l, t), with i, j ∈ N∗, k, l, t ∈ N and t ≥ 2,
such that t does not divide j − i,
(9) (p− 1)i+ qj = kt, ri+ (s− 1)j = lt.

Then (p, q, r, s) is not a SBQ.
Indeed, let Xt be the Banach space constructed by W. T. Gowers and

B. Maurey in [7, p. 563], that is, Xu
t ∼ Xv

t , with u, v ∈ N∗, if and only if u
is equal to v modulo t. By (9) we have

Xi
t ∼ (Xi

t)
p ⊕ (Xj

t )q, Xj
t ∼ (Xi

t)
r ⊕ (Xj

t )s.

Furthermore, since t does not divide j−i, it follows that X i
t 6∼ Xj

t . Therefore
(p, q, r, s) is not a SBQ.

Proposition 2.5. If a quadruple (p, q, r, s) of natural numbers with p+
q ≥ 2 and r+s ≥ 2 is a SBQ , then ∆ 6= 0, ∆ | (p+q−1) and ∆ | (r+s−1).

Proof. First note that it is enough to show:

(a) If ∆ = 0 then (p, q, r, s) is not a SBQ.
(b) If ∆ 6= 0 and ∆ does not divide p+q−1, then (p, q, r, s) is not a SBQ.
(c) If ∆ 6= 0 and ∆ does not divide r+s−1, then (p, q, r, s) is not a SBQ.

We will prove (a) and (b). By symmetry, (c) is also true.

(a) Suppose ∆ = 0. Since p + q ≥ 2, there are three cases: p = 1, q = 1,
p ≥ 2 and finally q ≥ 2.

Case 1: p = q = 1. By the definition of ∆, r = 0 and therefore s ≥ 2.

Subcase 1.1: s = 2. Let Xt be the Banach space mentioned in Re-
mark 2.4, with t = 2. We take X = Xt and Y = X2

t . Hence (1) and (3) are
satisfied, but X 6∼ Y . Thus (p, q, r, s) is not a SBQ.

Subcase 1.2: s ≥ 3. Let Xt be as in Remark 2.4, with t = s−1. We take
X = Xt and Y = Xs−1

t . Therefore (1) and (3) are satisfied, but X 6∼ Y .
This implies that (p, q, r, s) is not a SBQ .

Case 2: p ≥ 2. Since ∆ = 0, (p, p − 1, p − 1, r, p + q) satisfies (9). So
(p, q, r, s) is not a SBQ , because p+ q does not divide 1.

Case 3: q ≥ 2. Since ∆ = 0, (q, q + 1, q, s− 1, p+ q) satisfies (9). Since
p+ q does not divide 1, (p, q, r, s) is not a SBQ.

(b) Assume that ∆ 6= 0 and ∆ does not divide p + q − 1. Then ∆ 6= 1
and we consider the following two cases: ∆ ≥ 2 and ∆ ≤ −2.
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Case 1: ∆ ≥ 2. It follows from the definition of ∆ that s > 1. There are
two subcases: r > 0 and r = 0.

Subcase 1.1: r > 0. Since ∆ > 0, q/(s− 1) < (p− 1)/r. Let m,n ∈ N∗
be such that

(10) q/(s− 1) < m/n < (p− 1)/r.

Here we also distinguish two possibilities:

Subcase 1.1.1: ∆ - (m(r+ s− 1)− n(p+ q − 1)). Let i = m(s− 1)− nq
and j = n(p − 1) − mr. From the inequalities in (10), we have i > 0 and
j > 0. It is easy to verify that (i, j,m, n,∆) satisfies (9). Furthermore, ∆
does not divide j − i = n(p+ q− 1)−m(r+ s− 1). Consequently, (p, q, r, s)
is not a SBQ.

Subcase 1.1.2: ∆ | (m(r + s − 1) − n(p + q − 1)). Since (vm)/(vn + 1)
tends to m/n as v →∞, there exists v ∈ N∗ such that

(11) q/(s− 1) < (vm)/(vn+ 1) < (p− 1)/r.

We take i = vm(s−1)−(vn+1)q and j = (vn+1)(p−1)−vmr. By (11) we
have i > 0 and j > 0. Now observe that (i, j, vm, vn,∆) satisfies (9). But,
of course, ∆ does not divide j− i = vn(p+ q−1)−vm(r+s−1)+p+ q−1,
hence (p, q, r, s) is not a SBQ.

Subcase 1.2: r = 0. By the definition of ∆, s ≥ 2. To show that
(p, q, r, s) is not a SBQ, it suffices to take m,n ∈ N∗ such that q/(s− 1) <
m/n and to proceed as in Subcase 1.1. Only observe that here we must
consider separately the cases when ∆ does or does not divide m(s − 1) −
n(p+ q − 1).

Case 2: ∆ ≤ −2. In this case, it is useful to distinguish the following
four possible subcases: s = 0, r = 0, s > 1 and r > 0, and finally s = 1.

Subcase 2.1: s = 0. Thus r ≥ 2 and −∆ = (p − 1) + rq ≥ 2. Since
−∆ does not divide p + q − 1, q ≥ 1. Therefore (1, r, 1, 0,−∆) satisfies (9).
Moreover, −∆ = (p+ q−1) + (r−1)q, hence −∆ does not also divide r−1.
So (p, q, r, s) is not a SBQ.

Subcase 2.2: r = 0. Therefore ∆ = (p−1)(s−1) ≤ −2. Since s ≥ 2, we
have p = 0. Hence (q, 1, 0, 1,−∆) satisfies (9). Thus, (p, q, r, s) is not a SBQ,
because by hypothesis ∆ does not divide q − 1.

Subcase 2.3: s > 1 and r > 0. Since ∆ < 0, (p− 1)/r < q/(s− 1). Now
replacing ∆ by −∆, by an analogous argument to that used in Case 1, we
deduce that (p, q, r, s) is not a SBQ.

Subcase 2.4: s = 1. So r ≥ 1, ∆ = −rq ≤ −2 and therefore q ≥ 1. It
suffices to take m,n ∈ N∗ such that (p − 1)/r < m/n and replacing ∆ by
−∆ to proceed as in Subcase 1.2 to see that (p, q, r, s) is not a SBQ.
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Proposition 2.6. Suppose that (p, q, r, s) is a quadruple of natural num-
bers with p + q ≥ 2, r + s ≥ 2, ∆ 6= 0, ∆ | (p + q − 1) and ∆ | (r + s − 1).
Then (p, q, r, s) is a SBQ.

Proof. Let X and Y be Banach spaces satisfying (1) and (3). We will
prove that X ∼ Y by considering the following six possible cases: p = r and
s > q; p > r and s = q; p > r and s > q; p ≤ r and s ≤ q; p > r and s < q;
and finally p < r and s > q.

Case 1: p = r and s > q. In this case it is also convenient to consider
three subcases: r = 0, r = 1 and r > 1.

Subcase 1.1: r = 0. Thus ∆ = −(s− 1) and by hypothesis there exists
v ∈ N∗ such that q − 1 = v(s− 1). By (3), Y ∼ Y s and

X ∼ Y q−1 ⊕ Y ∼ Y v(s−1) ⊕ Y ∼ Y s−1 ⊕ Y s−1 ⊕ · · · ⊕ Y s−1 ⊕ Y ∼ Y.
Subcase 1.2: r = 1. Hence ∆ = −q and thus there exists v ∈ N∗ such

that s = vq. By (3), X ∼ X ⊕ Y q and

Y ∼ X ⊕ Y s ∼ X ⊕ Y vq ∼ X ⊕ Y q ⊕ Y q ⊕ · · · ⊕ Y q ∼ X.
Subcase 1.3: r > 1. Let D ∈ N∗ be such that s = q +D. Thus

(12) ∆ = (r − 1)(D − 1)− q.
Then, using (3), we have

(13) Y ∼ Xr ⊕ Y q+D ∼ (Xr ⊕ Y q)⊕ Y D ∼ X ⊕ Y D.

Adding X ⊕ Y D−1 to both sides of (13) we deduce that

Y ∼ X2 ⊕ Y D+(D−1).

Hence, by induction we obtain

(14) Y ∼ Xr ⊕ Y D+(r−1)(D−1).

To continue we distinguish two possibilities: ∆ < 0 and ∆ > 0.

Subcase 1.3.1:∆ < 0. By our hypothesis,−∆ |D. Therefore there exists
v ∈ N∗ satisfyingD = −v∆. Consequently, by (3), (12) and (14) we conclude
that

Y ∼ Xr ⊕ Y (r−1)(D−1)−∆ ⊕ Y D+∆ ∼ Xr ⊕ Y q ⊕ Y D+∆ ∼ X ⊕ Y D+∆.

Again by induction, we get Y ∼ X ⊕ Y D+m∆ for every m ∈ N∗, m ≤ v. In
particular, Y ∼ X ⊕ Y D+v∆ ∼ X.

Subcase 1.3.2: ∆ > 0. Let v ∈ N∗ be such that D = v∆. According
to (3), (12) and (14) we have

Y ∼ Xr ⊕ Y (r−1)(D−1)−∆ ⊕ Y D+∆ ∼ Xr ⊕ Y q ⊕ Y D+∆ ∼ X ⊕ Y D+∆.

Therefore, once more, by induction it is easy to see that

(15) Y ∼ X ⊕ Y D+v∆ ∼ X ⊕ Y 2D.
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Thus, it follows from (13) and (15) that

(16) Y ∼ X ⊕ Y D ⊕ Y D ∼ Y D+1.

Let A be a Banach space satisfying

(17) X ∼ Y ⊕ A.
So, again by (13) and (16),

X ∼ Y ⊕ A ∼ Y D+1 ⊕A ∼ Y ⊕A⊕ Y D ∼ X ⊕ Y D ∼ Y.
Case 2: p > r and s = q. By Remark 2.2 and Case 1, it follows that

X ∼ Y .

Case 3: p > r and s > q. Then ∆ > 0. Let d and D in N∗ be such that
p = r + d and s = q +D. Thus

(18) ∆ = r(D − 1) + q(d− 1) + (d− 1)(D − 1).

There are two subcases: ∆ = 1 and ∆ ≥ 2.

Subcase 3.1:∆= 1. Hence only one of the three summands in (18) is not
zero and equal to 1. There are three possibilities to consider: r(D−1) = 1,
q(d− 1) = 1 and (d− 1)(D − 1) = 1.

Subcase 3.1.1: r(D−1) = 1. So r = 1 andD = 2. Consequently, by (18),
d = 1, p = 2 and q is arbitrary. Now by using (3) and (17) we have

(19) X ∼ X ⊕ Y q+1 ⊕ Y ⊕ A ∼ X ⊕ Y q+1 ⊕X ∼ X2 ⊕ Y q+1.

Let B be a Banach space satisfying

(20) Y ∼ X ⊕B.
Hence, again by (3),

(21) Y ∼ X2 ⊕ Y q ⊕B ∼ X ⊕ Y q ⊕X ⊕B ∼ X ⊕ Y q ⊕ Y ∼ X ⊕ Y q+1.

Therefore from (19) and (21), X ∼ X ⊕ Y . Finally, again from (21), we get

Y ∼ X ⊕ Y q+1 ∼ X ⊕ Y ⊕ Y ⊕ · · · ⊕ Y ∼ X.
Subcase 3.1.2: q(d − 1) = 1. So q = 1 and d = 2. Therefore by (18),

D = 1 and r is arbitrary. By Remark 2.2 and Subcase 3.1.1, it follows that
X ∼ Y .

Subcase 3.1.3: (d− 1)(D − 1) = 1. So d = 2 and D = 2. Thus by (18),
r = 0 and q = 0. Consequently, Pełczyński’s decomposition method implies
that X ∼ Y .

Subcase 3.2: ∆ ≥ 2. So p > 1. By (18) and our hypothesis we have

(22) (r(D − 1) + q(d− 1) + (d− 1)(D − 1)) | (r + d+ q − 1),

(23) (r(D − 1) + q(d− 1) + (d− 1)(D − 1)) | (r + q +D − 1).

There are two possibilities: D − 1 = 0 and D − 1 > 0.



Decomposition Methods in Banach Spaces 281

Subcase 3.2.1: D− 1 = 0. Then (22) and (23) can be rewritten respec-
tively as follows:

(24) q(d− 1) | (r + d+ q − 1), q(d− 1) | (r + q).

Therefore q(d−1) | (d−1). Consequently, q = 1 and d−1 ≥ 2, because∆ ≥ 2.
Also by (24) we conclude that (d− 1) | (r + 1), that is, (p− r − 1) | (r + 1).

Since D = 1 and s = q +D = 2, it follows from (3) and (17) that

(25) X ∼ Y ⊕ A ∼ Xr ⊕ Y 2 ⊕A ∼ Xr ⊕ Y ⊕ Y ⊕ A ∼ Xr+1 ⊕ Y.
Now let v ∈ N∗ be such that r+ 1 = v(p− r− 1). Thus, (3) and (19) imply
that

Y ∼ X ⊕B ∼ Xp ⊕ Y ⊕B ∼ Xp−1 ⊕ Y ⊕X ⊕B ∼ Xp−1 ⊕ Y 2.

Hence, according to (25), we have Y ∼ Xp−1 ⊕ Y 2 ∼ X(p−1)−(r+1) ⊕ Y ⊕
Y ⊕Xr+1 ∼ X(p−1)−(r+1) ⊕ Y ⊕X ∼ Xp−r−1 ⊕ Y . Finally, again by (25),
we deduce

X ∼ Xv(p−r−1) ⊕ Y ∼ Xp−r−1 ⊕Xp−r−1 ⊕ . . .⊕Xp−r−1 ⊕ Y ∼ Y.
Subcase 3.2.2: D − 1 > 0. Then d − 1 = 0, otherwise by (18), ∆ >

(r+ q+D− 1) and thus (23) would not be true. Hence, by Remark 2.2 and
Subcase 3.2.1, it follows that X ∼ Y .

Case 4: p ≤ r and s ≤ q. Here it is convenient to distinguish three
subcases: p ≥ 1 and s ≥ 1; p = 0; and finally s = 0.

Subcase 4.1: p ≥ 1 and s ≥ 1. Then, from (3), (17) and (20), we obtain

X ∼ Xr ⊕ Y s−1 ⊕ Y ⊕A ∼ Xr ⊕ Y s−1 ⊕X ∼ Xr+1 ⊕ Y s−1,(26)

Y ∼ Xp−1 ⊕ Y q ⊕X ⊕B ∼ Xp−1 ⊕ Y q ⊕ Y ∼ Xp−1 ⊕ Y q+1.(27)

In order to see that X ∼ Y , it suffices to apply Case 3 in (26) and (27).
Because (r + 1) + (s− 1)− 1 = r + s− 1, (p− 1) + (q + 1)− 1 = p+ q − 1,
the discriminant of (r + 1, s− 1, p− 1, q + 1) is equal to −∆, r + 1 > p− 1
and q + 1 > s− 1.

Subcase 4.2: p = 0. Thus q ≥ 2 and by hypothesis we know that

(28) ((s− 1) + rq) | (q − 1).

Therefore r ≤ 1. If r = 1, then again by (28), s = 0, which is absurd, because
r + s ≥ 2. So, r = 0 and (28) implies that there exists v ∈ N∗ such that
q− 1 = v(s− 1). Consequently, as in Subcase 1.1, we can show that X ∼ Y .

Subcase 4.3: s = 0. By Remark 2.2 and Subcase 4.2, it follows that
X ∼ Y .

Case 5: p > r and s < q. By Lemma 2.3, there exist P,Q,R, S ∈ N
satisfying (a)–(d) of that lemma and such that either P ≥ R and Q ≤ S, or
P ≤ R and Q ≥ S. That is, exactly one of the following four possibilities is
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satisfied: P = R and S > Q; P > R and S = Q; P > R and S > Q; P ≤ R
and S ≤ Q. Therefore, from Cases 1–4, we see that X ∼ Y .

Case 6: p < r and s > q. By Remark 2.2 and Case 5, it follows that
X ∼ Y .

This finishes the proof of Proposition 2.6.

Corollary 2.7. Suppose that X and Y are Banach spaces satisfying
(1) and X ∼ Xp for some p ∈ N, p ≥ 2. Then X ∼ Y if and only if
Y ∼ Xr ⊕ Y 2 for some r ∈ N with (p− 1) | (r + 1).

Problem 2.8. Suppose that X and Y are Banach spaces satisfying (1)
and Y ∼ Xr ⊕ Y 2 for some r ∈ N∗. Does it follow that X ∼ Xp for some
p ∈ N, p ≥ 2?

Finally, note that Theorem 2.1 gives a partial affirmative answer to the
following problem:

Problem 2.9. Suppose that X and Y are Banach spaces satisfying (1)
and (3) for some p, q, r, s ∈ N with p+ q ≥ 2, r+ s ≥ 2. Is it true that there
exists m ∈ N, m ≥ 2, such that X ∼ Xm or Y ∼ Y m?

References

[1] P. G. Casazza, The Schroeder–Bernstein property of Banach space, in: Contemp.
Math. 85, Amer. Math. Soc., 1989, 61–77.

[2] E. M. Galego, How to generate new Banach spaces non-isomorphic to their cartesian
squares, Bull. Polish Acad. Sci. Math. 47 (1999), 21–25.

[3] —, Banach spaces complemented in each other without isomorphic finite sums, ibid.
50 (2002), 1–9.

[4] —, On solutions to the Schroeder–Bernstein problem for Banach spaces, Arch. Math.
(Basel) 74 (2002), 299–307.

[5] W. T. Gowers, A solution to the Schroeder–Bernstein problem for Banach space,
preliminary version (unpublished).

[6] —, A solution to the Schroeder–Bernstein problem for Banach space, Bull. London
Math. Soc. 28 (1996), 297–304.

[7] W. T. Gowers and B. Maurey, Banach spaces with small spaces of operators, Math.
Ann. 307 (1997), 543–568.
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