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Summary. Hyperbolic projective-metric planes, first axiomatized by R. Lingenberg [7],
are shown to be axiomatizable in terms of lines and orthogonality.

In a projective plane endowed with a hyperbolic projective polarity, one
can define an orthogonality relation on the set of lines which are not self-
polar (i.e. not passing through their poles), two lines being orthogonal if
they pass through each other’s pole. The set of non-self-polar lines, together
with the line-concurrence (three lines having a point in common are called
concurrent) and orthogonality relations form a hyperbolic projective-metric
plane (called a hyperbolic-metric plane in [7]). The motion group of this class
of structures was first axiomatized in [1, §11], and the structures themselves
were first axiomatized in [7] (see also [6]) in a mixed language, containing
on the one hand line-reflections, and on the other the incidence and orthog-
onality structure defined in terms of line-reflections.

The aim of this paper is to show that one can eliminate both the line-
reflection and the line-concurrence notions from Lingenberg’s axiom system,
to obtain an axiom system for hyperbolic projective-metric planes with lines
as the only individual variables and line-orthogonality as the only primitive
notion.
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It thus turns out that hyperbolic projective-metric planes (both over
arbitrary fields of characteristic 6= 2 and over quadratically closed fields
of characteristic 6= 2) can be axiomatized in the same language as plane
hyperbolic geometry (cf. [11]–[14]), and can be treated as a Plücker space,
as defined in [2].

Our result can also be stated in the spirit of [3]–[5], [9], and [10], as a char-
acterization of a geometric transformation under a mild hypothesis, which
states that a bijection ϕ mapping the set of lines of a hyperbolic projective-
metric plane to the set of lines of another hyperbolic projective-metric plane
which satisfies g ⊥ h ⇔ ϕ(g) ⊥ ϕ(h) is induced by an isomorphism of the
two planes (i.e. a bijection defined on both the point- and the line-set of the
plane, which preserves point-line incidence and line-orthogonality, as well as
their negations).

Lingenberg’s axiom system consists of the following assumptions (partly
group-theoretic, partly geometric):

Let G be a group generated by a subset S consisting of involutions. The
members of S will be thought of as reflections in lines, and will be denoted
by lowercase letters (which will also denote the lines themselves). Let J
denote the set of all involutions in G. We define the following notions for
the group plane associated with G: κ, standing for line-concurrence, by

(∗) κ(a, b, c) :⇔ abc ∈ J ;

⊥, standing for line-orthogonality, by

(∗∗) a ⊥ b :⇔ ab ∈ J ;

the notion of a point, defined, for any two different lines a and b, as the set
S(ab) := {x | abx ∈ J}; and the notion of point-line incidence, a line l being
incident with the point S(ab) if

(†) l ∈ S(ab).

A point A is called:

(i) ∆-connected if, for any three points B,C,D which are mutually
connected by lines, there is a line connecting A to one of B, C
or D,

(ii) 1-∆-connected if it is ∆-connected, and if there are three mutually
connected points B,C,D for which A is connected with exactly one
point of the triple,

(iii) 2-∆-connected if it is ∆-connected but not 1-∆-connected, and if
there is a point to which it is not connected.

The group G satisfies the following axioms (all lowercase letters refer to
members of S):

(I) if a 6= b and abx, aby, abz ∈ J , then xyz ∈ S,
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(II) there exist a, b, c, d such that none of abc, acd, abd, bcd is in J ,

and the group plane satisfies the axioms:

(III) every point is ∆-connected,
(IV) there exist two distinct 2-∆-connected points which are connected

by a line,
(V) there exists a 1-∆-connected point.

To express this axiom system in terms of ⊥ alone, we shall first define
the notion ε, of end, as a pair of lines without a common perpendicular, i.e.

ε(a, b) :⇔ (∀g) ¬(g ⊥ a ∧ g ⊥ b),
by means of which we define κ in terms of ⊥ alone as follows (here and in
the sequel the sum in the indices is mod 3):

κ(a1, a2, a3) :⇔ (a1 = a2 ∧ a2 = a3)

∨
{ 3∨

i=1

[
ai 6= ai+1 ∧

(
(ai+2 = ai ∨ ai+2 = ai+1)

∨
(

(∃h)
3∧

j=1

aj ⊥ h
)

∨
(

(∃d)
3∧

k=1

(ε(ak, ak+1) ∧ ε(ak, d))
))]}

.

This definition says that three lines, two of which are different, are con-
current if and only if the third one is equal to one of the other two, or they
either have a common perpendicular or are all meeting in an end (i.e. in a
point on the absolute). The line d required to meet each of the ai in an end
is there to prevent a1, a2, a3 from meeting in pairwise different points.

Given that now κ is an abbreviation for a formula in terms of ⊥, we can
define in terms of ⊥ the predicate σ, with σ(g, h, h′) standing for h′ is the
reflection of h in g, by

σ(g, h, h′) :⇔ ((h ⊥ g ∨ h = g) ∧ h′ = h) ∨ (h 6⊥ g ∧ h 6= g

∧ ((∃iji′) i ⊥ h ∧ i 6⊥ g ∧ κ(h, i, j) ∧ ¬κ(h, i, g) ∧ j ⊥ g
∧ κ(h′, i′, j) ∧ h 6= h′ ∧ h′ ⊥ i′ ∧ κ(i, i′, g) ∧ κ(h, h′, g))).

To see that the choice of i, j, i′ is always possible in a hyperbolic projec-
tive-metric plane over a field with more than five elements, let us denote by
π(g) and π(h) the poles of the lines g and h. Given g 6⊥ h, the two poles
are on neither g nor h. There are at most two lines in the projective plane
passing through a pole which are self-polar, so there are altogether at most
four lines passing through π(g) and π(h) which are not lines of the hyperbolic
projective-metric plane. These four lines, as well as the line joining π(g) and
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Fig. 1. σ(g, h, h′)

π(h), intersect h in a set S of at most five points. Since h contains more
than six points (as the coordinate field is neither GF(3) nor GF(5), nor can
it be GF(4), because the coordinate field must have characteristic 6= 2), we
can choose a point P on it which is different from the intersection point
of g with h and is not in S. Let j be the line joining P to π(g), let i be
the one joining P to π(h), and let h′ and i′ denote the reflections of h and i
in g. Since reflections preserve both incidence and orthogonality, the lines
g, h, h′, i, j, i′ are as required by (1) in the case where g and h are neither
equal nor perpendicular. It can be checked, given that line-orthogonality is
equivalent to the condition that a symmetric bilinear form be zero, that for
given g, h, i, j with h 6⊥ g, i ⊥ h, i 6⊥ g, j ⊥ g, with h, i, g not concurrent
and h, i, j concurrent, there is only one pair (h′, i′) satisfying the conditions
in the definition of σ.

Let ϕ and ψ be the sentences describing the hyperbolic projective-metric
plane over GF(3) and GF(5) respectively in terms of ⊥ (they state the exact
number of lines, and specify all the orthogonalities that take and all those
that do not take place among those lines).

We can easily reformulate the definitions of ∆-connected, 1-∆-connected,
and 2-∆-connected points in the language of lines (a point will be identified
with the two lines determining it), with 6=(x, y, z) standing for x 6= y ∧
y 6= z ∧ z 6= x:

δ(a, b) :⇔ a 6= b ∧ (∀g1g2g3)(∃u) 6=(g1g2g3) ∧ ¬κ(g1, g2, g3)

→ κ(a, b, u) ∧
( 3∨

i=1

κ(gi, gi+1, u)
)
,

δ1(a, b) :⇔ δ(a, b) ∧ (∃lmnv)(∀w) 6=(lmn) ∧ ¬κ(l,m, n) ∧ κ(a, b, v)

∧ κ(l,m, v) ∧ ¬((κ(m,n,w) ∨ κ(n, l, w)) ∧ κ(a, b, w)),

δ2(a, b) :⇔ δ(a, b)∧¬δ1(a, b)∧ [(∃pq)(∀v) p 6= q ∧¬(κ(a, b, v) ∧ κ(p, q, v))].

We can now state our axiom system for hyperbolic projective-metric planes
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over fields different from GF(3) or GF(5). The axioms are:

A1 (∀gh)(∃=1h′)σ(g, h, h′),

A2 σ(g, h, h′)→ σ(g, h′, h),

A3 (∃a1a2a3a4)
∧

1≤i<j<k≤4

¬κ(ai, aj , ak),

A4 (∀abxyz)(∃u)(∀mnpq) a 6= b ∧ κ(a, b, x) ∧ κ(a, b, y) ∧ κ(a, b, z)

→ (σ(z,m, n) ∧ σ(y, n, p) ∧ σ(x, p, q)→ σ(u,m, q)),

A5 a 6= b→ δ(a, b),

A6 (∃abc) ¬κ(a, b, c) ∧ δ2(a, b) ∧ δ2(a, c),

A7 (∃ab) δ1(a, b),

A8 (∀abc) κ(a, b, c)↔ ((∀x)(∃x′yy′zz′) σ(c, x, x′) ∧ σ(b, x′, y) ∧ σ(a, y, y′)

∧ σ(c, y′, z) ∧ σ(b, z, z′) ∧ σ(a, z′, x)),

A9 (∀ab) a ⊥ b↔ ((∀x)(∃x′yy′) σ(b, x, x′)

∧ σ(a, x′, y) ∧ σ(b, y, y′) ∧ σ(a, y′, x)),

as well as an axiom α stating that there are at least 28 different lines. We
think of all the axioms as stated with the perpendicularity notion alone, i.e.
we think of the notions defined as having been replaced by their definiens.

Given that, by A1, for any line g we can define a map σg which maps
every line h into the line h′ for which σ(g, h, h′), we notice that: A2 states
that the σg are involutory, A8, A9 ensure that (∗) and (∗∗) hold, A4 im-
plies axiom (I) for the group G generated by the subset S consisting of the
mappings σg, A3 implies (II), A5 implies (III), A6 implies (IV), and A7 im-
plies (V). Given that the σg, which are involutory, satisfy the axiom system
(I)–(V) (with the notions of line-concurrence, orthogonality, and point-line
incidence defined by (∗), (∗∗), and (†)), they must generate the motion group
of a hyperbolic projective-metric plane. Given A9, ⊥ has the desired inter-
pretation. Thus if we designate by ζ the conjunction of the axioms α and
A1–A9, then ϕ ∨ ψ ∨ ζ axiomatizes hyperbolic projective-metric planes.

Replacing A6 in the above axiom system with

A10 (∀a)(∃bc) ¬κ(a, b, c) ∧ δ2(a, b) ∧ δ2(a, c),

we obtain an axiom system, consisting of A1–A5, A7–A9, and A10, for
hyperbolic projective-metric planes over quadratically closed fields of char-
acteristic 6= 2. These planes were also called hyperbolic-metric planes with
free mobility in [8], where they were characterized in terms of motions.

Using the representation theorem 6.25 from [7], we have proved:

Theorem. Every model of ϕ ∨ ψ ∨ ζ is isomorphic to the set of lines
of a hyperbolic projective-metric coordinate plane coordinatized by a field



302 V. Pambuccian

of characteritic 6= 2, and ⊥ is interpreted as line-orthogonality. The same
conclusion, with quadratically closed fields of characteristic 6= 2 as coordinate
fields, holds for all models of A1–A5, A7–A9, and A10.
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