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Summary. We establish the existence of a solution to the Neumann problem in the half-
space with a subcritical nonlinearity on the boundary. Solutions are obtained through the
constrained minimization or minimax. The existence of solutions depends on the shape of
a boundary coefficient.

1. Introduction. Let R
N
+ = R

N−1 × (0,∞). For a point x ∈ R
N
+ =

R
N−1 × (0,∞) we use the notation x = (x′, xN ), where x′ ∈ R

N−1 and xN

> 0. In this paper we consider a semilinear Neumann problem in H1(RN
+ ),

N > 2,

(1.1)











−∆u + u = 0 in R
N
+ ,

∂u(x′, 0)

∂xN
= b(x′)up−1(x′, 0) on R

N−1, u > 0 on R
N
+ ,

where p ∈ (2, 2(N − 1)/(N − 2)) and b ∈ L∞(RN−1). It is well known
that the trace embedding of the Sobolev space H1(RN

+ ) into Lp(RN−1),
p ∈ (2, 2(N − 1)/(N − 2)) is continuous but not compact. The norm in
H1(RN

+ ) is defined by

‖u‖2 =
\

RN
+

(|∇u|2 + u2) dx.

It is assumed that lim|x′|→∞ b(x′) = b∞ > 0.

In this paper we prove existence when (i) b(x′) > b∞ on R
N−1 or (ii) b(x′)

> m−(p−2)/2b∞ on R
N−1, provided that b is invariant with respect to a finite

2000 Mathematics Subject Classification: 35B33, 35B38, 35J35, 35J60, 35J65, 35Q55.
Key words and phrases: trace embedding, concentration-compactness principle, sub-

critical exponent.

[7]



8 J. Chabrowski and K. Tintarev

subgroup of O(RN−1) of cardinality m acting freely on R
N−1 \ {0}. We also

consider the case when the above penalty condition is reversed: b(x′) < b∞
on R

N−1. However, in this case we only present a partial result (see Theorem
1.4) which depends on the convexity of b(x′).

The main results of this paper are the following:

Theorem 1.1. Suppose that b(x′) is a Z
N−1-periodic function. Then

problem (1.1) admits a solution.

Theorem 1.2. Suppose that b ∈ L∞(RN−1) and that b∞ < b(x′) on

R
N−1. Then problem (1.1) admits a solution.

Theorem 1.3. Suppose that b(x′) is invariant with respect to a finite

subgroup G ⊂ O(RN−1) of cardinality m acting freely on R
N−1 \ {0} and

that

(1.2) b(x′) > m−(p−2)/2b∞ for x′ ∈ R
N−1.

Then problem (1.1) admits a G-invariant solution.

The proofs of Theorems 1.1 and 1.2 are standard. Solutions are obtained
as multiples of minimizers of the constrained minimization problem

(1.3) cb = inf
u∈H1(RN

+
),
T
RN−1 b(x′)|u(x′,0)|p dx′=1

\
RN

+

(|∇u|2 + u2) dx.

In the case of the proof of Theorem 1.3 the space H1(RN
+ ) in the above min-

imization problem will be replaced by a subspace of G-invariant functions
in x′. Similar results are known for the equation

−∆u + u = |u|p−2u on R
N ,

where 1 < p < 2N/(N − 2) (see [4], [6]).

Theorem 1.4. Assume that b ∈ L∞(RN−1) is such that

(1.4) b(x′) < b∞ for x ∈ R
N−1.

Then there exists a finite set Y ⊂ Z
N−1 and cy′ ∈ [0, 1], y′ ∈ Y ,

∑

Y cy′ = 1,
such that problem (1.1) with bY (x′) =

∑

Y cy′b(x′ − y′) in place of b(x′) has

a solution.

Note that bY (x′) < bY
∞ = b∞. We do not know if existence holds for

every b, or whether convexity is essential for the existence. If b is radially
symmetric, problem (1.1) admits a solution radially symmetric in the vari-
ables x′ obtained as a multiple of a minimizer of the problem

infT
RN−1 b(x′)|u(x′,0)|p dx′=1, u∈H1

r (RN
+

)

\
RN

+

(|∇u|2 + u2) dx,

where H1
r (RN

+ ) is a subspace of H1(RN
+ ) consisting of functions radially

symmetric in x′. The existence of a minimizer follows from the compactness
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of the trace embedding of H1
r (RN

+ ) into a subspace of radially symmetric

functions in Lp(RN−1), p ∈ (2, 22(N−1)/(N−2)).

2. Global compactness. Theorem 2.2 below is a particular case of
the functional-analytic global compactness theorem from [5], applied to the
Sobolev space H1(RN

+ ), N > 2, with the norm ‖ · ‖ and the dislocations
defined by shifts u 7→ u(·−y′, ·), y′ ∈ Z

N−1. The derivation of this particular
case is completely analogous to the case of H1(RN ) with shifts by y ∈ Z

N

elaborated in [5], once one takes into account the following statement, close
to the one from [3], which deals with convergence in Lp(RN ).

Lemma 2.1. Let uk be a bounded sequence in H1(RN
+ ) and let p ∈

(2, 2(N − 1)/(N − 2)). Then uk(· + y′k, ·) ⇀ 0 for all y′k ∈ Z
N−1 implies

‖uk‖Lp(RN−1) → 0.

Proof. Assume that uk(·+y′k, ·) ⇀ 0 for any y′k ∈ Z
N−1. Consider a unit

cube Q := (0, 1)N−1. By the trace inequality for bounded domains, there is
a C > 0 such that

(2.1)
\

Q+y′

|uk(x
′, 0)|p dx′

≤ C‖uk‖
2
H1((Q+y′)×(0,∞))

( \
Q+y′

|uk(x
′, 0)|p dx′

)1−2/p

for all y′ ∈ Z
N−1. By adding (2.1) over y′ ∈ Z

N−1, and noting that the
union

⋃

y′∈ZN−1(Q + y′) is R
N−1 up to a set of measure zero, we obtain\

RN−1

|uk(x
′, 0)|p dx′ ≤ C‖uk‖

2 sup
y′∈ZN−1

( \
Q

|uk(x
′ + y′, 0)|p dx′

)1−2/p

≤ 2C‖uk‖
2
( \

Q

|uk(x
′ + y′k, 0)|p dx′

)1−2/p

where y′k ∈ Z
N−1 is any sequence satisfying

(2.2)
( \

Q

|uk(x
′ + y′k, 0)|p dx′

)1−2/p

≥
1

2
sup

y′∈ZN−1

( \
Q

|uk(x
′ + y′, 0)|p dx′

)1−2/p
.

It remains to note that by compactness of the trace of H1(Q× (0,∞)) into
Lp(Q), one has uk(· + y′k, 0) → 0 in Lp(RN−1), so that the assertion of the
lemma follows from (2.2).

Theorem 2.2. Let {uk} ⊂ H1(RN
+ ) be a bounded sequence. Then there

exist w(n) ∈ H1(RN
+ ), y

(n)
k

′
∈ Z

N−1, y
(1)
k

′
= 0, with k, n ∈ N, such that for a
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relabelled subsequence,

w(n) = w-lim
k→∞

uk(· + y
(n)
k

′
, ·),(2.3)

|y
(n)
k

′
− y

(m)
k

′
| → 0 as k → ∞ for n 6= m,(2.4)

∑

n∈N

‖w(n)‖2 ≤ lim sup ‖uk‖
2,(2.5)

(2.6) uk −
∑

n∈N

w(n)(· − y
(n)
k

′
, ·) → 0 in Lp(RN−1)

as k → ∞, p ∈

(

2,
2(N − 1)

N − 2

)

,

where the series
∑

n∈N
w(n)(· − y

(n)
k

′
, ·) converges uniformly in k.

The following lemma is a variant of the Brézis–Lieb lemma from [1].

Lemma 2.3. Let b ∈ L∞(RN−1) and assume that b(x′) → b∞ ∈ R as

|x′| → ∞. Let uk, w(n), and y
(n)
k

′
be as in Theorem 2.2. Then for every

p ∈ (2, 2(N − 1)/(N − 2)), y′ ∈ Z
N−1,

(2.7) lim
k→∞

\
RN−1

b(x′)|uk(x
′ + y′, 0)|p dx′

=
\

RN−1

b(x′)|w(1)(x′ + y′, 0)|p dx′ +
∑

n≥2

\
RN−1

b∞|w(n)(x′, 0)|p dx′

and the convergence is uniform in y′.

Proof. First we note that the statement easily reduces to the case y = 0
due to the convergence of b(x′) to b∞ as |x′| → ∞, once one considers the
left hand side of (2.7) as limk→∞

T
RN−1 b(x′− y′)|uk(x

′, 0)|p dx′. For the case
y = 0 we give a sketch of the proof only, since similar statements have been
proved several times elsewhere. In view of Lemma 2.1 we may assume that

uk =
∑

n∈N
w(n)(· − y

(n)
k

′
, ·). Since the series is absolutely convergent and

u 7→
T
RN−1 b(x′)|u(x′, 0)|p dx′ is continuous in H1(RN

+ ), it suffices to prove

the lemma if the sum has finitely many terms. By density of C∞
0 (RN )|

RN
+

in H1(RN
+ ), it suffices to prove the lemma when w(n) ∈ C∞

0 (RN )|
RN

+
. Since

|y
(n)
k

′
− y

(m)
k

′
| → ∞ for m 6= n, there is a k0 such that for all k ≥ k0 all the

functions w(n)(· − y
(n)
k

′
, ·) have disjoint supports. In this case

(2.8)
\

RN−1

b(x′)|uk(x
′, 0)|p dx′ =

∑

n≥1

\
RN−1

b(x′ + y
(n)
k

′
)|w(n)(x′, 0)|p dx′

→
\

RN−1

b(x′)|w(1)(x′, 0)|p dx′ +
∑

n≥2

\
RN−1

b∞|w(n)(x′, 0)|p dx′.



Neumann Problem with Subcritical Nonlinearity 11

3. Proofs of Theorems 1.1–1.3. The results of Section 2 will now be
applied to prove Theorems 1.1–1.3.

Proof of Theorem 1.1. Let {uk} ⊂ H1(RN
+ ) be a minimizing sequence

for the constant cb with
T
RN−1 b(x′)|uk(x

′, 0)|p dx′ = 1 for each k. We apply

Theorem 2.2 with dislocations gy′

k
: u 7→ u(· + y′k, ·), y′k ∈ Z

N−1. Let {uk},

{w(n)} and {y′k
(n)} be subsequences generated by Theorem 2.2. According

to Theorem 2.2, since b(x′) is periodic, we have

(3.1) 1 =
\

RN−1

b(x′)|uk(x
′, 0)|p dx′ =

∑

n

\
RN−1

b(x′)|w(n)(x′, 0)|p dx′.

It follows from (2.5) that

(3.2)
∑

n

‖w(n)‖2 ≤ cb.

We now set
T
RN−1 |w

(n)(x′, 0)|p dx′ = tn. Obviously we have ‖t
−1/p
n w(n)‖ ≥

cb, which yields ‖w(n)‖2 ≥ cbt
2/p
n . Applying this to (3.2), we get

(3.3)
∑

n

t2/p
n ≤ 1.

On the other hand, we deduce from (3.1) that
∑

n tn = 1. Since 2/p < 1,
the last relation and (3.3) can only hold if exactly one term tn, say tn◦

, is
nonzero and tn = 0 for all n 6= n◦. This yields ‖w(n◦)‖2 = cb and hence w(n◦)

is a minimizer.

Corollary 3.1. Let b(x′) = 1 on R
N−1. Then there exists a minimizer

for cb.

We now consider the case b(x′) > b∞ on R
N−1.

Proof of Theorem 1.2. Let c∞ = cb with b(x′) ≡ b∞. By Corollary 3.1
the constant c∞ is attained on a positive function v. Hence

cb ≤

T
RN

+

(|∇v|2 + v2) dx

(
T
RN−1 b(x′)|v(x′, 0)|p dx′)2/p

(3.4)

<

T
RN

+

(|∇v|2 + v2) dx

(
T
RN−1 b∞|v(x′, 0)|p dx′)2/p

= c∞.

Let {uk} be a minimizing sequence for cb. We may assume that uk ⇀ w in
H1(RN

+ ) and also uk ⇀ w in Lp(RN−1). Setting

a(u) =
\

RN
+

(|∇u|2 + u2) dx and vk = uk − w

we can write
cb = a(w) + a(vk) + o(1)
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up to a subsequence and by the Brézis–Lieb lemma [1] we also have

1 =
\

RN−1

b(x′)|uk(x
′, 0)|p dx′ =

\
RN−1

b(x′)|vk(x
′, 0)|p dx′

+
\

RN−1

b(x′)|w(x′, 0)|p dx′ + o(1).

We deduce from the last two relations that

cb ≥ cb

( \
RN−1

b(x′)|w(x′, 0)|p dx′
)2/p

+ cb

( \
RN−1

b(x′)|vk(x
′, 0)|p dx′

)2/p
+ o(1)

= cb

( \
RN−1

b(x′)|w(x′, 0)|p dx′
)2/p

+
(

1 −
\

RN−1

b(x′)|w(x′, 0)|p dx′
)2/p

+ o(1).

We therefore have either

(i)
T
RN−1 b(x′)|w(x′, 0)|p dx′ = 1 or

(ii)
T
RN−1 b(x′)|w(x′, 0)|p dx′ = 0.

We show that (ii) cannot occur. Indeed, if
T
RN−1 b(x′)|w(x′, 0)|p dx′ = 0,

then uk ⇀ 0 in H1(RN
+ ) and in Lp(RN−1) (in the sense of traces). Since

b(x′) → b∞ as |x′| → ∞, we get

1 =
\

RN−1

b(x′)|uk(x
′, 0)|p dx′ =

\
RN−1

b∞|uk(x
′, 0)|p dx′ + o(1).

This yields c∞ ≤ cb, which contradicts (3.4). Hence case (i) holds and w is
a minimizer for cb.

To prove Theorem 1.3, we introduce the subspace H1
G(RN

+ ) of H1(RN
+ )

defined by

H1
G(RN

+ ) = {u ∈ H1(RN
+ ) : u ◦ γ = u for all γ ∈ G}

and set

cb,G = sup
‖u‖=1, u∈H1

G
(RN

+
)

\
RN−1

b(x′)|u(x′, 0)|p dx′.

We also need

c∞,G = sup
‖u‖=1, u∈H1

G
(RN

+
)

\
RN−1

b∞|u(x′, 0)|p dx′.
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Observe that

(3.5) c∞,G = c∞ := sup
‖u‖=1, u∈H1(RN

+
)

\
RN−1

b∞|u(x′, 0)|p dx′.

Indeed, c∞,G ≤ c∞ since H1
G(RN

+ ) ⊂ H1(RN
+ ). Moreover, the standard

argument based on spherical decreasing rearrangements (with respect to the
R

N−1-variable) implies that c∞ is attained on a radially symmetric function,
that is, on H1

G(RN
+ ), and (3.5) is immediate. It then follows from (1.2) and

(3.5) that

(3.6) c∞ < m(p−2)/2cb,G.

Proof of Theorem 1.3. Let {uk} ⊂ H1
G(RN

+ ) be a maximizing sequence
for the constant cb,G. We apply Theorem 2.2 to the sequence {uk◦γ}, γ ∈ G.
We have, by the G-invariance,

(3.7) w-lim
k→∞

uk(· + γy
(n)
k

′
, ·) = w-lim

k→∞
uk(γ

−1 · +y
(n)
k

′
, ·) = w(n) ◦ γ−1.

Let n > 1. Since G is a finite group whose nontrivial elements have no fixed

points, |γy
(n)
k

′
− γ′y

(n)
k

′
| → ∞ whenever γ 6= γ′. Hence there are m distinct

terms of the form w(n)(· + γ, ·), γ ∈ G, in the expansion (2.6). Therefore
(2.6) takes the form

(3.8) uk − w(1) −
∑

n>1, γ∈G

w(n)(· + γy
(n)
k , ·) → 0.

It is easy to see that

(3.9) ‖w(1)‖2 + m
∑

n>1

‖w(n)‖2 ≤ 1

and

(3.10)
\

RN−1

b(x′)|w(1)(x′, 0)|p dx′ + m
∑

n>1

\
RN−1

b∞|w(n)(x′, 0)|p dx′

= lim
k→∞

\
RN−1

b(x′)|u(x′, 0)|p dx′ = cb,G.

Let t1 = ‖w(1)‖2 and tn = m‖w(n)‖2 for n > 1. Then the relation (3.9) takes
the form

(3.11)
∑

n≥1

tn ≤ 1.

On the other hand, using (3.6), the definitions of the quantities cb,G, c∞ and
c∞,G, as well as (3.5) we derive the following inequality:

cb,G ≤ cb,Gt
p/2
1 + mc∞,G

∑

n>1

tp/2
n m−p/2 ≤ cb,Gt

p/2
1 + cb,G

∑

n>1

tp/2
n .
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This yields
∑

n

tp/2
n ≥ 1,

which combined with (3.11) implies that only one term tn is nonzero, say
tn◦

. It follows from (3.9) and (3.10) that n◦ = 1.

4. Problem with the reverse penalty. In this section we prove The-
orem 1.4. Let

(4.1) cb := sup
‖u‖≤1

inf
y′∈ZN−1

\
b(x′)|u(x′ − y′, xN )|p dx.

Let uk be a sequence satisfying, with some y′k ∈ Z
N−1, ‖uk‖ ≤ 1,

(4.2)
\

RN−1

b(x′)|uk(x
′ + y′, 0)|pdx′

≥
\

RN−1

b(x′)|uk(x
′ + y′k, 0)|pdx′ → cb, y′ ∈ Z

N−1.

We will call any such sequence a maximizing sequence. Note that |uk| is then
also a maximizing sequence, and in what follows we assume that uk ≥ 0.
Moreover, uk(·−y′k, ·) is also a maximizing sequence corresponding to y′k = 0,
so without loss of generality we set y′k = 0. Let us apply Theorem 2.2, noting

that since uk ≥ 0, all translated weak limits w(n) are non-negative.

Passing to the limit in (4.2) with y′ = y
(m)
k

′
+ z′, z′ ∈ Z

N−1, we obtain
from Lemma 2.3,

(4.3)
\

RN−1

(b(x′) − b∞)|w(m)(x′ + z′, 0)|p dx′

+
∑

n

\
RN−1

b∞|w(n)(x′, 0)|p dx′

≥
\

RN−1

(b(x′) − b∞)|w(1)(x′, 0)|p dx′ +
∑

n

\
RN−1

b∞|w(n)(x′, 0)|p dx′ = cb.

Note that w(1) 6= 0, for if it were zero, (4.3) would imply that w(m) = 0
for every m, which yields cb = 0. This is a contradiction. Note also that
(4.3) with m = 1 implies

(4.4)
\

RN−1

b(x′)|w(1)(x′, 0)|p dx′

≤
\

RN−1

b(x′)|w(1)(x′ + y′, 0))|p dx′, y′ ∈ Z
N−1.

Let Y ⊂ Z
N−1 be the set of y′ for which equality holds in (4.4). Note
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that Y is finite, since

lim
|y′|→∞

\
RN−1

b(x′)|w(1)(x′ + y′, 0)|p =
\

RN−1

b∞|w(1)(x′, 0)|p dx′

>
\

RN−1

b(x′)|w(1)(x′, 0)|p dx′.

Let gy′(u) =
T
b(x′− y′)|u(x′, 0)|p dx′ ∈ C1(H1(RN

+ )). Assume that the func-

tion w(1) ∈ H1(RN
+ ) does not belong to the positive cone generated by

g′y′(w(1)), y′ ∈ Y . Then there exists a function v ∈ C∞
0 (RN )|

RN
+

with ‖v‖ = 1

and an ε > 0 such that (w(1), v) < −2ε and (g′y′(w(1)), v) > 2ε. Consider

now a sequence uk + tv, t > 0. Then ‖uk + tv‖2 ≤ ‖uk‖
2 + t2 + 2t(uk, v) ≤

1 + t2 − 4εt ≤ 1 if t ≤ 4ε and for all t sufficiently small the functional
gy′(uk + tv) satisfies

gy′(uk + tv) =
\
b(x′ − y′)|(uk + tv)(x′, 0)|p dx′

=
\
b(x′ − y′)|(w(1) + tv)(x′, 0)|p dx′ +

∑

n≥2

\
b∞|w(n)(x′, 0)|p dx′ + o(1)

≥
∑

n≥2

\
b∞|w(n)(x′, 0)|p dx′ +

\
b(x′ − y′)|w(1)(x′, 0)|p dx′ + εt + o(1)

= cb + εt + o(1).

Hence there is a t0 > 0 and a k(t) such that for every k ≥ k(t) and
0 < t < t0,

(4.5) gy′(uk + tv) ≥ cb +
1

2
εt.

Suppose that y′ /∈ Y . Let

(4.6) δ := inf
y∈ZN−1\Y

\
b(x′ − y′)|w(1)(x′, 0)|p dx′ −

\
b(x′)|w(1)(x′, 0)|p dx′.

In view of (4.4), δ ≥ 0. Since

lim
|y′|→∞

\
b(x′ − y′)|w(1)(x′, 0)|p dx′ =

\
b∞|w(1)(x′, 0)|p dx′(4.7)

>
\
b(x′)|w(1)(x′, 0)|p dx′,

the mapping y′ 7→
T
b(x′ − y′)|w(1)(x′, 0)|p dx′ −

T
b(x′)|w(1)(x′, 0)|p dx′ has a

point of minimum over y′ ∈ Z
N−1 \ Y , and by definition of Y the minimal

value cannot be zero.
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Then

gy′(uk + tv) =
\
b(x′ − y′)|(uk + tv)(x′, 0)|p dx′

=
\
b(x′ − y′)|(w(1) + tv)(x′, 0)|p dx′ +

∑

n≥2

\
b∞|w(n)(x′, 0)|p dx′ + o(1)

≥
∑

n≥2

\
b∞|w(n)(x′, 0)|p dx′ +

\
b(x′ − y′)|w(1)(x′, 0)|p dx′ + Ct + o(1)

≥ cb + δ − Ct + o(1).

Note that the o(1) term is uniform in t and y (the latter due to Lemma 2.3),
so that there is a t > 0 such that for every k sufficiently large, gy′(uk + tv) >
cb + 1

2δ if y′ /∈ Y . Combining this with a similar estimate for y′ ∈ Y ,
we deduce that for some k and t, infy′∈ZN−1 gy′(uk + tv) > cb. This is a
contradiction. Thus u is in the convex hull of g′y′ , which yields (1.3).
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[1] H. Brézis and E. Lieb, A relation between pointwise convergence of functions, Proc.
Amer. Math. Soc. 88 (1983), 486–490.

[2] M. Esteban and P.-L. Lions, A compactness lemma, Nonlinear Anal. 7 (1983), 381–
385.

[3] E. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities,
Ann. of Math. 118 (1983), 349–374.

[4] P.-L. Lions, The concentration-compactness principle in the calculus of variations.

The limit case. I, Rev. Mat. Iberoamericana 1 (1985), 145–201.
[5] I. Schindler and K. Tintarev, An abstract version of the concentration compactness

principle, Rev. Mat. Complut. 15 (2002), 417–436.
[6] X. P. Zhu and D. M. Cao, The concentration-compactness principle in nonlinear

elliptic equations, Acta Math. Sci. 9 (1989), 307–327.

Jan Chabrowski
Department of Mathematics
University of Queensland
St. Lucia, 4072 Qld, Australia
E-mail: jhc@maths.uq.edu.au

Kyril Tintarev
Department of Mathematics

Uppsala University
SE-751 06 Uppsala, Sweden

E-mail: kyril.tintarev@math.uu.se

Received February 2, 2005 (7438)


