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Summary. Theorems stating su�
ient 
onditions for the inequivalen
e of the d-variateHaar wavelet system and another wavelet system in the spa
es L1(Rd) and BV(Rd) areproved. These results are used to show that the Strömberg wavelet system and the sys-tem of 
ontinuous Daube
hies wavelets with minimal supports are not equivalent to theHaar system in these spa
es. A theorem stating that some systems of smooth Daube
hieswavelets are not equivalent to the Haar system in L1(Rd) is also shown.1. Introdu
tion1.1. Statement of results. Let Ψ = {ψi}i∈∆ and Ψ = {ψi}i∈∆ be two 
ol-le
tions of linearly independent ve
tors in a normed linear spa
e (X, ‖ ‖X).We say that Ψ and Ψ are equivalent if the linear mapping A de�ned by
A : ψi 7→ ψi for all i ∈ ∆extends to a linear isomorphism of the 
losed linear span of Ψ onto the 
losedlinear span of Ψ .In this paper we are 
on
erned ex
lusively with the 
ases whenX is either

L1(Rd) or BV(Rd), Ψ = H = (hλ)λ∈∆ is the d-variate Haar system and Ψ isanother d-variate wavelet system generated by a univariate mother wavelet
ψ1 and s
aling fun
tion ψ0. The de�nitions of BV and wavelet systems areprovided in Se
tion 1.2. Naturally, we assume that Ψ ⊂ X.2000 Mathemati
s Subje
t Classi�
ation: 42C40, 46E30, 26A45, 26B30.Key words and phrases: Haar system, wavelets, inequivalen
e.This resear
h was supported by the Foundation for Polish S
ien
e and NRC NewInvestigators Twinning Program for Poland and Slovakia 2003-2004. The author wouldalso like to thank Prof. Przemysªaw Wojtasz
zyk from the University of Warsaw andProf. Anna Kamont from the IMPAN division in Sopot for dis
ussions about the topi
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It is well known (see [8℄ and [12℄) that under some mild assumptions onthe de
ay and os
illation of the wavelets that 
onstitute Ψ the systems H and

Ψ are equivalent S
hauder bases in Lp(Rd) (with 1 < p < ∞) and H1(Rd).From wavelet 
hara
terizations of the Sobolev spa
es W s
p in [8℄ (again for

1 < p <∞) the equivalen
e of wavelet bases follows also for these spa
es.The ultimate goal of this paper is to show that no general equivalen
etheorem for wavelet systems 
an hold in the 
ase of p = 1. The two theoremsbelow state su�
ient 
onditions formulated in terms of linear fun
tionalsand the mother wavelet ψ1 for the inequivalen
e of Ψ and H in either L1(Rd)or BV(Rd). (Be
ause H * W 1
1 , the larger spa
e BV is 
onsidered.)Theorem 1. If the mother wavelet ψ1 satis�es(1) ∞\

0

ψ1(t) dt 6= 0,then the Haar system H and the system Ψ are not equivalent in L1(Rd).Condition (1) is satis�ed for the well known Strömberg wavelet (intro-du
ed in [11℄) as well as for 
ertain integer shifts of 
ontinuous (or smoother)
ompa
tly supported Daube
hies wavelets (for the simplest example see anelementary 
onstru
tion in [9℄). These two 
laims are veri�ed in Se
tions 2.2and 2.3 respe
tively.The system obtained from the Strömberg wavelet 
an be 
onsidered areal-line equivalent of the Franklin fun
tions de�ned on the unit interval. Aninteresting 
ontext for Theorem 1 is provided by the paper of Sjölin [10℄, inwhi
h the inequivalen
e of Haar and Franklin systems in L1([0, 1]) is shown.These two results are 
ompared brie�y at the end of Se
tion 2.2.The se
ond theorem 
ontains a similar result for the spa
e BV:Theorem 2. If the mother wavelet ψ1 satis�es(2) \
[1/3,∞)

Dψ1(dt) +
\

[2/3,∞)

Dψ1(dt) 6= 0,

then the Haar system H and the system Ψ are not equivalent in BV(Rd).Spe
i�
ally , there exists a sequen
e of fun
tions fn ∈ BV(Rd) su
h that
‖fn‖BV ≤ C <∞, but |Afn|BV ≥ c2n for a 
ertain 
onstant c2 > 0.Note that the BV seminorm is expli
itly responsible for the inequivalen
e.The assumption (2) in the 
ase of 
ontinuous ψ1 whi
h are 0 at in�nity
an be reformulated as(3) ψ1(1/3) + ψ1(2/3) 6= 0.In Se
tions 3.2 and 3.3 it is veri�ed for the Strömberg wavelet and a 
ontin-uous Daube
hies wavelet supported in the interval [0, 3].
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Interest in the inequivalen
e of wavelet systems in BV is motivated byresults from [4℄ and [13℄, where it is shown that the Haar 
oe�
ients offun
tions from BV(Rd) with d ≥ 2 are in the sequen
e spa
e wℓ1, and greedyproje
tions with respe
t to H are bounded in the BV seminorm. In [3℄ and [1℄these results are generalized to any 
ompa
tly supported wavelet. Results likeTheorem 2 indi
ate that one 
annot use the equivalen
e of wavelet systems in

BV to obtain this generalization and independent proofs are indeed required.1.2. PreliminariesBV spa
es. We say that a distribution f ∈ L1(Rd) belongs to the spa
e
BV(Rd) if its distributional derivatives Dxi

f , i = 1, . . . , d, are measures of�nite variation. The BV seminorm is de�ned by(4) |f |BV(Rd) :=
( d∑

i=1

VarRd(Dxi
f)2

)1/2
,where VarΩ(µ) denotes the variation of the measure µ on the set Ω. Thenorm on BV(Rd) is then de�ned by

‖f‖BV(Rd) := ‖f‖L1(Rd) + |f |BV(Rd).One 
an also de�ne BV(Rd) as the spa
e of all f ∈ L1(Rd) for whi
hthere is a sequen
e (fn) of fun
tions from the Sobolev spa
e W 1
1 (Rd) su
hthat(5) sup

n
‖Dfn‖L1(Rd) <∞ and ‖f − fn‖L1(Rd) → 0 (n→ ∞).The BV seminorm 
an be de�ned in this 
ase as

|f |∗BV := inf
(fn)

lim inf
n→∞

‖Dfn‖L1(Rd),where the in�mum is taken over all sequen
es (fn) satisfying (5). The semi-norm | |∗BV is equivalent to the seminorm de�ned in (4). More details 
anbe found in [14, Chapter 5℄.Wavelet systems. By a d-variate wavelet system we mean the systemobtained by taking the tensor produ
t of a univariate multiresolution analy-sis asso
iated with a univariate s
aling fun
tion ψ0 with orthogonal integershifts and the related mother wavelet ψ1.For 
ompleteness, a brief outline of the 
onstru
tion is presented below.The reader is referred to [6℄ or [12℄ for details.Let E′ = {(e1, . . . , ed) : ei = 0, 1} and E = E′ \ {(0, . . . , 0)}. For e ∈ Eand x = (x1, . . . , xd) ∈ Rd let
ψe(x1, . . . , xd) :=

d∏

i=1

ψei(xi).
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Now for j ∈ Z, k ∈ Zd and λ := (e, j, k) de�ne the fun
tions

ψλ(x) := ψe
j,k(x) := 2dj/2ψe(2jx− k).For

∆ = {(e, 0, k) : e ∈ E′, k ∈ Zd} ∪ {(e, j, k) : j > 0, e ∈ E, k ∈ Zd}(6a)or
∆ = {(e, j, k) : e ∈ E, j ∈ Z, k ∈ Zd}(6b)the system Ψ = {ψλ}λ∈∆ is an orthonormal basis in L2(Rd).The orthonormal d-variate Haar system H = (hλ)λ∈∆ is obtained usingthe same 
onstru
tion by taking h1 = 1[0,1/2) − 1[1/2,1] instead of ψ1 and

h0 = 1[0,1] in pla
e of ψ0. If ∆ is de�ned by (6a) and H is ordered so thatthe indi
es j do not de
rease, then H 
onstitutes a basis in L1(Rd). It is nota basis in BV(Rd), but nonetheless partial sum proje
tions with respe
t to
H are uniformly bounded in the BV norm (see [13, Corollary 11℄).2. Inequivalen
e in L1(Rd)2.1. Proof of Theorem 1. For 
onvenien
e, we assume that the waveletsare normalized in L1(Rd), i.e. we have ‖ψe‖L1

= 1,
ψe

j,k(x) := ψλ(x) := 2djψe(2jx− k),and similarly for H. Let A be a linear mapping su
h that A(hλ) = ψλ forall λ ∈ ∆. We 
onstru
t a bounded sequen
e of fun
tions fn ∈ L1(Rd) su
hthat ‖Afn‖L1
≥ c1n for a 
ertain 
onstant c1 > 0. This implies that A is not
ontinuous and hen
e the systems H and Ψ are not equivalent in L1(Rd).Let n ∈ N and Ωn = [0, 2−n] × [0, 1]d−1. We de�ne the fun
tions

gn := 2n1Ωn
.Observe that ‖gn‖L1

= 1 and gn = 1[0,1]d + fn, where
fn =

n−1∑

j=0

2−j(d−1)
∑

k∈Kj

he0

j,k,with e0 = (1, 0, . . . , 0) and
Kj = {k = (k1, . . . , kd) ∈ Zd : k1 = 0, 0 ≤ k2, . . . , kd ≤ 2j − 1}.We have #Kj = 2j(d−1) and

‖fn‖L1(Rd) ≤ 2.Be
ause e0 6= 0, this sequen
e is a good example for ∆ de�ned by both (6a)and (6b).
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Now 
onsider the following linear fun
tional F ∈ L1(Rd)∗:

F (f) :=
\
Γ

f(x) dx, Γ = [0,∞) × Rd−1.We 
al
ulate
F (Afn) =

\
Γ

n−1∑

j=0

2−j(d−1)
∑

l∈Kj

ψe0

j,k(x) dx

=
n−1∑

j=0

2−j(d−1)
∑

k∈Kj

2dj
\

[0,∞)

ψ1(2jx1) dx1 ·
d∏

i=2

\
R

ψ0(2jxi − ki) dxi

=

n−1∑

j=0

2−j(d−1)
∑

k∈Kj

\
[0,∞)

ψ1(t) dt ·
(\

R

ψ0(t) dt
)d−1

= nc̃1,where c̃1 =
T
[0,∞) ψ

1(t) dt·
(T

R
ψ0(t) dt

)d−1 is not zero by (1) and the fa
t thatthe integral of a s
aling fun
tion ψ0 ∈ L1 
annot vanish (see for example [12,Proposition 3.17℄). Be
ause F is bounded, this implies that ‖Afn‖L1
≥ c1nfor a 
ertain positive 
onstant c1.2.2. Strömberg wavelet in L1. The Strömberg wavelet S, dis
overed byStrömberg in [11℄, is a 
ontinuous, pie
ewise linear fun
tion with knots atthe points . . . ,−3/2,−1,−1/2, 0, 1/2, 1, 2, 3, . . . . Its values at the knots areas follows:

(7) S(−k/2) = S(1)(2
√

3 − 2)(
√

3 − 2)k for k = 1, 2, 3, . . . ,

S(0) = S(1)(2
√

3 − 2), S(1/2) = −S(1)(
√

3 + 1/2),

S(k) = S(1)(
√

3 − 2)k−1 for k = 1, 2, 3, . . . .Obviously, S ∈ L1(Rd), as it has exponential de
ay.Theorem 3. The d-variate Haar and Strömberg wavelet systems are notequivalent in L1(Rd).Proof. We need to show that T∞0 S(t) dt 6= 0. Using (7) we get
∞\
0

S(t) dt =
1

4
(S(0) + S(1/2)) +

1

4
(S(1/2) + S(1)) +

1

2

∞∑

k=1

(S(k) + S(k + 1))

= S(1)

(
−1

2
+

1

2
(
√

3 − 1)
∞∑

k=0

(
√

3 − 2)k

)
= −3 −

√
3

6
S(1) 6= 0.Comparison with Sjölin's result. Let {hn}∞n=1 and {fn}∞n=0 be respe
-tively the Haar and Franklin systems on the unit interval [0, 1], as de�nedin [2℄. In [10℄ Sjölin shows that a linear mapping su
h that fn−1 7→ hn
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for n = 1, 2, 3, . . . is not 
ontinuous in L1([0, 1]). The major di�eren
e be-tween his result and the result proved here is the following: the mapping
hλ 7→ ψλ preserves the lo
ation of the wavelets (where the lo
ation of ψλ,
λ = (e, j, k), is the dyadi
 
ube 2−j([0, 1]d+k)). On the other hand, the map-ping fn−1 7→ hn shifts the lo
ation by one dyadi
 interval or even 
hangesthe dyadi
 level of the fun
tion (for n = 2j + k, k = 1, . . . , 2j, the fun
tions
hn and fn are lo
ated on the dyadi
 interval [(k−1)2−j, k2−j]). In parti
ular,the sequen
e {f2l+1−1}∞l=1 of Franklin fun
tions with disjoint dyadi
 lo
ations
[1− 2 · 2−l, 1− 2−l] is mapped to the sequen
e {h2l+1} of Haar fun
tions thesupports of whi
h form a des
ending sequen
e of dyadi
 intervals [1−2−l, 1].A situation like this is not possible in the 
ase of the mapping 
onsideredhere.2.3. Daube
hies wavelets in L1. The wavelet ψ dis
ussed in the �rst partof this subse
tion belongs to the famous 
lass of 
ompa
tly supported Daube-
hies wavelets introdu
ed in [5℄. The Haar wavelet is the simplest, althoughla
king smoothness, wavelet of this kind. The fun
tion ψ is a minimallysupported 
ontinuous wavelet from this 
lass. Here we show the system gen-erated by ψ(· + 1) or ψ(· + 2) is not equivalent to H in L1(Rd). (Be
ause
ψ = ψ(· + 0) is supported in [0, 3] and T

R
ψ = 0, it does not satisfy theassumption (1).)Below is a list of properties of the s
aling fun
tion φ asso
iated with thewavelet ψ. All of these are taken from [9℄, where an elementary ba
kward-engineered 
onstru
tion of φ is presented. The same material 
an also befound in [12, Se
tion 5.3℄.Let(8) a :=

1 +
√

3

4
and b :=

1 −
√

3

4
.The s
aling fun
tion φ asso
iated with the wavelet ψ is supported on [0, 3]and satis�es the s
aling equation(9) φ(t) = aφ(2t) + (1 − b)φ(2t− 1) + (1 − a)φ(2t− 2) + bφ(2t− 3).From the general 
onstru
tion of wavelets we obtain a formula for ψ:(10) ψ(t) = −bφ(2t) + (1 − a)φ(2t− 1) − (1 − b)φ(2t− 2) + aφ(2t− 3).For t ∈ [0, 1] we have

2φ(t) + φ(t+ 1) = t+
1 +

√
3

2
,(11a)

φ(t) − φ(t+ 2) = t+
−1 +

√
3

2
,(11b)
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as well as

φ
(

1
2 t

)
= aφ(t),(12a)

φ
(

1
2(1 + t)

)
= bφ(t) + at+

2 +
√

3

4
.(12b)Theorem 4. Let Ψ be the wavelet system on Rd generated by ψ0 = φand ψ1 = ψ(· + l) with l = 1 or l = 2. Then Ψ is not equivalent to H in

L1(Rd).Proof. Be
ause T30 ψ dt = 0, it su�
es to show that T10 ψ dt 6= 0 andT2
0 ψ dt 6= 0. We use (10) to 
ompute these integrals. First we will �nd thevalues of

Ii :=

i+1\
i

φ(t) dt, i = 0, 1, 2.

Integrating both sides of (12a) and (12b) over [0, 1] and adding the resultingequalities leads to
2I0 = (a+ b)I0 +

a

2
+

2 +
√

3

4
,whi
h gives

I0 =
5 + 3

√
3

12
.We now integrate the identities in (11) over [0, 1] to obtain

I1 =
1

6
and I2 =

5 − 3
√

3

12
.Using (10) and the values of I0, I1 and I2 we get

1\
0

ψ(t) dt =
1 +

√
3

12
and 2\

0

ψ(t) dt =
1 −

√
3

12
.Both integrals are non-zero.It would be interesting to know whether a fa
t similar to Theorem 4 
anbe shown for any smooth 
ompa
tly supported wavelet. While a 
ompleteanswer to this question is not known to the author, one 
an in fa
t show thefollowing:Theorem 5. Assume that the wavelet ψ1 is 
ompa
tly supported and
ontinuous. For k ∈ Z de�ne ψk = ψ1(· − k) and let Ψk be the d-variatewavelet system generated using ψk as the mother wavelet. Then there exists

k ∈ Z su
h that Ψk is not equivalent to H in L1(Rd).
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The only di�eren
e between the systems Ψk and Ψ0 is in how their el-ements are indexed. From the proof it also follows that for a given ψ1 thesame k works for all d.Proof. By Theorem 1, it su�
es to show that for a 
ertain k ∈ Z we have

∞\
0

ψ1
k(t) dt 6= 0.Indeed, if this was not the 
ase, then the wavelet expansion of the fun
tion

f = 1[0,1] with respe
t to the system generated by ψ1 (with ∆ de�ned by(6a)) would be �nite, whi
h would imply that f is 
ontinuous. See [7, Lemma3, p. 41℄ for an appli
ation of the same tri
k.3. Inequivalen
e in BV(Rd)3.1. Proof of Theorem 2. This time we assume that the wavelets arenormalized in Ld∗(Rd) with d∗ = d/(d − 1), i.e. ‖ψe‖Ld∗
= 1, ψe

j,k(x) :=

2(d−1)jψe(2jx − k) and similarly for H. This normalization is equivalent tothe normalization in the BV seminorm.Again let A be de�ned by A : hλ 7→ ψλ (λ ∈ ∆). As in the proof ofTheorem 1 we will 
onstru
t a sequen
e {fn} bounded in BV(Rd) su
h thatthe BV seminorms of the fun
tions Afn will be unbounded.Let
g := 1Ω with Ω = [0, 1/3] × [0, 1]d−1,

fn :=
1

3

2n−1∑

j=0

2−(d−1)j
∑

k∈Kj

he0

k,j ,

gn :=
1

3
1[0,1]d + fn,where again e0 := (1, 0, . . . , 0) and

Kj :=

{
k = (k1, . . . , kd) ∈ Zd :

k1

2j
<

1

3
<
k1 + 1

2j
, 0 ≤ k2, . . . , kd ≤ 2j − 1

}
.Note again that for ea
h j ≥ 0 we have #Kj = 2(d−1)j. Moreover, all k ∈ Kjhave the same �rst 
oordinate k1 =: k1(j). As the binary expansion of thefra
tion 1/3 is 2-periodi
 (1/3 = 0.010101 . . . in the binary notation) we alsohave(13) 2j

3
− k1(j) =

{
1/3 for even j,
2/3 for odd j.The fun
tions gn are partial sums of the Haar expansion of g down tothe dyadi
 level 2n−1. Hen
e, they are uniformly bounded in the BV norm,
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whi
h implies that fn are bounded as well. As in the proof of Theorem 1,this sequen
e is a good example for ∆ de�ned either by (6a) or (6b).We now 
onsider the following linear fun
tional, bounded in the BVseminorm:

F (f) :=
\
Γ

Dx1
f(dx), Γ = [1/3,∞) × Rd−1.We will use the notation

V (t0) :=
\

[t0,∞)

Dψ1(dt).

First we observe that for k ∈ Kj ,
F (ψe0

j,k) = V (2j/3 − k1(j)) ·
(\

R

ψ0(t) dt
)d−1

= c̃2 · V
(

1

3
· 3 + (−1)j

2

) by (13)with c̃2 = (
T
R
ψ0(t) dt)d−1. From this we get

F

(
A

(
1

3
· 2−(d−1)j

∑

k∈Kj

he0

j,k

))
=

1

3
· 2−(d−1)j

∑

k∈Kj

F (ψe0

j,k)

=
1

3
· 2−(d−1)j

∑

k∈Kj

c̃2V

(
1

3
· 3 + (−1)j

2

)

=
1

3
· c̃2V

(
1

3
· 3 + (−1)j

2

)
.Finally, the above gives

F (Afn) =
1

3
·c̃2

2n−1∑

j=0

V

(
1

3
· 3 + (−1)j

2

)
=

1

3
·c̃2

n−1∑

j=0

(
V

(
1

3

)
+V

(
2

3

))
= c2nwith c2 = 1

3(
T
R
ψ0(t) dt)d−1(V (1/3) + V (2/3)) 6= 0 by (2) and the alreadymentioned fa
t that the integral of ψ0 
annot vanish. This implies that thereexists a 
onstant c2 > 0 su
h that |Afn|BV ≥ c2n.The parti
ular 
hoi
e for the fun
tion g was inspired by a one-dimensionalexample in [3, p. 259℄.3.2. Strömberg wavelet in BV. By (7), the distributional derivative ofthe Strömberg wavelet S is a pie
ewise 
onstant fun
tion with exponentialde
ay, so obviously S ∈ BV(R). Here we show that it generates a waveletsystem not equivalent to H in BV(Rd).Theorem 6. The d-variate Haar and Strömberg systems are not equiv-alent in BV(Rd).
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Proof. It su�
es to 
he
k that S(1/3) + S(2/3) 6= 0. Using (7) we get

S(1/3) + S(2/3) = −S(1) − 2
√

3

3
S(1) 6= 0.3.3. Continuous Daube
hies wavelet in BV. The di�erentiability prop-erties of the minimally supported 
ontinuous Daube
hies wavelet ψ are an-alyzed in [9℄. However, the question whether ψ ∈ BV(R) is not 
onsideredthere. The answer is given below.Proposition 7. The wavelet ψ belongs to the spa
e BV(R).Proof. It su�
es to show that the 
orresponding s
aling fun
tion φ be-longs to BV(R). In [9℄ the fun
tion φ is 
onstru
ted as the L∞-limit of asequen
e (gn) of 
ontinuous pie
ewise linear fun
tions over in
reasingly �nerdyadi
 meshes. We use the same 
onstru
tion to show that φ ∈ BV(R).Firstly, a non-linear operator K is de�ned (a and b are de�ned in (8)):

(14) K(f)(t) :=





af(2t), t ∈ [0, 1/2),
bf(2t− 1) + 2at+ 1/4, t ∈ [1/2, 1),
af(2t− 1) + 2bt− (2−

√
3)/4, t ∈ [1, 3/2),

bf(2t− 2)− 2at+ (4 +
√

3)/4, t ∈ [3/2, 2),
af(2t− 2)− 2bt+ (7− 6

√
3)/4, t ∈ [2, 5/2),

bf(2t− 3), t ∈ [5/2, 3),
0, t ∈ (−∞, 0)∪ [3,∞).The fun
tion g0 is 
ontinuous and pie
ewise linear with knots in Z, su
h that

g0(t) = φ(t) for all t ∈ Z. Next,
gn := K(gn−1) for n = 1, 2, 3, . . . .The fun
tions gn are 
ontinuous with supports in [0, 3]. Ea
h gn is pie
ewiselinear with knots at the points {k2−n}k∈Z. This in parti
ular implies that

gn ∈ W 1
1 (R) for all n. Moreover, it 
an be shown that ‖ψ − gn‖L∞

→ 0,whi
h means that ‖ψ − gn‖L1
→ 0 as well.Lemma 8. Let f be a 
ontinuous fun
tion with support in [0, 3] su
h that

f ∈W 1
1 (R) and K(f) is also 
ontinuous. Then(15) ‖D(K(f))‖L1

≤
√

3

2
‖Df‖L1

+
√

3.Proof. We use (14) to estimate
Ik :=

(k+1)/2\
(k)/2

|D(K(f))(t)| dt
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for k = 0, 1, . . . , 5:

I0 ≤ |a|
1\
0

|Df(t)| dt, I1 ≤ |b|
1\
0

|Df(t)| dt+ |a|,

I2 ≤ |a|
2\
1

|Df(t)| dt+ |b|, I3 ≤ |b|
2\
1

|Df(t)| dt+ |a|,

I4 ≤ |a|
3\
2

|Df(t)| dt+ |b|, I5 ≤ |b|
3\
2

|Df(t)| dt.This gives
3\
0

|D(K(f))(t)| dt ≤ (|a| + |b|)
( 3\

0

|Df(t)| dt+ 2
)

=

√
3

2

3\
0

|Df(t)| dt+
√

3.Iterating (15) for f = gn, . . . , g0 we obtain
‖Dgn‖L1

≤
(√

3

2

)n

‖Dg0‖L1
+

√
3

(
1 +

√
3

2
+ · · · +

(√
3

2

)n−1)
,whi
h implies that ‖Dgn‖L1

< M for a 
ertain M < ∞ and all n. By these
ond de�nition of the spa
es BV in Se
tion 1.2, this implies that φ (i.e.the L1-limit of gn) belongs to BV(R).Having established that ψ ∈ BV(R), we may now show the following:Theorem 9. Let Ψ be the wavelet system on Rd generated by ψ0 = φand ψ1 = ψ. Then Ψ and H are not equivalent in BV(Rd).Proof. By Theorem 2, we need to show that
ψ(1/3) + ψ(2/3) 6= 0.Using (10) and (12b) we get

ψ(1/3) = −bφ(2/3) = −bφ
(

1

2

(
1 +

1

3

))
= −b

(
bφ(1/3) +

a

3
+

2 +
√

3

4

)
,while (10) and (11a) give

ψ(2/3) = −bφ(4/3) + (1 − a)φ(1/3)

= −b
(
−2φ(1/3) +

1

3
+

1 +
√

3

2

)
+ (1 − a)φ(1/3).Hen
e(16) ψ(1/3) + ψ(2/3) =

8 − 5
√

3

8
φ(1/3) +

13 + 7
√

3

48
.Now we need to �nd the value of ψ(1/3). By 
ontinuity of φ, we have

φ(1/3) = lim
k→∞

φ(xk)
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for x0 := 0 and xk := 1

4xk−1 + 1
4 for k = 1, 2, 3, . . . . Observe that xk ր 1/3.Using the identities in (12) we get

φ(xk) = φ

(
1

2

(
1

2
xk−1 +

1

2

))
= aφ

(
1

2
(xk−1 + 1)

)

= a

(
bφ(xk−1) + axk−1 +

2 +
√

3

4

)

= −1

8
φ(xk−1) +

2 +
√

3

8
xk−1 +

5 + 3
√

3

16
,whi
h yields

φ(1/3) =
19 + 11

√
3

54
.Substituting this in (16) leads to

ψ(1/3) + ψ(2/3) =
13 + 7

√
3

54
6= 0.
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