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Inequivalence of Wavelet Systems in L;(R?) and BV(R?)
by
Pawel BECHLER

Presented by Zbigniew CIESIELSKI

Summary. Theorems stating sufficient conditions for the inequivalence of the d-variate
Haar wavelet system and another wavelet system in the spaces Li(R?) and BV(R?) are
proved. These results are used to show that the Stromberg wavelet system and the sys-
tem of continuous Daubechies wavelets with minimal supports are not equivalent to the
Haar system in these spaces. A theorem stating that some systems of smooth Daubechies
wavelets are not equivalent to the Haar system in L;(R?) is also shown.

1. Introduction

1.1. Statement of results. Let ¥ = {1;}ien and ¥ = {1}, }ic be two col-
lections of linearly independent vectors in a normed linear space (X, || ||x)-
We say that ¥ and ¥ are equivalent if the linear mapping A defined by

A forallic A

extends to a linear isomorphism of the closed linear span of ¥ onto the closed
linear span of V.

In this paper we are concerned exclusively with the cases when X is either
L1(RY) or BV(R?), ¥ = H = (hy)aca is the d-variate Haar system and ¥ is
another d-variate wavelet system generated by a univariate mother wavelet
! and scaling function 1°. The definitions of BV and wavelet systems are
provided in Section 1.2. Naturally, we assume that ¥ C X.
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It is well known (see [8] and [12]) that under some mild assumptions on
the decay and oscillation of the wavelets that constitute ¥ the systems H and
¥ are equivalent Schauder bases in L,(R%) (with 1 < p < 00) and H'(R%).
From wavelet characterizations of the Sobolev spaces W in [8] (again for
1 < p < ) the equivalence of wavelet bases follows also for these spaces.

The ultimate goal of this paper is to show that no general equivalence
theorem for wavelet systems can hold in the case of p = 1. The two theorems
below state sufficient conditions formulated in terms of linear functionals
and the mother wavelet 1! for the inequivalence of ¥ and H in either L (R?)
or BV(R?). (Because H ¢ W1, the larger space BV is considered.)

THEOREM 1. If the mother wavelet 1" satisfies
(1) | w(t)dt #0,

0
then the Haar system H and the system ¥ are not equivalent in Ll(Rd).

Condition (1) is satisfied for the well known Stromberg wavelet (intro-
duced in [11]) as well as for certain integer shifts of continuous (or smoother)
compactly supported Daubechies wavelets (for the simplest example see an
elementary construction in [9]). These two claims are verified in Sections 2.2
and 2.3 respectively.

The system obtained from the Stromberg wavelet can be considered a
real-line equivalent of the Franklin functions defined on the unit interval. An
interesting context for Theorem 1 is provided by the paper of Sj6lin [10], in
which the inequivalence of Haar and Franklin systems in L;([0, 1]) is shown.
These two results are compared briefly at the end of Section 2.2.

The second theorem contains a similar result for the space BV:

THEOREM 2. If the mother wavelet ¥ satisfies
(2) | Dy'd)y+ | Dyl(dr) #o,
[1/3,00) [2/3,00)
then the Haar system H and the system W are not equivalent in BV(R?).

Specifically, there exists a sequence of functions f, € BV(R?) such that
I fnllBy < C < 00, but |Afn|v > can for a certain constant ca > 0.

Note that the BV seminorm is explicitly responsible for the inequivalence.
The assumption (2) in the case of continuous 1! which are 0 at infinity
can be reformulated as

(3) PH(1/3) +91(2/3) # 0.
In Sections 3.2 and 3.3 it is verified for the Stromberg wavelet and a contin-
uous Daubechies wavelet supported in the interval [0, 3].
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Interest in the inequivalence of wavelet systems in BV is motivated by
results from [4] and [13], where it is shown that the Haar coefficients of
functions from BV(Rd) with d > 2 are in the sequence space wfy, and greedy
projections with respect to H are bounded in the BV seminorm. In [3] and [1]
these results are generalized to any compactly supported wavelet. Results like
Theorem 2 indicate that one cannot use the equivalence of wavelet systems in
BV to obtain this generalization and independent proofs are indeed required.

1.2. Preliminaries

BV spaces. We say that a distribution f € Li(R?%) belongs to the space
BV(RY) if its distributional derivatives D, f, i = 1,...,d, are measures of
finite variation. The BV seminorm is defined by

1/2

d
(4) |flBv®e) == (ZVﬁTRd(DxZ—f)2) ;
=1

where Varg(p) denotes the variation of the measure p on the set (2. The
norm on BV(RY) is then defined by

1 fllBv(ray = I fllL,(ray + | flBV(RA)-

One can also define BV(R?) as the space of all f € L;(R%) for which
there is a sequence (f,,) of functions from the Sobolev space W (R?) such
that

) supIDfulzyan <00 and [f = fullpygsy =0 (n— o0,
The BV seminorm can be defined in this case as
| flgy = (l?f) hnnliogf ||DanL1(Rd),

where the infimum is taken over all sequences (f,,) satisfying (5). The semi-
norm | |5y is equivalent to the seminorm defined in (4). More details can
be found in [14, Chapter 5|.

Wavelet systems. By a d-variate wavelet system we mean the system
obtained by taking the tensor product of a univariate multiresolution analy-
sis associated with a univariate scaling function ¥° with orthogonal integer
shifts and the related mother wavelet 1.

For completeness, a brief outline of the construction is presented below.
The reader is referred to [6] or [12] for details.

Let E' = {(e1,...,eq) : ¢, =0,1} and F = E'\ {(0,...,0)}. For e € F
and x = (r1,...,7q) € R? let

d
V(a1 mg) = [ [0 (@),

=1
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Now for j € Z, k € Z% and X := (e, j, k) define the functions
(@) = 5y (2) = 2929522 — k).
For
(6a) A={(e,0,k):ecE kezi}uU{(e,j,k):j>0,ecE, kezZ
or
(6b) A={(e,j,k):e€E, jeZ kel

the system ¥ = {1/, }aca is an orthonormal basis in Lo(R%).

The orthonormal d-variate Haar system H = (h))aca is obtained using
the same construction by taking h! = Ljo,1/2) — 1j1/2,1) instead of ! and
ho = 1j,1) in place of 0. If A is defined by (6a) and H is ordered so that
the indices j do not decrease, then H constitutes a basis in L;(R?). It is not
a basis in BV(Rd), but nonetheless partial sum projections with respect to
H are uniformly bounded in the BV norm (see [13, Corollary 11]).

2. Inequivalence in L;(R%)

2.1. Proof of Theorem 1. For convenience, we assume that the wavelets
are normalized in L;(R?), i.e. we have ||1¢||r, = 1,

5k(@) = Ua(2) = 299 (Pa — k),
and similarly for H. Let A be a linear mapping such that A(hy) = v, for
all A € A. We construct a bounded sequence of functions f,, € Ll(Rd) such
that ||Afy||z, > cin for a certain constant ¢; > 0. This implies that A is not

continuous and hence the systems H and ¥ are not equivalent in L (R%).
Let n € N and §2, = [0,27"] x [0,1]?1. We define the functions

gn :=2"1g,.
Observe that |gn|lz, =1 and g, = 1jg1)a + fp, where

n—1
=2 200 2 Bl
p

keK;
with eg = (1,0,...,0) and
Ki={k=(k1,...,ka) €Z% : k1 =0,0 < ko, ..., kg <2/ —1}.
We have #K; = 27(d=1) and
[fnllz, ey < 2.

Because eg # 0, this sequence is a good example for A defined by both (6a)
and (6b).
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Now consider the following linear functional F' € Ly (R?)*:

F(f):=\ f(z)dz, I =[0,00)x R

r
We calculate
n—1
F(Afo) =D 27700 3"y (2) da

I j=0 leK; 7
n—1 d
22 g(d=1) Z 2dj S 231‘1) d.%'l HS@/JO(ijZ' — kz) d.%'i
J=0 keK; [0,00) i=2R
n—1

_ 2j(d 1)2 S (Swo()dt)dl
Jj= kEK; [0,00) R

= TlCl,

where ¢; = 8[0 00) YH(t) dt- (§5 0 (t) alt)di1 is not zero by (1) and the fact that
the integral of a scaling function ¥° € L; cannot vanish (see for example [12,
Proposition 3.17]). Because F' is bounded, this implies that [|Af,||z, > cin
for a certain positive constant c¢;. m

2.2. Stromberg wavelet in Li. The Strémberg wavelet S, discovered by
Stromberg in [11], is a continuous, piecewise linear function with knots at

the points ...,—3/2,—-1,—-1/2,0,1/2,1,2,3,.... Its values at the knots are
as follows:
S(—k/2) = S()(2V3 —2)(V3 —2)F for k=1,2,3,...,
7) S(0) = S@VE—2),  S(1/2) = ~S1)(V3+1/2),
S(k)=S1)(V3-2)F"1 fork=1,2,3,....

Obviously, S € L;(R?), as it has exponential decay.

THEOREM 3. The d-variate Haar and Strémberg wavelet systems are not
equivalent in Ly (RY).

Proof. We need to show that {°S(t) dt # 0. Using (7) we get

[e.9] o

1 1 1
(g) S(tydt = 2 (S(0) + S(1/2)) + 7 (S(1/2) + S(1)) + 5 ;(S(k) +5(k+1))
- 5(1)(—% + %(x/§— DY (V3 - 2)’f) _ 3 _6‘/§ S(1)#0.
k=0

Comparison with Sjélin’s result. Let {h,}o>, and {f,}°2, be respec-
tively the Haar and Franklin systems on the unit interval [0, 1], as defined
in [2]. In [10] Sjolin shows that a linear mapping such that f,_1 — h,
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for n = 1,2,3,... is not continuous in L;(]0,1]). The major difference be-
tween his result and the result proved here is the following: the mapping
hy +— 1 preserves the location of the wavelets (where the location of 1y,
A = (e, 4, k), is the dyadic cube 277([0, 1]4+k)). On the other hand, the map-
ping fn,—1 — h, shifts the location by one dyadic interval or even changes
the dyadic level of the function (for n =2/ + k, k = 1,...,27, the functions
h,, and f,, are located on the dyadic interval [(k—1)277, k277]). In particular,
the sequence { foi+1_1};°, of Franklin functions with disjoint dyadic locations
[1—-2-27%1—27" is mapped to the sequence {ho1} of Haar functions the
supports of which form a descending sequence of dyadic intervals [1 —27, 1].
A situation like this is not possible in the case of the mapping considered
here.

2.3. Daubechies wavelets in L. The wavelet 1) discussed in the first part
of this subsection belongs to the famous class of compactly supported Daube-
chies wavelets introduced in [5]. The Haar wavelet is the simplest, although
lacking smoothness, wavelet of this kind. The function 1t is a minimally
supported continuous wavelet from this class. Here we show the system gen-
erated by (- + 1) or ¥(- + 2) is not equivalent to H in L;(R%). (Because
Y = ¢(- 4 0) is supported in [0,3] and {z ¥ = 0, it does not satisfy the
assumption (1).)

Below is a list of properties of the scaling function ¢ associated with the
wavelet 1. All of these are taken from [9], where an elementary backward-
engineered construction of ¢ is presented. The same material can also be
found in [12, Section 5.3].

Let
(8) a:= ! +4\/§ and b:= ! _4\/§.

The scaling function ¢ associated with the wavelet ¢ is supported on [0, 3]
and satisfies the scaling equation

9) o(t) =ap(2t) + (1 —b)p(2t — 1) + (1 — a)p(2t — 2) + bp(2t — 3).
From the general construction of wavelets we obtain a formula for :
(10)  ¢(t) = =bop(2t) + (1 —a)p(2t — 1) — (1 — b)p(2t — 2) + ag(2t — 3).
For t € [0, 1] we have

1+V3
2 b

143
2 )

(11a) 20(t) + ¢t +1) =t +

(11b) B(t) — ot +2) =t +
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as well as
(122) 6(3¢) = as(0),
(12b) Pp(2(1+1)) =bp(t) +at + 2+\/§.

4

THEOREM 4. Let ¥ be the wavelet system on R? generated by ¥° = ¢
and ' = (- +1) with | = 1 or | = 2. Then ¥ is not equivalent to H in
L1 (RY).

Proof. Because Sgwdt = 0, it suffices to show that S(l)wdt # 0 and

Sgd)dt # 0. We use (10) to compute these integrals. First we will find the
values of
i+1
L=\ ¢(t)dt, i=0,1,2.
i
)

Integrating both sides of (12a) and (12b) over [0, 1] and adding the resulting
equalities leads to

a 243
2[0:(61—}—5)]0-1—54— 4\/_7

which gives

_5+3V3
12

We now integrate the identities in (11) over [0, 1] to obtain

5—3V3

Iy

1
Ih=- and I, =

6 12
Using (10) and the values of Iy, I; and I, we get
1 2
1+V3 1-V3
§¢(t) dt = ——= and §¢(t) dt = ——=.

Both integrals are non-zero. =

It would be interesting to know whether a fact similar to Theorem 4 can
be shown for any smooth compactly supported wavelet. While a complete
answer to this question is not known to the author, one can in fact show the
following;:

THEOREM 5. Assume that the wavelet ' is compactly supported and
continuous. For k € 7 define vy = '(- — k) and let ¥, be the d-variate
wavelet system generated using Vi as the mother wavelet. Then there exists
k € Z such that Wy, is not equivalent to H in L (RY).
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The only difference between the systems ¥, and ¥ is in how their el-
ements are indexed. From the proof it also follows that for a given 1! the
same k works for all d.

Proof. By Theorem 1, it suffices to show that for a certain k € Z we have
o
| vi(t)at #o.
0

Indeed, if this was not the case, then the wavelet expansion of the function
J = 1jp,1) with respect to the system generated by P! (with A defined by
(6a)) would be finite, which would imply that f is continuous. See |7, Lemma
3, p.- 41] for an application of the same trick. =

3. Inequivalence in BV(R%)

3.1. Proof of Theorem 2. This time we assume that the wavelets are
normalized in Lg-(RY) with d* = d/(d — 1), ie. [[¢°|r,. = 1, ¢S, (z) :=
2(d=1)iqye (272 — k) and similarly for H. This normalization is equivalent to
the normalization in the BV seminorm.

Again let A be defined by A : hy — ¥y (A € A). As in the proof of
Theorem 1 we will construct a sequence {f,,} bounded in BV(R%) such that
the BV seminorms of the functions Af;, will be unbounded.

Let

g:=1gp  with 2 =[0,1/3] x [0,1]%7%,
2n—1

homg T S

kEKj

1
gn = 3 1[0,1]01 + fn,
where again ep := (1,0,...,0) and

ke 1k -
d-i<_<1+,0§@WW@§W—%.

Kjiz{k:(kil,...,k?d)EZ F o7 3 Y

Note again that for each j > 0 we have #K; = 2(d=1)7 Moreover, all k € K;
have the same first coordinate k; =: k1(j). As the binary expansion of the
fraction 1/3 is 2-periodic (1/3 = 0.010101 ... in the binary notation) we also
have

2J {1/3 for even 7,

13 Z k) =
(13) 5 MU =023 for odd /.

The functions g, are partial sums of the Haar expansion of g down to
the dyadic level 2n — 1. Hence, they are uniformly bounded in the BV norm,
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which implies that f,, are bounded as well. As in the proof of Theorem 1,
this sequence is a good example for A defined either by (6a) or (6b).

We now consider the following linear functional, bounded in the BV
seminorm:

F(f) =\ Dq f(dz), I =[1/3,00) xR

r
We will use the notation

V(to) = | Dy'(de).
[to,00)

First we observe that for k € K},

Pl = V@3~ k() - ([0 )“”

w0t
R
_62 V(l 3+ )J>

with ¢ = ([ ¢0(t) dt)4~!. From this we get

1 . 1 g .
F<A<§'2 DY hj?’“)) =37 DRI
kEKj

kEKj

| PP _ (1 34 (-1)
— — .9—(d=-1)j L
3 2 ZC2V<3 9 )

keK;

_ 1 3+ (=1)
=3 02V< > ) .
Finally, the above gives

=L () L () ()

with ¢ = —(S YO(t) dt)?=1(V(1/3) + V(2/3)) # 0 by (2) and the already
mentioned fact that the integral of ¥° cannot vanish. This implies that there
exists a constant co > 0 such that |Af,|gy > con. =

I =

wlr—‘

The particular choice for the function g was inspired by a one-dimensional
example in 3, p. 259].

3.2. Stromberg wavelet in BV. By (7), the distributional derivative of
the Stromberg wavelet S is a piecewise constant function with exponential

decay, so obviously S € BV(R). Here we show that it generates a wavelet
system not equivalent to H in BV (R?).

THEOREM 6. The d-variate Haar and Strémberg systems are not equiv-
alent in BV(R?).



34 P. Bechler

Proof. 1t suffices to check that S(1/3) + 5(2/3) # 0. Using (7) we get

S(1/3) + S(2/3) = —S(1) — ﬂ S(1) #£0. =

3.3. Continuous Daubechies wavelet in BV. The differentiability prop-
erties of the minimally supported continuous Daubechies wavelet i) are an-
alyzed in [9]. However, the question whether ¢» € BV(R) is not considered
there. The answer is given below.

PROPOSITION 7. The wavelet 1 belongs to the space BV (R).

Proof. 1t suffices to show that the corresponding scaling function ¢ be-
longs to BV(R). In [9] the function ¢ is constructed as the Loo-limit of a
sequence (gy) of continuous piecewise linear functions over increasingly finer
dyadic meshes. We use the same construction to show that ¢ € BV(R).

Firstly, a non-linear operator K is defined (a and b are defined in (8)):

'af(%), €[0,1/2),
bf (2t — 1) + 2at +1/4, €[1/2,1),
af(2t — 1)+ 2bt — (2 —/3)/4, €[1,3/2),
(14)  K(f)(t):= bf(2t —2) —2at + (4 +/3)/4, t€[3/2,2),
af(2t —2) — 2bt+(7—6\/_)/4, €[2,5/2),
bf(2t —3), € [5/2,3),
0, t € (—o00,0)U[3,00).

The function gg is continuous and piecewise linear with knots in Z, such that
go(t) = ¢(t) for all t € Z. Next,

gn = K(gn—1) forn=1,23,....

The functions g,, are continuous with supports in [0, 3]. Each g, is piecewise
linear with knots at the points {k27"},ez. This in particular implies that
gn € W(R) for all n. Moreover, it can be shown that |[¢ — gullz.. — O,
which means that |[¢) — gn||z, — 0 as well.

LEMMA 8. Let f be a continuous function with support in [0, 3] such that
f € WHR) and K(f) is also continuous. Then

V3

(15) IDE () < =5 1D flly + V3,
Proof. We use (14) to estimate
(k+1)/2
Io:= | ID(E()(0)dt

(k)/2
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for k=0,1,...,5:
1 1
Io <lal | IDf(t)| dt, I < ||\ [Df(t)|dt + |al,
0 0
2 2
I <lal{ |Df(t)| dt + |b], I < [b] | [Df(t)] dt + al,
1 1
3 3
I < |a|\ IDf(t)] dt+ o], Iy < ol | [Df(t)| dt.
2 2
This gives
3 3 \/g

VD)0 dt < (al + o) (§IDF ()] de +2) =
0

0

3
TS’D]C ’dt—i-\/_ u
0
Iterating (15) for f = gy, ..., go we obtain
\/§ n \/g \/g n—1
[Dgnllz, < (7) ||Dgo||L1+\/§<1+7+..._|_ (7) )7

which implies that ||Dgy,||z, < M for a certain M < oo and all n. By the
second definition of the spaces BV in Section 1.2, this implies that ¢ (i.e.
the L;-limit of g,,) belongs to BV(R). =

Having established that ¢» € BV(R), we may now show the following:

THEOREM 9. Let W be the wavelet system on R? generated by ° = ¢
and ' = . Then ¥ and H are not equivalent in BV (R?).

Proof. By Theorem 2, we need to show that
$(1/3) +1(2/3) £0.
Using (10) and (12b) we get

001/ = —bo(2/9) = o3 (141 ) ) = o bot1/ + 5+ 22,
while (10) and (11a) give
¥(2/3) = —bp(4/3) + (1 — a)p(1/3)

_ (2¢<1/3>+3+”2f) (- a)o(1/3).

Hence
(16) Y(1/3) +(2/3) = " Y8 o1/3) + %

Now we need to find the value of ¥)(1/3). By continuity of ¢, we have
5(1/3) = lim o(a)
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for g := 0 and zp := ixk—l + i for k =1,2,3,.... Observe that z} / 1/3.
Using the identities in (12) we get

Blok) = ¢>(% G P %)) - a¢(% (2er + 1)>

= a<b¢(xk_1) +axp_1 + M)

which yields

4

1 2+3 5+3V3

= g Olm) ¥ T Tt
19+11V3
0(1/3) = =2

Substituting this in (16) leads to

(1]
(2]
[3]
[4]
[5]
[6]
[7]

(8]

[9]
[10]

[11]

[12]

P(1/3) +P(2/3) = ———

13+ 73
A0 .

References

P. Bechler, R. DeVore, A. Kamont, G. Petrova, and P. Wojtaszczyk, Greedy wavelet
projections are bounded in BV, Trans. Amer. Math. Soc., to appear.

Z. Ciesielski, Properties of the orthonormal Franklin system, Studia Math. 23 (1963),
141-157.

A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore, Harmonic analysis of the
space BV, Rev. Mat. Iberoamericana 19 (2003), 235-263.

A. Cohen, R. DeVore, P. Petrushev, and H. Xu, Nonlinear approximation and the
space BV(R?), Amer. J. Math. 121 (1999), 587-628.

I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure
Appl. Math. 41 (1988), 909-996.

—, Ten Lectures on Wavelets, CBMS-NSF Reg. Conf. Ser. Appl. Math. 61, STAM,
Philadelphia, PA, 1992.

S. Jaffard, Beyond Besov spaces. II. Oscillation spaces, Constr. Approx. 21 (2005),
29-61.

Y. Meyer, Wavelets and Operators, Cambridge Stud. Adv. Math. 37, Cambridge
Univ. Press, Cambridge, 1992, Translated from the 1990 French original by D. H.
Salinger.

D. Pollen, Daubechies’ scaling function on [0, 3], in: Wavelets, Wavelet Anal. Appl.
2, Academic Press, Boston, MA, 1992, 3—13.

P. Sjolin, The Haar and Franklin systems are not equivalent bases in L', Bull. Acad.
Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 1099-1100.

J.-O. Strémberg, A modified Franklin system and higher-order spline systems on R™
as unconditional bases for Hardy spaces, in: Conference on Harmonic Analysis in
Honor of Antoni Zygmund, Vol. I, II (Chicago, IL, 1981), Wadsworth Math. Ser.,
Wadsworth, Belmont, CA, 1983, 475-494.

P. Wojtaszczyk, A Mathematical Introduction to Wavelets, London Math. Soci. Stu-
dent Texts 37, Cambridge Univ. Press, Cambridge, 1997.



Inequivalence of Wavelet Systems 37

[13] P. Wojtaszczyk, Projections and non-linear approzimation in the space BV(R?),
Proc. London Math. Soc. (3) 87 (2003), 471-497.

[14] W. P. Ziemer, Weakly Differentiable Functions, Grad. Texts in Math. 120, Springer,
New York, 1989.

Pawetl Bechler

Institute of Mathematics
Polish Academy of Sciences
Sniadeckich 8

P.O. Box 21

00-956 Warszawa, Poland
E-mail: pbechler@impan.gov.pl

Received March 15, 2005;
recetved in final form May 13, 2005 (7447)



